1
|
Fang J, Lin A, Yan H, Feng L, Lin S, Mason P, Zhou L, Xu X, Zhao K, Huang Y, Henry RJ. Cytoplasmic genomes of Jasminum sambac reveal divergent sub-mitogenomic conformations and a large nuclear chloroplast-derived insertion. BMC PLANT BIOLOGY 2024; 24:861. [PMID: 39272034 PMCID: PMC11401388 DOI: 10.1186/s12870-024-05557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Jasminum sambac, a widely recognized ornamental plant prized for its aromatic blossoms, exhibits three flora phenotypes: single-petal ("SP"), double-petal ("DP"), and multi-petal ("MP"). The lack of detailed characterization and comparison of J. sambac mitochondrial genomes (mitogenomes) hinders the exploration of the genetic and structural diversity underlying the varying floral phenotypes in jasmine accessions. RESULTS Here, we de novo assembled three mitogenomes of typical phenotypes of J. sambac, "SP", "DP", and "MP-hutou" ("HT"), with PacBio reads and the "HT" chloroplast (cp) genome with Illumina reads, and verified them with read mapping and fluorescence in situ hybridization (FISH). The three mitogenomes present divergent sub-genomic conformations, with two, two, and four autonomous circular chromosomes ranging in size from 35.7 kb to 405.3 kb. Each mitogenome contained 58 unique genes. Ribosome binding sites with conserved AAGAAx/AxAAAG motifs were detected upstream of uncanonical start codons TTG, CTG and GTG. The three mitogenomes were similar in genomic content but divergent in structure. The structural variations were mainly attributed to recombination mediated by a large (~ 5 kb) forward repeat pair and several short repeats. The three jasmine cp. genomes showed a well-conserved structure, apart from a 19.9 kb inversion in "HT". We identified a 14.3 kb "HT"-specific insertion on Chr7 of the "HT" nuclear genome, consisting of two 7 kb chloroplast-derived fragments with two intact ndhH and rps15 genes, further validated by polymerase chain reaction (PCR). The well-resolved phylogeny suggests faster mitogenome evolution in J. sambac compared to other Oleaceae species and outlines the mitogenome evolutionary trajectories within Lamiales. All evidence supports that "DP" and "HT" evolved from "SP", with "HT" being the most recent derivative of "DP". CONCLUSION The comprehensive characterization of jasmine organelle genomes has added to our knowledge of the structural diversity and evolutionary trajectories behind varying jasmine traits, paving the way for in-depth exploration of mechanisms and targeted genetic research.
Collapse
Affiliation(s)
- Jingping Fang
- College of Life Science, Fujian Normal University, Fuzhou, China.
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia.
| | - Aiting Lin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hansong Yan
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liqing Feng
- College of Life Science, Fujian Normal University, Fuzhou, China
- Marine and Agricultural Biotechnology Laboratory, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Shaoqing Lin
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Patrick Mason
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia
| | - Linwei Zhou
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xiuming Xu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Zhao
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yongji Huang
- Marine and Agricultural Biotechnology Laboratory, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China.
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia.
| |
Collapse
|
2
|
Rugman-Jones PF, Dodge CE, Stouthamer R. Pervasive heteroplasmy in an invasive ambrosia beetle (Scolytinae) in southern California. Heredity (Edinb) 2024:10.1038/s41437-024-00722-0. [PMID: 39266674 DOI: 10.1038/s41437-024-00722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
Heteroplasmy, the presence of multiple mitochondrial genotypes (mitotypes) within an individual, has long been thought to be a rare aberrance that is quickly removed by selection or drift. However, heteroplasmy is being reported in natural populations of eukaryotes with increasing frequency, in part due to improved diagnostic methods. Here, we report a seemingly stable heteroplasmic state in California populations of the polyphagous shothole borer (PSHB), Euwallacea fornicatus; an invasive ambrosia beetle that is causing significant tree dieback. We develop and validate a qPCR assay utilizing locked nucleic acid probes to detect different mitotypes, and qualitatively assess heteroplasmy in individual PSHB. We prove the utility of this assay by: (1) mitotyping field-collected PSHB, documenting the prevalence of heteroplasmy across its range in California; and, (2) measuring relative titers of each mitotype across multiple generations of heteroplasmic laboratory colonies to assess the stability of transmission through the maternal germline. We show that our findings are unlikely to be explained by the existence of NUMTs by next generation sequencing of contiguous sections of mitochondrial DNA, where each of the observed heteroplasmic sites are found within fully functional coding regions of mtDNA. Subsequently, we find heteroplasmic individuals are common in Californian field populations, and that heteroplasmy persists for at least 10 generations in experimental colonies. We also looked for evidence of the common occurrence of paternal leakage, but found none. In light of our results, we discuss competing hypotheses as to how heteroplasmy may have arisen, and continues to perpetuate, in Californian PSHB populations.
Collapse
Affiliation(s)
- Paul F Rugman-Jones
- Department of Entomology, University of California, Riverside, CA, 92521, USA.
| | - Christine E Dodge
- Department of Entomology, University of California, Riverside, CA, 92521, USA
- Forest Pest Methods Laboratory, USDA-APHIS-PPQ-S&T, 1398 W. Truck Rd, Buzzards Bay, MA, 02542, USA
| | - Richard Stouthamer
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
3
|
Sequeira AN, O’Keefe IP, Katju V, Bergthorsson U. Friend turned foe: selfish behavior of a spontaneously arising mitochondrial deletion in an experimentally evolved Caenorhabditis elegans population. G3 (BETHESDA, MD.) 2024; 14:jkae018. [PMID: 38261394 PMCID: PMC11090458 DOI: 10.1093/g3journal/jkae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Selfish mitochondrial DNA (mtDNA) mutations are variants that can proliferate within cells and enjoy a replication or transmission bias without fitness benefits for the host. mtDNA deletions in Caenorhabditis elegans can reach high heteroplasmic frequencies despite significantly reducing fitness, illustrating how new mtDNA variants can give rise to genetic conflict between different levels of selection and between the nuclear and mitochondrial genomes. During a mutation accumulation experiment in C. elegans, a 1,034-bp deletion originated spontaneously and reached an 81.7% frequency within an experimental evolution line. This heteroplasmic mtDNA deletion, designated as meuDf1, eliminated portions of 2 protein-coding genes (coxIII and nd4) and tRNA-thr in entirety. mtDNA copy number in meuDf1 heteroplasmic individuals was 35% higher than in individuals with wild-type mitochondria. After backcrossing into a common genetic background, the meuDf1 mitotype was associated with reduction in several fitness traits and independent competition experiments found a 40% reduction in composite fitness. Experiments that relaxed individual selection by single individual bottlenecks demonstrated that the deletion-bearing mtDNA possessed a strong transmission bias, thereby qualifying it as a novel selfish mitotype.
Collapse
Affiliation(s)
- Abigail N Sequeira
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
- Department of Biology, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| | - Ian P O’Keefe
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
- Department of Biochemistry and Molecular Biology, University of Maryland, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
- Program in Evolutionary Biology, Department of Ecology and Genetics (IEG), Evolutionsbiologiskt centrum, Norbyvägen 18D, Uppsala University, 752 36 Uppsala, Sweden
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
- Program in Evolutionary Biology, Department of Ecology and Genetics (IEG), Evolutionsbiologiskt centrum, Norbyvägen 18D, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
4
|
Wang W, Lin L, Zhang Q, Yang J, Kamili E, Chu J, Li X, Yang S, Xu Y. Heteroplasmy and Individual Mitogene Pools: Characteristics and Potential Roles in Ecological Studies. BIOLOGY 2023; 12:1452. [PMID: 37998051 PMCID: PMC10669347 DOI: 10.3390/biology12111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
The mitochondrial genome (mitogenome or mtDNA), the extrachromosomal genome, is a multicopy circular DNA with high mutation rates due to replication and repair errors. A mitochondrion, cell, tissue, organ, or an individual body may hold multiple variants, both inherited and developed over a lifetime, which make up individual mitogene pools. This phenomenon is also called mtDNA heteroplasmy. MtDNA variants influence cellular and tissular functions and are consequently subjected to selection. Although it has long been recognized that only inheritable germline heteroplasmies have evolutionary significance, non-inheritable somatic heteroplasmies have been overlooked since they directly affect individual fitness and thus indirectly affect the fate of heritable germline variants. This review focuses on the characteristics, dynamics, and functions of mtDNA heteroplasmy and proposes the concept of individual mitogene pools to discuss individual genetic diversity from multiple angles. We provide a unique perspective on the relationship between individual genetic diversity and heritable genetic diversity and guide how the individual mitogene pool with novel genetic markers can be applied to ecological research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuhui Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (W.W.); (L.L.); (Q.Z.); (J.Y.); (E.K.); (J.C.); (X.L.)
| | - Yanchun Xu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (W.W.); (L.L.); (Q.Z.); (J.Y.); (E.K.); (J.C.); (X.L.)
| |
Collapse
|
5
|
Marques-Neto JC, de Lima GM, Maciel CMT, Maciel BR, Abrunhosa FA, Sampaio I, Maciel CR. In silico prospecting of the mtDNA of Macrobrachium amazonicum from transcriptome data. BMC Genomics 2023; 24:677. [PMID: 37950193 PMCID: PMC10637016 DOI: 10.1186/s12864-023-09770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Macrobrachium amazonicum is a freshwater prawn widely distributed in South America that is undergoing speciation, so the denomination "M. amazonicum complex" is used for it. The mitochondrial cytochrome c oxidase subunit I (COI) gene has been used to elucidate this speciation, but heteroplasmies and pseudogenes have been recorded, making separation difficult. Obtaining genes from cDNA (RNA) rather than genomic DNA is an effective tool to mitigate those two types of occurrences. The aim of this study was to assemble in silico the mitochondrial DNA (mtDNA) of the Amazonian coastal population of M. amazonicum inhabiting the state of Pará. RESULTS Sequences were obtained from the prawn's transcriptome using the de novo approach. Six libraries of cDNA from the androgen gland, hepatopancreas, and muscle tissue were used. The mtDNA of M. amazonicum was 14,960 bp in length. It contained 13 protein-coding genes, 21 complete transfer RNAs, and the 12S and 16S subunits of ribosomal RNA. All regions were found on the light strand except tRNAGln, which was on the heavy strand. The control region (D-loop) was not recovered, making for a gap of 793 bp. The cladogram showed the formation of the well-defined Macrobrachium clade, with high support value in the established branches (91-100). The three-dimensional spatial conformation of the mtDNA-encoded proteins showed that most of them were mainly composed of major α-helices that typically shows in those proteins inserted in the membrane (mitochondrial). CONCLUSIONS It was possible to assemble a large part of the mitochondrial genome of M. amazonicum in silico using data from other genomes deposited in GenBank and to validate it through the similarities between its COI and 16S genes and those from animals of the same region deposited in GenBank. Depositing the M. amazonicum mtDNA sequences in GenBank may help solve the taxonomic problems recorded for the species, in addition to providing complete sequences of candidate coding genes for use as biomarkers in ecological studies.
Collapse
Affiliation(s)
- Jerônimo Costa Marques-Neto
- Laboratory of Aquaculture, Coastal Studies Institute, Federal University of Pará, Alameda Leandro Ribeiro S/N, Aldeia, Bragança, Pará, CEP: 68600-000, Brazil
| | - Gabriel Monteiro de Lima
- Laboratory of Aquaculture, Coastal Studies Institute, Federal University of Pará, Alameda Leandro Ribeiro S/N, Aldeia, Bragança, Pará, CEP: 68600-000, Brazil
| | - Carlos Murilo Tenório Maciel
- Laboratory of Aquaculture, Coastal Studies Institute, Federal University of Pará, Alameda Leandro Ribeiro S/N, Aldeia, Bragança, Pará, CEP: 68600-000, Brazil
- Coastal Studies Institute, School of Biological Sciences, Laboratory of Aquaculture/BioDatta, Federal University of Pará, Alameda Leandro Ribeiro S/N, Aldeia, Bragança, Pará, CEP: 68600-000, Brazil
| | - Bruna Ramalho Maciel
- Coastal Studies Institute, School of Biological Sciences, Laboratory of Aquaculture/BioDatta, Federal University of Pará, Alameda Leandro Ribeiro S/N, Aldeia, Bragança, Pará, CEP: 68600-000, Brazil
| | - Fernando Araujo Abrunhosa
- Coastal Studies Institute, School of Biological Sciences, Laboratory of Carcinology, Federal University of Pará, Alameda Leandro Ribeiro S/N, Aldeia, Bragança, Pará, CEP: 68600-000, Brazil
| | - Iracilda Sampaio
- Coastal Studies Institute, Federal University of Pará, Alameda Leandro Ribeiro S/N, Aldeia, Bragança, Pará, CEP: 68600-000, Brazil
| | - Cristiana Ramalho Maciel
- Laboratory of Aquaculture, Coastal Studies Institute, Federal University of Pará, Alameda Leandro Ribeiro S/N, Aldeia, Bragança, Pará, CEP: 68600-000, Brazil.
- Coastal Studies Institute, School of Biological Sciences, Laboratory of Aquaculture/BioDatta, Federal University of Pará, Alameda Leandro Ribeiro S/N, Aldeia, Bragança, Pará, CEP: 68600-000, Brazil.
| |
Collapse
|
6
|
Taniguchi E, Satoh K, Ohkubo M, Ue S, Matsuhira H, Kuroda Y, Kubo T, Kitazaki K. Nuclear DNA segments homologous to mitochondrial DNA are obstacles for detecting heteroplasmy in sugar beet (Beta vulgaris L.). PLoS One 2023; 18:e0285430. [PMID: 37552681 PMCID: PMC10409277 DOI: 10.1371/journal.pone.0285430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/21/2023] [Indexed: 08/10/2023] Open
Abstract
Heteroplasmy, the coexistence of multiple mitochondrial DNA (mtDNA) sequences in a cell, is well documented in plants. Next-generation sequencing technology (NGS) has made it feasible to sequence entire genomes. Thus, NGS has the potential to detect heteroplasmy; however, the methods and pitfalls in heteroplasmy detection have not been fully investigated and identified. One obstacle for heteroplasmy detection is the sequence homology between mitochondrial-, plastid-, and nuclear DNA, of which the influence of nuclear DNA segments homologous to mtDNA (numt) need to be minimized. To detect heteroplasmy, we first excluded nuclear DNA sequences of sugar beet (Beta vulgaris) line EL10 from the sugar beet mtDNA sequence. NGS reads were obtained from single plants of sugar beet lines NK-195BRmm-O and NK-291BRmm-O and mapped to the unexcluded mtDNA regions. More than 1000 sites exhibited intra-individual polymorphism as detected by genome browsing analysis. We focused on a 309-bp region where 12 intra-individual polymorphic sites were closely linked to each other. Although the existence of DNA molecules having variant alleles at the 12 sites was confirmed by PCR amplification from NK-195BRmm-O and NK-291BRmm-O, these variants were not always called by six variant-calling programs, suggesting that these programs are inappropriate for intra-individual polymorphism detection. When we changed the nuclear DNA reference, a numt absent from EL10 was found to include the 309-bp region. Genetic segregation of an F2 population from NK-195BRmm-O x NK-291BRmm-O supported the numt origin of the variant alleles. Using four references, we found that numt detection exhibited reference dependency, and extreme polymorphism of numts exists among sugar beet lines. One of the identified numts absent from EL10 is also associated with another intra-individual polymorphic site in NK-195mm-O. Our data suggest that polymorphism among numts is unexpectedly high within sugar beets, leading to confusion about the true degree of heteroplasmy.
Collapse
Affiliation(s)
- Eigo Taniguchi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kosuke Satoh
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Megumi Ohkubo
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sachiyo Ue
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroaki Matsuhira
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Hokkaido, Japan
| | - Yosuke Kuroda
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Hokkaido, Japan
| | - Tomohiko Kubo
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
7
|
Françoso E, Zuntini AR, Ricardo PC, Araújo NS, Silva JPN, Brown MJF, Arias MC. The complete mitochondrial genome of Trigonisca nataliae (Hymenoptera, Apidae) assemblage reveals heteroplasmy in the control region. Gene 2023:147621. [PMID: 37419430 DOI: 10.1016/j.gene.2023.147621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
The evolution of mitochondrial genomes in the stingless bees is surprisingly dynamic, making them a model system to understand mitogenome structure, function, and evolution. Out of the seven mitogenomes available in this group, five exhibit atypical characteristics, including extreme rearrangements, rapid evolution and complete mitogenome duplication. To further explore the mitogenome diversity in these bees, we utilized isolated mtDNA and Illumina sequencing to assemble the complete mitogenome of Trigonisca nataliae, a species found in Northern Brazil. The mitogenome of T. nataliae was highly conserved in gene content and structure when compared to Melipona species but diverged in the control region (CR). Using PCR amplification, cloning and Sanger sequencing, six different CR haplotypes, varying in size and content, were recovery. These findings indicate that heteroplasmy, where different mitochondrial haplotypes coexist within individuals, occurs in T. nataliae. Consequently, we argue that heteroplasmy might indeed be a common phenomenon in bees that could be associated with variations in mitogenome size and challenges encountered during the assembly process.
Collapse
Affiliation(s)
- Elaine Françoso
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, UK; Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil.
| | | | - Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Natália Souza Araújo
- Unit of Evolutionary Biology & Ecology, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - João Paulo Naldi Silva
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
8
|
Chimeno C, Rulik B, Manfrin A, Kalinkat G, Hölker F, Baranov V. Facing the infinity: tackling large samples of challenging Chironomidae (Diptera) with an integrative approach. PeerJ 2023; 11:e15336. [PMID: 37250705 PMCID: PMC10211366 DOI: 10.7717/peerj.15336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
Background Integrative taxonomy is becoming ever more significant in biodiversity research as scientists are tackling increasingly taxonomically challenging groups. Implementing a combined approach not only guarantees more accurate species identification, but also helps overcome limitations that each method presents when applied on its own. In this study, we present one application of integrative taxonomy for the highly abundant and particularly diverse fly taxon Chironomidae (Diptera). Although non-biting midges are key organisms in merolimnic systems, they are often cast aside in ecological surveys because they are very challenging to identify and extremely abundant. Methods Here, we demonstrate one way of applying integrative methods to tackle this highly diverse taxon. We present a three-level subsampling method to drastically reduce the workload of bulk sample processing, then apply morphological and molecular identification methods in parallel to evaluate species diversity and to examine inconsistencies across methods. Results Our results suggest that using our subsampling approach, identifying less than 10% of a sample's contents can reliably detect >90% of its diversity. However, despite reducing the processing workload drastically, the performance of our taxonomist was affected by mistakes, caused by large amounts of material. We conducted misidentifications for 9% of vouchers, which may not have been recovered had we not applied a second identification method. On the other hand, we were able to provide species information in cases where molecular methods could not, which was the case for 14% of vouchers. Therefore, we conclude that when wanting to implement non-biting midges into ecological frameworks, it is imperative to use an integrative approach.
Collapse
Affiliation(s)
- Caroline Chimeno
- Bavarian State Collection of Zoology (SNSB-ZSM), Munich, Germany
| | - Björn Rulik
- Zoological Research Museum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Alessandro Manfrin
- Institute for Environmental Sciences, iES Landau, RPTU University of Kaiserslautern-Landau, Landau, Germany
| | - Gregor Kalinkat
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Franz Hölker
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Viktor Baranov
- Estación Biológica de Doñana-CSIC/Doñana Biological Station-CSIC, Seville, Spain
| |
Collapse
|
9
|
Anand R, Singh SP, Sahu N, Singh YT, Mazumdar-Leighton S, Bentur JS, Nair S. Polymorphisms in the hypervariable control region of the mitochondrial DNA differentiate BPH populations. FRONTIERS IN INSECT SCIENCE 2022; 2:987718. [PMID: 38468808 PMCID: PMC10926497 DOI: 10.3389/finsc.2022.987718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/17/2022] [Indexed: 03/13/2024]
Abstract
The brown planthopper (BPH; Nilaparvata lugens) is one of India's most destructive pests of rice. BPH, a monophagous migratory insect, reported from all major rice-growing ecosystems of the country, is capable of traversing large distances and causing massive crop loss. A crucial step for developing viable management strategies is understanding its population dynamics. Very few reliable markers are currently available to screen BPH populations for their diversity. In the current investigation, we developed a combinatorial approach using the polymorphism present within the mitochondrial Control Region of BPH and in the nuclear genome (genomic simple sequence repeats; gSSRs) to unravel the diversity present in BPH populations collected from various rice-growing regions of India. Using two specific primer pairs, the complete Control Region (1112 to 2612 bp) was PCR amplified as two overlapping fragments, cloned and sequenced from BPH individuals representing nine different populations. Results revealed extensive polymorphism within this region due to a variable number of tandem repeats. The three selected gSSR markers also exhibited population-specific amplification patterns. Overall genetic diversity between the nine populations was high (>5%). Further, in silico double-digestion of the consensus sequences of the Control Region, with HpyCH4IV and Tsp45I restriction enzymes, revealed unique restriction fragment length polymorphisms (digital-RFLPs; dRFLPs) that differentiated all the nine BPH populations. To the best of our knowledge, this is the first report of markers developed from the Control Region of the BPH mitogenome that can differentiate populations. Eventually, such reliable and rapid marker-based identification of BPH populations will pave the way for an efficient pest management strategy.
Collapse
Affiliation(s)
- Rashi Anand
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- Plant Biotic Interaction Lab, Department of Botany, University of Delhi, Delhi, India
| | | | - Nihar Sahu
- Agri Biotech Foundation, Hyderabad, India
| | | | | | | | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
10
|
Tarasenko TA, Koulintchenko MV. Heterogeneity of the Mitochondrial Population in Cells of Plants and Other Organisms. Mol Biol 2022. [DOI: 10.1134/s0026893322020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Balakirev ES. Recombinant Mitochondrial Genomes Reveal Recent Interspecific Hybridization between Invasive Salangid Fishes. Life (Basel) 2022; 12:661. [PMID: 35629328 PMCID: PMC9144084 DOI: 10.3390/life12050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The interspecific recombination of the mitochondrial (mt) genome, if not an experimental artifact, may result from interbreeding of species with broken reproductive barriers, which, in turn, is a frequent consequence of human activities including species translocations, habitat modifications, and climate change. This issue, however, has not been addressed for Protosalanx chinensis and other commercially important and, simultaneously, invasive salangid fishes that were the product of successful aquaculture in China. To assess the probability of interspecific hybridization, we analyzed the patterns of diversity and recombination in the complete mitochondrial (mt) genomes of these fishes using the GenBank resources. A sliding window analysis revealed a non-uniform distribution of the intraspecific differences in P. chinensis with four highly pronounced peaks of divergence centered at the COI, ND4L-ND4, and ND5 genes, and also at the control region. The corresponding divergent regions in P. chinensis show a high sequence similarity (99−100%) to the related salangid fishes, Neosalanx tangkahkeii and N. anderssoni. This observation suggests that the divergent regions of P. chinensis may represent a recombinant mitochondrial DNA (mtDNA) containing mt genome fragments belonging to different salangid species. Indeed, four, highly significant (pairwise homoplasy index test, P < 0.00001) signals of recombination have been revealed at coordinates closely corresponding to the divergent regions. The recombinant fragments are, however, not fixed, and different mt genomes of P. chinensis are mosaic, containing different numbers of recombinant events. These facts, along with the high similarity or full identity of the recombinant fragments between the donor and the recipient sequences, indicate a recent interspecific hybridization between P. chinensis and two Neosalanx species. Alternative hypotheses, including taxonomical misidentifications, sequence misalignments, DNA contamination, and/or artificial PCR recombinants, are not supported by the data. The recombinant fragments revealed in our study represent diagnostic genetic markers for the identification and distinguishing of hybrids, which can be used to control the invasive dynamics of hybrid salangid fishes.
Collapse
Affiliation(s)
- Evgeniy S Balakirev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| |
Collapse
|
12
|
Chimeno C, Hausmann A, Schmidt S, Raupach MJ, Doczkal D, Baranov V, Hübner J, Höcherl A, Albrecht R, Jaschhof M, Haszprunar G, Hebert PDN. Peering into the Darkness: DNA Barcoding Reveals Surprisingly High Diversity of Unknown Species of Diptera (Insecta) in Germany. INSECTS 2022; 13:insects13010082. [PMID: 35055925 PMCID: PMC8779287 DOI: 10.3390/insects13010082] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023]
Abstract
Determining the size of the German insect fauna requires better knowledge of several megadiverse families of Diptera and Hymenoptera that are taxonomically challenging. This study takes the first step in assessing these “dark taxa” families and provides species estimates for four challenging groups of Diptera (Cecidomyiidae, Chironomidae, Phoridae, and Sciaridae). These estimates are based on more than 48,000 DNA barcodes (COI) from Diptera collected by Malaise traps that were deployed in southern Germany. We assessed the fraction of German species belonging to 11 fly families with well-studied taxonomy in these samples. The resultant ratios were then used to estimate the species richness of the four “dark taxa” families (DT families hereafter). Our results suggest a surprisingly high proportion of undetected biodiversity in a supposedly well-investigated country: at least 1800–2200 species await discovery in Germany in these four families. As this estimate is based on collections from one region of Germany, the species count will likely increase with expanded geographic sampling.
Collapse
Affiliation(s)
- Caroline Chimeno
- SNSB-Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, Germany; (A.H.); (S.S.); (M.J.R.); (D.D.); (J.H.); (A.H.); (R.A.); (G.H.)
- Correspondence:
| | - Axel Hausmann
- SNSB-Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, Germany; (A.H.); (S.S.); (M.J.R.); (D.D.); (J.H.); (A.H.); (R.A.); (G.H.)
| | - Stefan Schmidt
- SNSB-Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, Germany; (A.H.); (S.S.); (M.J.R.); (D.D.); (J.H.); (A.H.); (R.A.); (G.H.)
| | - Michael J. Raupach
- SNSB-Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, Germany; (A.H.); (S.S.); (M.J.R.); (D.D.); (J.H.); (A.H.); (R.A.); (G.H.)
| | - Dieter Doczkal
- SNSB-Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, Germany; (A.H.); (S.S.); (M.J.R.); (D.D.); (J.H.); (A.H.); (R.A.); (G.H.)
| | - Viktor Baranov
- Department Biology II, Ludwig-Maximilians-University of Munich (LMU), Großhaderner Str. 2, Martinsried, 82152 Planegg, Germany;
| | - Jeremy Hübner
- SNSB-Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, Germany; (A.H.); (S.S.); (M.J.R.); (D.D.); (J.H.); (A.H.); (R.A.); (G.H.)
| | - Amelie Höcherl
- SNSB-Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, Germany; (A.H.); (S.S.); (M.J.R.); (D.D.); (J.H.); (A.H.); (R.A.); (G.H.)
| | - Rosa Albrecht
- SNSB-Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, Germany; (A.H.); (S.S.); (M.J.R.); (D.D.); (J.H.); (A.H.); (R.A.); (G.H.)
| | | | - Gerhard Haszprunar
- SNSB-Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, Germany; (A.H.); (S.S.); (M.J.R.); (D.D.); (J.H.); (A.H.); (R.A.); (G.H.)
- Department Biology II, Ludwig-Maximilians-University of Munich (LMU), Großhaderner Str. 2, Martinsried, 82152 Planegg, Germany;
| | - Paul D. N. Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
13
|
Davies OK, Dorey JB, Stevens MI, Gardner MG, Bradford TM, Schwarz MP. Unparalleled mitochondrial heteroplasmy and Wolbachia co-infection in the non-model bee, Amphylaeus morosus. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100036. [PMID: 36003268 PMCID: PMC9387454 DOI: 10.1016/j.cris.2022.100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022]
Abstract
Mitochondrial heteroplasmy is the occurrence of more than one type of mitochondrial DNA within a single individual. Although generally reported to occur in a small subset of individuals within a species, there are some instances of widespread heteroplasmy across entire populations. Amphylaeus morosus is an Australian native bee species in the diverse and cosmopolitan bee family Colletidae. This species has an extensive geographical range along the eastern Australian coast, from southern Queensland to western Victoria, covering approximately 2,000 km. Seventy individuals were collected from five localities across this geographical range and sequenced using Sanger sequencing for the mitochondrial cytochrome c oxidase subunit I (COI) gene. These data indicate that every individual had the same consistent heteroplasmic sites but no other nucleotide variation, suggesting two conserved and widespread heteroplasmic mitogenomes. Ion Torrent shotgun sequencing revealed that heteroplasmy occurred across multiple mitochondrial protein-coding genes and is unlikely explained by transposition of mitochondrial genes into the nuclear genome (NUMTs). DNA sequence data also demonstrated a consistent co-infection of Wolbachia across the A. morosus distribution with every individual infected with both bacterial strains. Our data are consistent with the presence of two mitogenomes within all individuals examined in this species and suggest a major divergence from standard patterns of mitochondrial inheritance. Because the host's mitogenome and the Wolbachia genome are genetically linked through maternal inheritance, we propose three possible hypotheses that could explain maintenance of the widespread and conserved co-occurring bacterial and mitochondrial genomes in this species.
Collapse
|
14
|
Liu H, Yu J, Yu X, Zhang D, Chang H, Li W, Song H, Cui Z, Wang P, Luo Y, Wang F, Wang D, Li Z, Huang Z, Fu A, Xu M. Structural variation of mitochondrial genomes sheds light on evolutionary history of soybeans. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1456-1472. [PMID: 34587339 DOI: 10.1111/tpj.15522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/27/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The architecture and genetic diversity of mitogenome (mtDNA) are largely unknown in cultivated soybean (Glycine max), which is domesticated from the wild progenitor, Glycine soja, 5000 years ago. Here, we de novo assembled the mitogenome of the cultivar 'Williams 82' (Wm82_mtDNA) with Illumina PE300 deep sequencing data, and verified it with polymerase chain reaction (PCR) and Southern blot analyses. Wm82_mtDNA maps as two autonomous circular chromosomes (370 871-bp Chr-m1 and 62 661-bp Chr-m2). Its structure is extensively divergent from that of the mono-chromosomal mitogenome reported in the landrace 'Aiganhuang' (AGH_mtDNA). Synteny analysis showed that the structural variations (SVs) between two genomes are mainly attributed to ectopic and illegitimate recombination. Moreover, Wm82_mtDNA and AGH_mtDNA each possess six and four specific regions, which are absent in their counterparts and likely result from differential sequence-loss events. Mitogenome SV was further studied in 39 wild and 182 cultivated soybean accessions distributed world-widely with PCR/Southern analyses or a comparable in silico analysis. The results classified both wild and cultivated soybeans into five cytoplasmic groups, named as GSa-GSe and G1-G5; 'Williams 82' and 'Aiganhuang' belong to G1 and G5, respectively. Notably, except for members in GSe and G5, all accessions carry a bi-chromosomal mitogenome with a common Chr-m2. Phylogenetic analyses based on mtDNA structures and chloroplast gene sequences both inferred that G1-G3, representing >90% of cultigens, likely inherited cytoplasm from the ancestor of domestic soybean, while G4 and G5 likely inherited cytoplasm from wild soybeans carrying GSa- and GSe-like cytoplasm through interspecific hybridization, offering new insights into soybean cultivation history.
Collapse
Affiliation(s)
- Hao Liu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Junping Yu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Xiaoxia Yu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Dan Zhang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Han Chang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wei Li
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Haifeng Song
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zheng Cui
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Peng Wang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yixin Luo
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Fei Wang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Dagang Wang
- Key Laboratory of Crop Quality Improvement of Anhui Province, Anhui Academy of Agricultural Sciences, Crop Research Institute, Hefei, Anhui, 230031, China
| | - Zhi Li
- Fuyang Academy of Agricultural Sciences, Fuyang, Anhui, 236000, China
| | - Zhiping Huang
- Key Laboratory of Crop Quality Improvement of Anhui Province, Anhui Academy of Agricultural Sciences, Crop Research Institute, Hefei, Anhui, 230031, China
| | - Aigen Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Min Xu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
15
|
Chow S, Yanagimoto T, Takeyama H. Detection of heteroplasmy and nuclear mitochondrial pseudogenes in the Japanese spiny lobster Panulirus japonicus. Sci Rep 2021; 11:21780. [PMID: 34741113 PMCID: PMC8571370 DOI: 10.1038/s41598-021-01346-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022] Open
Abstract
Partial mtDNA cytochrome oxidase subunit I (COI) fragments and near entire stretch of 12S rDNA (12S) and control region (Dloop) of the Japanese spiny lobster (Panulirus japonicus) (n = 3) were amplified by PCR and used for direct nucleotide sequencing and for clone library-based nucleotide sequence analysis. Nucleotide sequences of a total of 75 clones in COI, 77 in 12S and 92 in Dloop were determined. Haplotypes of the clones matched with those obtained by direct sequencing were determined to be genuine mtDNA sequence of the individual. Phylogenetic analysis revealed several distinct groups of haplotypes in all three regions. Genuine mtDNA sequences were observed to form a group with their closely related variables, and most of these variables may be due to amplification error but a few to be heteroplasmy. Haplotypes determined as nuclear mitochondrial pseudogenes (NUMTs) formed distinct groups. Nucleotide sequence divergence (K2P distance) between genuine haplotypes and NUMTs were substantial (7.169-23.880% for COI, 1.336-23.434% for 12S, and 7.897-71.862% for Dloop). These values were comparable to or smaller than those between species of the genus Panulirus, indicating that integration of mtDNA into the nuclear genome is a continuous and dynamic process throughout pre- and post-speciation events. Double peaks in electropherograms obtained by direct nucleotide sequencing were attributed to common nucleotides shared by multiple NUMTs. Information on the heteroplasmy and NUMTs would be very important for addressing their impact on direct nucleotide sequencing and for quality control of nucleotide sequences obtained.
Collapse
Affiliation(s)
- Seinen Chow
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
| | - Takashi Yanagimoto
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Fukuura 2-12-4, Yokohama, Kanagawa, 236-8648, Japan
| | - Haruko Takeyama
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan. .,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu cho, Shinjuku, Tokyo, 162-8480, Japan. .,Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-0072, Japan.
| |
Collapse
|
16
|
Han Y, Gao Y, Zhou H, Zhai X, Ding Q, Ma L. Mitochondrial genes are involved in the fertility transformation of the thermosensitive male-sterile line YS3038 in wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:61. [PMID: 37309316 PMCID: PMC10236089 DOI: 10.1007/s11032-021-01252-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 09/05/2021] [Indexed: 06/14/2023]
Abstract
Heterosis can improve the stress resistance, quality, and yield of crops, and the male sterility of wheat can be utilized to accelerate the breeding process of hybrid. To determine whether mitochondrial genes are involved in the fertility of K-type cytoplasmic male-sterile (CMS) line and the YS-type thermosensitive male-sterile (TMS) line in wheat, we sequenced and assembled the mitochondrial genomes of K519A, 519B, and YS3038 by next-generation sequencing (NGS). The non-synonymous mutations were analyzed, and the first-generation sequencing was conducted to verify the non-synonymous mutation sites. Furthermore, the expression patterns of genes with non-synonymous mutations were analyzed. Finally, the candidate genes were silenced by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) to test the functions of the candidate genes. The results revealed that the mitochondrial genomes of K519A, 519B, and YS3038 were 420,543, 433,560, and 452,567 bp in length, respectively. Besides, 33, 31, and 37 protein-coding genes were identified in K519A, 519B, and YS3038, respectively. There were 14 protein-coding genes and 83 open reading frame (ORF) sequences that differed between K519A and 519B and 10 protein-coding genes and 122 ORF sequences that differed between K519A and YS3038. At the binucleate stage, seven genes (nad6, ORF256, ORF216, ORF138, atp6, nad3, and cox1) were downregulated in K519A compared with 519B, and 10 genes (nad6, atp6, cox3, atp8, nad3, cox1, rps3, ORF216, ORF138, and ORF224) were downregulated in YS3038 compared with K519A. Besides, six genes (nad6, ORF138, cox3, cox1, rps3, and ORF224) were downregulated under fertile conditions relative to sterile conditions in YS3038. Gene silencing analysis showed that the silencing of cox1 significantly reduced the seed setting rate of YS3038, indicating that the cox1 gene may be involved in the fertility transformation of YS3038. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01252-x.
Collapse
Affiliation(s)
- Yucui Han
- College of Agronomy, Northwest A&F University, Xianyang, 712100 Yangling, Shaanxi China
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004 Hebei China
| | - Yujie Gao
- College of Agronomy, Northwest A&F University, Xianyang, 712100 Yangling, Shaanxi China
| | - Hao Zhou
- College of Agronomy, Northwest A&F University, Xianyang, 712100 Yangling, Shaanxi China
| | - Xiaoguang Zhai
- College of Agronomy, Northwest A&F University, Xianyang, 712100 Yangling, Shaanxi China
| | - Qin Ding
- College of Horticulture, Northwest A&F University, Xianyang, 712100 Yangling, Shaanxi China
| | - Lingjian Ma
- College of Agronomy, Northwest A&F University, Xianyang, 712100 Yangling, Shaanxi China
| |
Collapse
|
17
|
Mahapatra K, Banerjee S, De S, Mitra M, Roy P, Roy S. An Insight Into the Mechanism of Plant Organelle Genome Maintenance and Implications of Organelle Genome in Crop Improvement: An Update. Front Cell Dev Biol 2021; 9:671698. [PMID: 34447743 PMCID: PMC8383295 DOI: 10.3389/fcell.2021.671698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
Besides the nuclear genome, plants possess two small extra chromosomal genomes in mitochondria and chloroplast, respectively, which contribute a small fraction of the organelles’ proteome. Both mitochondrial and chloroplast DNA have originated endosymbiotically and most of their prokaryotic genes were either lost or transferred to the nuclear genome through endosymbiotic gene transfer during the course of evolution. Due to their immobile nature, plant nuclear and organellar genomes face continuous threat from diverse exogenous agents as well as some reactive by-products or intermediates released from various endogenous metabolic pathways. These factors eventually affect the overall plant growth and development and finally productivity. The detailed mechanism of DNA damage response and repair following accumulation of various forms of DNA lesions, including single and double-strand breaks (SSBs and DSBs) have been well documented for the nuclear genome and now it has been extended to the organelles also. Recently, it has been shown that both mitochondria and chloroplast possess a counterpart of most of the nuclear DNA damage repair pathways and share remarkable similarities with different damage repair proteins present in the nucleus. Among various repair pathways, homologous recombination (HR) is crucial for the repair as well as the evolution of organellar genomes. Along with the repair pathways, various other factors, such as the MSH1 and WHIRLY family proteins, WHY1, WHY2, and WHY3 are also known to be involved in maintaining low mutation rates and structural integrity of mitochondrial and chloroplast genome. SOG1, the central regulator in DNA damage response in plants, has also been found to mediate endoreduplication and cell-cycle progression through chloroplast to nucleus retrograde signaling in response to chloroplast genome instability. Various proteins associated with the maintenance of genome stability are targeted to both nuclear and organellar compartments, establishing communication between organelles as well as organelles and nucleus. Therefore, understanding the mechanism of DNA damage repair and inter compartmental crosstalk mechanism in various sub-cellular organelles following induction of DNA damage and identification of key components of such signaling cascades may eventually be translated into strategies for crop improvement under abiotic and genotoxic stress conditions. This review mainly highlights the current understanding as well as the importance of different aspects of organelle genome maintenance mechanisms in higher plants.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Samrat Banerjee
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Sayanti De
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Mehali Mitra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Pinaki Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| |
Collapse
|
18
|
Trubacheeva NV, Divashuk MG, Chernook AG, Belan IA, Rosseeva LP, Pershina LA. The Effect of Chromosome Arm 1BS on the Fertility of Alloplasmic Recombinant Lines in Bread Wheat with the Hordeum vulgare Cytoplasm. PLANTS (BASEL, SWITZERLAND) 2021; 10:1120. [PMID: 34073148 PMCID: PMC8228278 DOI: 10.3390/plants10061120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 11/17/2022]
Abstract
The genetic mechanisms of fertility restoration in alloplasmic bread wheat with the barley cytoplasm are poorly explored. The effect of the 1BS chromosome arm on the fertility of bread wheat with the H. vulgare cytoplasm was studied depending on the incompleteness/completeness of the cytonuclear compatibility. (i) Three self-fertile (SF) lines and one partially fertile (PF) line with an incomplete cytonuclear compatibility and (ii) four self-fertile (SF) lines with a complete cytonuclear compatibility were studied. For the lines in group (i), the heteroplasmy (simultaneous presence of barley and wheat copies) of the 18S/5S mitochondrial (mt) repeat was revealed as well as the barley-type homoplasmy of chloroplast simple sequence repeats (cpSSRs). In the lines in group (ii), the 18S/5S mt repeat and cpSSRs were found in the wheat-type homoplasmic state. In all of the lines, the 1BS chromosome arm was substituted for the 1RS arm. The F1 plants of SF(i)-1BS × 1RS hybrids were fertile. The results of a segregation analysis in the F2 plants of SF(i)-1BS × 1RS showed that 1BS carries a single dominant fertility restorer gene (Rf) of bread wheat with the H. vulgare cytoplasm. All of the F1 plants of PF(i)-1BS × 1RS hybrids were sterile. A single dose of this restorer gene is not sufficient to restore fertility in this alloplasmic PF(i) line. All of the F1 and F2 plants of SF(ii)-1BS × 1RS hybrids were self-fertile.
Collapse
Affiliation(s)
- Nataliya V. Trubacheeva
- Institute of Cytology and Genetics, SB RAS, Lavrentiev av., 10, 630090 Novosibirsk, Russia;
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, Lavrentiev av., 10, 630090 Novosibirsk, Russia
| | - Mikhail G. Divashuk
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia;
- Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Street, 49, 127550 Moscow, Russia;
| | - Anastasiya G. Chernook
- Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Street, 49, 127550 Moscow, Russia;
| | - Igor A. Belan
- Omsk Agricultural Scientific Center, 644012 Omsk, Russia; (I.A.B.); (L.P.R.)
| | - Ludmila P. Rosseeva
- Omsk Agricultural Scientific Center, 644012 Omsk, Russia; (I.A.B.); (L.P.R.)
| | - Lidiya A. Pershina
- Institute of Cytology and Genetics, SB RAS, Lavrentiev av., 10, 630090 Novosibirsk, Russia;
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, Lavrentiev av., 10, 630090 Novosibirsk, Russia
| |
Collapse
|
19
|
Iannello M, Bettinazzi S, Breton S, Ghiselli F, Milani L. A Naturally Heteroplasmic Clam Provides Clues about the Effects of Genetic Bottleneck on Paternal mtDNA. Genome Biol Evol 2021; 13:6130822. [PMID: 33555290 PMCID: PMC7936021 DOI: 10.1093/gbe/evab022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is present in multiple copies within an organism. Since these copies are not identical, a single individual carries a heterogeneous population of mtDNAs, a condition known as heteroplasmy. Several factors play a role in the dynamics of the within-organism mtDNA population: among them, genetic bottlenecks, selection, and strictly maternal inheritance are known to shape the levels of heteroplasmy across mtDNAs. In Metazoa, the only evolutionarily stable exception to the strictly maternal inheritance of mitochondria is the doubly uniparental inheritance (DUI), reported in 100+ bivalve species. In DUI species, there are two highly divergent mtDNA lineages, one inherited through oocyte mitochondria (F-type) and the other through sperm mitochondria (M-type). Having both parents contributing to the mtDNA pool of the progeny makes DUI a unique system to study the dynamics of mtDNA populations. Since, in bivalves, the spermatozoon has few mitochondria (4–5), M-type mtDNA faces a tight bottleneck during embryo segregation, one of the narrowest mitochondrial bottlenecks investigated so far. Here, we analyzed the F- and M-type mtDNA variability within individuals of the DUI species Ruditapes philippinarum and investigated for the first time the effects of such a narrow bottleneck affecting mtDNA populations. As a potential consequence of this narrow bottleneck, the M-type mtDNA shows a large variability in different tissues, a condition so pronounced that it leads to genotypes from different tissues of the same individual not to cluster together. We believe that such results may help understanding the effect of low population size on mtDNA bottleneck.
Collapse
Affiliation(s)
- Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Stefano Bettinazzi
- Department of Biological Sciences, University of Montreal, Quebec, Canada
| | - Sophie Breton
- Department of Biological Sciences, University of Montreal, Quebec, Canada
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|
20
|
Masutani B, Arimura SI, Morishita S. Investigating the mitochondrial genomic landscape of Arabidopsis thaliana by long-read sequencing. PLoS Comput Biol 2021; 17:e1008597. [PMID: 33434206 PMCID: PMC7833223 DOI: 10.1371/journal.pcbi.1008597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/25/2021] [Accepted: 12/01/2020] [Indexed: 11/18/2022] Open
Abstract
Plant mitochondrial genomes have distinctive features compared to those of animals; namely, they are large and divergent, with sizes ranging from hundreds of thousands of to a few million bases. Recombination among repetitive regions is thought to produce similar structures that differ slightly, known as "multipartite structures," which contribute to different phenotypes. Although many reference plant mitochondrial genomes represent almost all the genes in mitochondria, the full spectrum of their structures remains largely unknown. The emergence of long-read sequencing technology is expected to yield this landscape; however, many studies aimed to assemble only one representative circular genome, because properly understanding multipartite structures using existing assemblers is not feasible. To elucidate multipartite structures, we leveraged the information in existing reference genomes and classified long reads according to their corresponding structures. We developed a method that exploits two classic algorithms, partial order alignment (POA) and the hidden Markov model (HMM) to construct a sensitive read classifier. This method enables us to represent a set of reads as a POA graph and analyze it using the HMM. We can then calculate the likelihood of a read occurring in a given cluster, resulting in an iterative clustering algorithm. For synthetic data, our proposed method reliably detected one variation site out of 9,000-bp synthetic long reads with a 15% sequencing-error rate and produced accurate clustering. It was also capable of clustering long reads from six very similar sequences containing only slight differences. For real data, we assembled putative multipartite structures of mitochondrial genomes of Arabidopsis thaliana from nine accessions sequenced using PacBio Sequel. The results indicated that there are recurrent and strain-specific structures in A. thaliana mitochondrial genomes.
Collapse
Affiliation(s)
- Bansho Masutani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- * E-mail:
| | - Shin-ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| |
Collapse
|
21
|
Abstract
Size, structure, and sequence content lability of plant mitochondrial genome (mtDNA) across species has sharply limited its use in taxonomic studies. Historically, mtDNA variation has been first investigated with RFLPs, while the development of universal primers then allowed studying sequence polymorphisms within short genomic regions (<3 kb). The recent advent of NGS technologies now offers new opportunities by greatly facilitating the assembly of longer mtDNA regions, and even full mitogenomes. Phylogenetic works aiming at comparing signals from different genomic compartments (i.e., nucleus, chloroplast, and mitochondria) have been developed on a few plant lineages, and have been shown especially relevant in groups with contrasted inheritance of organelle genomes. This chapter first reviews the main characteristics of mtDNA and the application offered in taxonomic studies. It then presents tips for best sequencing protocol based on NGS data to be routinely used in mtDNA-based phylogenetic studies.
Collapse
Affiliation(s)
- Jérôme Duminil
- DIADE, University of Montpellier, IRD, Montpellier, France.
| | - Guillaume Besnard
- CNRS-UPS-IRD, UMR5174, EDB, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
22
|
Iketani G, Pimentel L, Torres EDS, Rêgo PSD, Sampaio I. Mitochondrial heteroplasmy and pseudogenes in the freshwater prawn, Macrobrachium amazonicum (Heller, 1862): DNA barcoding and phylogeographic implications. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 32:1-11. [PMID: 33164622 DOI: 10.1080/24701394.2020.1844677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mitochondrial cytochrome oxidase c subunit 1 (COI) gene has been widely used in phylogenetic studies of crustaceans and analyses in population genetics. As COI studies have become more popular, there has been an increase in the number of reports of the presence of nuclear insertions of mitochondrial DNA (Numts) and mitochondrial heteroplasmy. Here, we provide evidence of both types of event in the COI sequences of Macrobrachium amazonicum, an economically important freshwater prawn, which is widespread in South America. Heteroplasmy and Numts were confirmed by different methods of DNA extraction (genomic, mitochondrial, and nuclear-enriched DNA), cloning, and sequencing, and were observed in 11 of the 14 populations sampled, primarily in the Amazon region. We discuss how the occurrence of these events affects the interpretation of the genetic relationships among the M. amazonicum populations, and we recommend caution when using COI for genetic inferences in prawns of the genus Macrobrachium, and in particular that any analysis should include nuclear markers.
Collapse
Affiliation(s)
- Gabriel Iketani
- Laboratório de Educação e Evolução Prof. Horacio Schneider, Instituto de Ciências da Educação, Universidade Federal do Oeste do Pará, Santarém, Brasil
| | - Luciana Pimentel
- Laboratório de Educação e Evolução Prof. Horacio Schneider, Instituto de Ciências da Educação, Universidade Federal do Oeste do Pará, Santarém, Brasil
| | - Ezequias Dos Santos Torres
- Laboratório de Educação e Evolução Prof. Horacio Schneider, Instituto de Ciências da Educação, Universidade Federal do Oeste do Pará, Santarém, Brasil
| | - Péricles Sena do Rêgo
- Laboratório de Genética e Conservação, Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Brasil.,CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Iracilda Sampaio
- Laboratório de Genética e Biologia Molecular, Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Brasil
| |
Collapse
|
23
|
Kinkar L, Korhonen PK, Wang D, Zhu XQ, Chelomina GN, Wang T, Hall RS, Koehler AV, Harliwong I, Yang B, Fink JL, Young ND, Gasser RB. Marked mitochondrial genetic variation in individuals and populations of the carcinogenic liver fluke Clonorchis sinensis. PLoS Negl Trop Dis 2020; 14:e0008480. [PMID: 32813714 PMCID: PMC7437864 DOI: 10.1371/journal.pntd.0008480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/12/2020] [Indexed: 01/24/2023] Open
Abstract
Clonorchiasis is a neglected tropical disease caused by the Chinese liver fluke, Clonorchis sinensis, and is often associated with a malignant form of bile duct cancer (cholangiocarcinoma). Although some aspects of the epidemiology of clonorchiasis are understood, little is known about the genetics of C. sinensis populations. Here, we conducted a comprehensive genetic exploration of C. sinensis from endemic geographic regions using complete mitochondrial protein gene sets. Genomic DNA samples from C. sinensis individuals (n = 183) collected from cats and dogs in China (provinces of Guangdong, Guangxi, Hunan, Heilongjiang and Jilin) as well as from rats infected with metacercariae from cyprinid fish from the Russian Far East (Primorsky Krai region) were deep sequenced using the BGISEQ-500 platform. Informatic analyses of mitochondrial protein gene data sets revealed marked genetic variation within C. sinensis; significant variation was identified within and among individual worms from distinct geographical locations. No clear affiliation with a particular location or host species was evident, suggesting a high rate of dispersal of the parasite across endemic regions. The present work provides a foundation for future biological, epidemiological and ecological studies using mitochondrial protein gene data sets, which could aid in elucidating associations between particular C. sinensis genotypes/haplotypes and the pathogenesis or severity of clonorchiasis and its complications (including cholangiocarcinoma) in humans. Clonorchiasis is an important neglected tropical disease caused by the Chinese liver fluke, Clonorchis sinensis, which can induce malignant bile duct cancer (cholangiocarcinoma). Little precise information is available on the biology, epidemiology and population genetics of C. sinensis. For this reason, we explored here the genetic composition of C. sinensis populations in distinct endemic areas in China and Russia. Using a deep sequencing-informatic approach, we revealed marked mitochondrial genetic variation within and between individuals and populations of C. sinensis, with no particular affiliation with geographic or host origin. These molecular findings and the methodology established should underpin future genetic studies of C. sinensis causing human clonorchiasis and associated complications (cancer) as well as transmission patterns in endemic regions.
Collapse
Affiliation(s)
- Liina Kinkar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Daxi Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- BGI International, Shenzhen, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Galina N. Chelomina
- Department of Parasitology, Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, Vladivostok, Russia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ross S. Hall
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Anson V. Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (NDY); (RBG)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (NDY); (RBG)
| |
Collapse
|
24
|
Makhrov AA, Artamonova VS. Instability Stabilized: Mechanisms of Evolutionary Stasis and Genetic Diversity Accumulation in Fishes and Lampreys from Environments with Unstable Abiotic Factors. CONTEMP PROBL ECOL+ 2020. [DOI: 10.1134/s1995425520040083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Gonçalves DJP, Jansen RK, Ruhlman TA, Mandel JR. Under the rug: Abandoning persistent misconceptions that obfuscate organelle evolution. Mol Phylogenet Evol 2020; 151:106903. [PMID: 32628998 DOI: 10.1016/j.ympev.2020.106903] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 02/01/2023]
Abstract
The advent and advance of next generation sequencing over the past two decades made it possible to accumulate large quantities of sequence reads that could be used to assemble complete or nearly complete organelle genomes (plastome or mitogenome). The result has been an explosive increase in the availability of organelle genome sequences with over 4000 different species of green plants currently available on GenBank. During the same time period, plant molecular biologists greatly enhanced the understanding of the structure, repair, replication, recombination, transcription and translation, and inheritance of organelle DNA. Unfortunately many plant evolutionary biologists are unaware of or have overlooked this knowledge, resulting in misrepresentation of several phenomena that are critical for phylogenetic and evolutionary studies using organelle genomes. We believe that confronting these misconceptions about organelle genome organization, composition, and inheritance will improve our understanding of the evolutionary processes that underly organelle evolution. Here we discuss four misconceptions that can limit evolutionary biology studies and lead to inaccurate phylogenies and incorrect structure of the organellar DNA used to infer organelle evolution.
Collapse
Affiliation(s)
- Deise J P Gonçalves
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78713, USA.
| | - Robert K Jansen
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78713, USA; Center of Excellence for Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tracey A Ruhlman
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78713, USA
| | - Jennifer R Mandel
- Department of Biological Sciences, Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
26
|
Ricardo PC, Françoso E, Arias MC. Mitochondrial DNA intra-individual variation in a bumblebee species: A challenge for evolutionary studies and molecular identification. Mitochondrion 2020; 53:243-254. [PMID: 32569843 DOI: 10.1016/j.mito.2020.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/28/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
Mitochondrial DNA (mtDNA) regions have been widely used as molecular markers in evolutionary studies and species identification. However, the presence of heteroplasmy and NUMTs may represent obstacles. Heteroplasmy is a state where an organism has different mitochondrial haplotypes. NUMTs are nuclear pseudogenes originating from mtDNA sequences transferred to nuclear DNA. Evidences of heteroplasmy were already verified in the bumblebee Bombus morio in an earlier study. The present work investigated in more detail the presence of intra-individual haplotypes variation in this species. Heteroplasmy was detected in individuals from all the ten sampled locations, with an average of six heteroplasmic haplotypes per individual. In addition, some of these heteroplasmic haplotypes were shared among individuals from different locations, suggesting the existence of stable heteroplasmy in B. morio. These results demonstrated that heteroplasmy is likely to affect inferences based on mtDNA analysis, especially in phylogenetic, phylogeographic and population genetics studies. In addition, NUMTs were also detected. These sequences showed divergence of 2.7% to 12% in relation to the mitochondrial haplotypes. These levels of divergence could mislead conclusions in evolutionary studies and affect species identification through DNA barcoding.
Collapse
Affiliation(s)
- Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Elaine Françoso
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
27
|
Ghiselli F, Maurizii MG, Reunov A, Ariño-Bassols H, Cifaldi C, Pecci A, Alexandrova Y, Bettini S, Passamonti M, Franceschini V, Milani L. Natural Heteroplasmy and Mitochondrial Inheritance in Bivalve Molluscs. Integr Comp Biol 2020; 59:1016-1032. [PMID: 31120503 DOI: 10.1093/icb/icz061] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heteroplasmy is the presence of more than one type of mitochondrial genome within an individual, a condition commonly reported as unfavorable and affecting mitonuclear interactions. So far, no study has investigated heteroplasmy at protein level, and whether it occurs within tissues, cells, or even organelles. The only known evolutionarily stable and natural heteroplasmic system in Metazoa is the Doubly Uniparental Inheritance (DUI)-reported so far in ∼100 bivalve species-in which two mitochondrial lineages are present: one transmitted through eggs (F-type) and the other through sperm (M-type). Because of such segregation, mitochondrial oxidative phosphorylation proteins reach a high amino acid sequence divergence (up to 52%) between the two lineages in the same species. Natural heteroplasmy coupled with high sequence divergence between F- and M-type proteins provides a unique opportunity to study their expression and assess the level and extent of heteroplasmy. Here, for the first time, we immunolocalized F- and M-type variants of three mitochondrially-encoded proteins in the DUI species Ruditapes philippinarum, in germline and somatic tissues at different developmental stages. We found heteroplasmy at organelle level in undifferentiated germ cells of both sexes, and in male soma, whereas gametes were homoplasmic: eggs for the F-type and sperm for the M-type. Thus, during gametogenesis, only the sex-specific mitochondrial variant is maintained, likely due to a process of meiotic drive. We examine the implications of our results for DUI proposing a revised model, and we discuss interactions of mitochondria with germ plasm and their role in germline development. Molecular and phylogenetic evidence suggests that DUI evolved from the common Strictly Maternal Inheritance, so the two systems likely share the same underlying molecular mechanism, making DUI a useful system for studying mitochondrial biology.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Maria Gabriella Maurizii
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Arkadiy Reunov
- National Scientific Centre of Marine Biology, Russian Academy of Sciences Far Eastern Branch, Vladivostok 690041, Russia.,Department of Biology, St. Francis Xavier University, Antigonish N.S. B2G 2W5, Canada
| | - Helena Ariño-Bassols
- Departamento de Fisiología e Inmunología, Universitat de Barcelona, Barcelona 08028, Spain
| | - Carmine Cifaldi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Andrea Pecci
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Yana Alexandrova
- National Scientific Centre of Marine Biology, Russian Academy of Sciences Far Eastern Branch, Vladivostok 690041, Russia
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| |
Collapse
|
28
|
Dubie JJ, Caraway AR, Stout MM, Katju V, Bergthorsson U. The conflict within: origin, proliferation and persistence of a spontaneously arising selfish mitochondrial genome. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190174. [PMID: 31787044 DOI: 10.1098/rstb.2019.0174] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial genomes can sustain mutations that are simultaneously detrimental to individual fitness and yet, can proliferate within individuals owing to a replicative advantage. We analysed the fitness effects and population dynamics of a mitochondrial genome containing a novel 499 bp deletion in the cytochrome b(1) (ctb-1) gene (Δctb-1) encoding the cytochrome b of complex III in Caenorhabditis elegans. Δctb-1 reached a high heteroplasmic frequency of 96% in one experimental line during a mutation accumulation experiment and was linked to additional spontaneous mutations in nd5 and tRNA-Asn. The Δctb-1 mutant mitotype imposed a significant fitness cost including a 65% and 52% reduction in productivity and competitive fitness, respectively, relative to individuals bearing wild-type (WT) mitochondria. Deletion-bearing worms were rapidly purged within a few generations when competed against WT mitochondrial DNA (mtDNA) bearing worms in experimental populations. By contrast, the Δctb-1 mitotype was able to persist in large populations comprising heteroplasmic individuals only, although the average intracellular frequency of Δctb-1 exhibited a slow decline owing to competition among individuals bearing different frequencies of the heteroplasmy. Within experimental lines subjected to severe population bottlenecks (n = 1), the relative intracellular frequency of Δctb-1 increased, which is a hallmark of selfish drive. A positive correlation between Δctb-1 and WT mtDNA copy-number suggests a mechanism that increases total mtDNA per se, and does not discern the Δctb-1 mitotype from the WT mtDNA. This study demonstrates the selfish nature of the Δctb-1 mitotype, given its transmission advantage and substantial fitness load for the host, and highlights the importance of population size for the population dynamics of selfish mtDNA. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Joseph James Dubie
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - Avery Robert Caraway
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - McKenna Margaret Stout
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| |
Collapse
|
29
|
Françoso E, Zuntini AR, Ricardo PC, Silva JPN, Brito R, Oldroyd BP, Arias MC. Conserved numts mask a highly divergent mitochondrial- COI gene in a species complex of Australian stingless bees Tetragonula (Hymenoptera: Apidae). Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:806-817. [PMID: 31526165 DOI: 10.1080/24701394.2019.1665036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tetragonula carbonaria, Tetragonula davenporti, Tetragonula hockingsi and Tetragonula mellipes comprise a species complex of Australian stingless bee species known as the 'Carbonaria' group. The species are difficult to distinguish morphologically and the major species-defining characters relate to comb architecture and nest entrance ornamentation. The taxonomy of the group is further complicated by likely nuclear mitochondrial pseudogenes (numts) and inter-specific hybrids. Here we demonstrate the existence of COI numts and isolate and characterize the 'true' mt-COI gene in T. carbonaria and T. hockingsi. Numts were isolated from enriched-nuclear DNA extraction followed by PCR amplification and Sanger sequencing, and were recognized by the presence of deletions and/or premature stop codons in the translated sequences. The mt-COI sequences were obtained from NGS sequencing using purified mtDNA. In T. carbonaria, two numts (numt1 and numt2) were identified and a third (numt3) was identified in T. hockingsi. Numt2 and numt3 are similar (1.2% sequence divergence), indicating a recent common origin. The genetic distance between the mt-COI of the two Tetragonula species was higher than might be expected for closely related species, 16.5%, corroborating previous studies in which T. carbonaria and T. hockingsi were regarded as separate species. The three numts are more similar to the COI of other stingless bee species, including Australian Austroplebia australis and South American Melipona bicolor (81.7-83.9%) than to the mt-COI of their own species (70-71.4%). This is because the mt-COI of T. carbonaria and T. hockingsi differ greatly from other Meliponinae. Our findings explain some formerly puzzling aspects of Carbonaria biogeography, and misinterpreted amplifications.
Collapse
Affiliation(s)
- Elaine Françoso
- Instituto de Biociências, Universidade de São Paulo , Rua do Matão , Brazil
| | | | | | | | - Rute Brito
- Instituto de Biotecnologia, Universidade Federal de Uberlândia , Uberlândia , Brazil
| | - Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Lab, University of Sydney , Sydney , Australia
| | | |
Collapse
|
30
|
Vershinin VL, Sitnikov IA, Vershinina SD, Trofimov AG, Lebedinsky AA, Miura IJ. Mitochondrial Heteroplasmy in Marsh Frog (Pelophylax ridibundus Pallas, 1771). RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419080179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Badrinath N, Yoo SY. Mitochondria in cancer: in the aspects of tumorigenesis and targeted therapy. Carcinogenesis 2019; 39:1419-1430. [PMID: 30357389 DOI: 10.1093/carcin/bgy148] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/19/2018] [Indexed: 01/15/2023] Open
Abstract
Mitochondria play pivotal roles in most eukaryotic cells, ranging from energy production to regulation of apoptosis. As sites of cellular respiration, mitochondria experience accumulation of reactive oxygen species (ROS) due to damage in electron transport chain carriers. Mutations in mitochondrial DNA (mtDNA) as well as nuclear DNA are reported in various cancers. Mitochondria have a dual role in cancer: the development of tumors due to mutations in mitochondrial genome and the generation of ROS. Impairment in the mitochondria-regulated apoptosis pathway accelerates tumorigenesis. Numerous strategies targeting mitochondria have been developed to induce the mitochondrial (i.e. intrinsic) apoptosis pathway in cancer cells. This review elaborates the roles of mitochondria in cancer with respect to mutations and apoptosis and discusses mitochondria-targeting strategies as cancer therapies to enhance the killing of cancer cells.
Collapse
Affiliation(s)
- Narayanasamy Badrinath
- Biomedical Sciences, School of Medicine, Pusan National University, Yangsan, Republic of Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - So Young Yoo
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.,BIO-IT Foundry Technology Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
32
|
Kim B, Yang TJ, Kim S. Identification of a gene responsible for cytoplasmic male-sterility in onions (Allium cepa L.) using comparative analysis of mitochondrial genome sequences of two recently diverged cytoplasms. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:313-322. [PMID: 30374528 DOI: 10.1007/s00122-018-3218-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
Almost identical mitochondrial genome sequences of two recently diverged male-fertile normal and male-sterile CMS-T-like cytoplasms were obtained in onions. A chimeric gene, orf725 , was found to be a CMS-inducing gene. In onions (Allium cepa L.), cytoplasmic male-sterility (CMS) has been widely used in hybrid seed production. Two types of CMS (CMS-S and CMS-T) have been reported in onions. A complete mitochondrial genome sequence of the CMS-S cytoplasm has been reported in our previous study. Draft mitochondrial genome sequences of male-fertile normal and CMS-T-like cytoplasms are reported in this study. Raw reads obtained from normal and CMS-T-like cytoplasms were assembled into eight and nine almost identical contigs, respectively. After connection and reorganization of contigs by PCR amplification and genome walking, four scaffold sequences with total length of 339 and 180 bp were produced for the normal cytoplasm. A mitochondrial genome sequence of the CMS-T-like cytoplasm was obtained by mapping trimmed reads of CMS-T onto scaffold sequences of the normal cytoplasm. Compared with the CMS-S mitochondrial genome, the normal mitochondrial genome was highly rearranged with 31 syntenic blocks. A total of 499 single nucleotide polymorphisms (SNPs) or insertions/deletions were identified in these syntenic regions. On the other hand, normal and CMS-T-like mitochondrial genome sequences were almost identical except for orf725, a chimeric gene consisting of cox1 with other sequences. Only three SNPs were identified between normal and CMS-T-like syntenic sequences. These results indicate that orf725 is likely to be the casual gene for CMS induction in onions and that CMS-T-like cytoplasm has recently diverged from the normal cytoplasm by introduction of orf725.
Collapse
Affiliation(s)
- Bongju Kim
- Department of Plant Biotechnology, Biotechnology Research Institute, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sunggil Kim
- Department of Plant Biotechnology, Biotechnology Research Institute, Chonnam National University, Gwangju, 500-757, Republic of Korea.
| |
Collapse
|
33
|
Taheri S, James S, Roy V, Decaëns T, Williams B, Anderson F, Rougerie R, Chang CH, Brown G, Cunha L, Stanton D, Da Silva E, Chen JH, Lemmon A, Moriarty Lemmon E, Bartz M, Baretta D, Barois I, Lapied E, Coulis M, Dupont L. Complex taxonomy of the ‘brush tail’ peregrine earthworm Pontoscolex corethrurus. Mol Phylogenet Evol 2018; 124:60-70. [DOI: 10.1016/j.ympev.2018.02.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 01/19/2023]
|
34
|
Kesäniemi J, Boratyński Z, Danforth J, Itam P, Jernfors T, Lavrinienko A, Mappes T, Møller AP, Mousseau TA, Watts PC. Analysis of heteroplasmy in bank voles inhabiting the Chernobyl exclusion zone: A commentary on Baker et al. (2017) "Elevated mitochondrial genome variation after 50 generations of radiation exposure in a wild rodent.". Evol Appl 2018; 11:820-826. [PMID: 29875822 PMCID: PMC5978973 DOI: 10.1111/eva.12578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jenni Kesäniemi
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
| | - Zbyszek Boratyński
- CIBIO/InBIO, Research Center in Biodiversity and Genetic ResourcesUniversity of PortoVairãoPortugal
| | - John Danforth
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
| | - Prince Itam
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
| | - Toni Jernfors
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
| | | | - Tapio Mappes
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Anders Pape Møller
- Ecologie Systématique EvolutionUniversité Paris‐Sud, CNRS, AgroParisTechUniversité Paris‐SaclayOrsay CedexFrance
| | | | | |
Collapse
|
35
|
Havemann N, Gossner MM, Hendrich L, Morinière J, Niedringhaus R, Schäfer P, Raupach MJ. From water striders to water bugs: the molecular diversity of aquatic Heteroptera (Gerromorpha, Nepomorpha) of Germany based on DNA barcodes. PeerJ 2018; 6:e4577. [PMID: 29736329 PMCID: PMC5936072 DOI: 10.7717/peerj.4577] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/14/2018] [Indexed: 11/20/2022] Open
Abstract
With about 5,000 species worldwide, the Heteroptera or true bugs are the most diverse taxon among the hemimetabolous insects in aquatic and semi-aquatic ecosystems. Species may be found in almost every freshwater environment and have very specific habitat requirements, making them excellent bioindicator organisms for water quality. However, a correct determination by morphology is challenging in many species groups due to high morphological variability and polymorphisms within, but low variability between species. Furthermore, it is very difficult or even impossible to identify the immature life stages or females of some species, e.g., of the corixid genus Sigara. In this study we tested the effectiveness of a DNA barcode library to discriminate species of the Gerromorpha and Nepomorpha of Germany. We analyzed about 700 specimens of 67 species, with 63 species sampled in Germany, covering more than 90% of all recorded species. Our library included various morphological similar taxa, e.g., species within the genera Sigara and Notonecta as well as water striders of the genus Gerris. Fifty-five species (82%) were unambiguously assigned to a single Barcode Index Number (BIN) by their barcode sequences, whereas BIN sharing was observed for 10 species. Furthermore, we found monophyletic lineages for 52 analyzed species. Our data revealed interspecific K2P distances with below 2.2% for 18 species. Intraspecific distances above 2.2% were shown for 11 species. We found evidence for hybridization between various corixid species (Sigara, Callicorixa), but our molecular data also revealed exceptionally high intraspecific distances as a consequence of distinct mitochondrial lineages for Cymatia coleoptrata and the pygmy backswimmer Plea minutissima. Our study clearly demonstrates the usefulness of DNA barcodes for the identification of the aquatic Heteroptera of Germany and adjacent regions. In this context, our data set represents an essential baseline for a reference library for bioassessment studies of freshwater habitats using modern high-throughput technologies in the near future. The existing data also opens new questions regarding the causes of observed low inter- and high intraspecific genetic variation and furthermore highlight the necessity of taxonomic revisions for various taxa, combining both molecular and morphological data.
Collapse
Affiliation(s)
- Nadine Havemann
- Fakultät V, Institut für Biologie und Umweltwissenschaften (IBU), Carl von Ossietzky Universität Oldenburg, Oldenburg, Lower Saxony, Germany.,German Centre of Marine Biodiversity, Senckenberg Nature Research Society, Wilhelmshaven, Lower Saxony, Germany
| | - Martin M Gossner
- Forest Entomology, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Lars Hendrich
- Sektion Insecta varia, SNSB-Bavarian State Collection of Zoology, Munich, Bavaria, Germany
| | - Jèrôme Morinière
- Taxonomic coordinator-German Barcode of Life (GBOL), SNSB-Bavarian State Collection of Zoology, Munich, Bavaria, Germany
| | - Rolf Niedringhaus
- Department of Biology, Earth and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Lower Saxony, Germany
| | - Peter Schäfer
- B.U.G.S. (Biologische Umwelt-Gutachten Schäfer), Telgte, North-Rhine Westphalia, Germany
| | - Michael J Raupach
- Fakultät V, Institut für Biologie und Umweltwissenschaften (IBU), Carl von Ossietzky Universität Oldenburg, Oldenburg, Lower Saxony, Germany.,German Centre of Marine Biodiversity, Senckenberg Nature Research Society, Wilhelmshaven, Lower Saxony, Germany
| |
Collapse
|
36
|
Koch RE, Hill GE. Behavioural mating displays depend on mitochondrial function: a potential mechanism for linking behaviour to individual condition. Biol Rev Camb Philos Soc 2018; 93:1387-1398. [DOI: 10.1111/brv.12400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Rebecca E. Koch
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| | - Geoffrey E. Hill
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| |
Collapse
|
37
|
Meza-Lázaro RN, Poteaux C, Bayona-Vásquez NJ, Branstetter MG, Zaldívar-Riverón A. Extensive mitochondrial heteroplasmy in the neotropical ants of the Ectatomma ruidum complex (Formicidae: Ectatomminae). Mitochondrial DNA A DNA Mapp Seq Anal 2018; 29:1203-1214. [PMID: 29385929 DOI: 10.1080/24701394.2018.1431228] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We assembled mitogenomes from 21 ant workers assigned to four morphospecies (E. ruidum spp. 1-4) and putative hybrids of the Ectatomma ruidum complex (E. ruidum spp. 2x3), and to E. tuberculatum using NGS data. Mitogenomes from specimens of E. ruidum spp. 3, 4 and 2 × 3 had a high proportion of polymorphic sites. We investigated whether polymorphisms in mitogenomes are due to nuclear mt paralogues (numts) or due to the presence of more than one mitogenome within an individual (heteroplasmy). We did not find loss of function signals in polymorphic protein-coding genes, and observed strong evidence for purifying selection in two haplotype-phased genes, which indicate the presence of two functional mitochondrial genomes coexisting within individuals instead of numts. Heteroplasmy due to hybrid paternal leakage is not supported by phylogenetic analyses. Our results reveal the presence of a fast-evolving secondary mitochondrial lineage of uncertain origin in the E. ruidum complex.
Collapse
Affiliation(s)
- Rubi N Meza-Lázaro
- a Colección Nacional de Insectos, Instituto de Biología , Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria , CdMx, México , México
| | - Chantal Poteaux
- b Laboratoire d'Ethologie Expérimentale et Comparée E.A. 4443 (LEEC), Université Paris 13, Sorbonne Paris Cité , Villetaneuse , France
| | | | - Michael G Branstetter
- d USDA-ARS Pollinating Insects Research Unit, Utah State University , Logan , UT , USA
| | - Alejandro Zaldívar-Riverón
- a Colección Nacional de Insectos, Instituto de Biología , Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria , CdMx, México , México
| |
Collapse
|
38
|
Raime K, Remm M. Method for the Identification of Taxon-Specific k-mers from Chloroplast Genome: A Case Study on Tomato Plant ( Solanum lycopersicum). FRONTIERS IN PLANT SCIENCE 2018; 9:6. [PMID: 29387080 PMCID: PMC5776150 DOI: 10.3389/fpls.2018.00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Polymerase chain reaction and different barcoding methods commonly used for plant identification from metagenomics samples are based on the amplification of a limited number of pre-selected barcoding regions. These methods are often inapplicable due to DNA degradation, low amplification success or low species discriminative power of selected genomic regions. Here we introduce a method for the rapid identification of plant taxon-specific k-mers, that is applicable for the fast detection of plant taxa directly from raw sequencing reads without aligning, mapping or assembling the reads. We identified more than 800 Solanum lycopersicum specific k-mers (32 nucleotides in length) from 42 different chloroplast genome regions using the developed method. We demonstrated that identified k-mers are also detectable in whole genome sequencing raw reads from S. lycopersicum. Also, we demonstrated the usability of taxon-specific k-mers in artificial mixtures of sequences from closely related species. Developed method offers a novel strategy for fast identification of taxon-specific genome regions and offers new perspectives for detection of plant taxa directly from sequencing raw reads.
Collapse
|
39
|
Rutledge L, Coxon A, White B. Genetic assessment of the San Clemente Island loggerhead shrike reveals evidence of historical gene flow with Santa Catalina Island. Glob Ecol Conserv 2017. [DOI: 10.1016/j.gecco.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
40
|
Elgvin TO, Trier CN, Tørresen OK, Hagen IJ, Lien S, Nederbragt AJ, Ravinet M, Jensen H, Sætre GP. The genomic mosaicism of hybrid speciation. SCIENCE ADVANCES 2017; 3:e1602996. [PMID: 28630911 PMCID: PMC5470830 DOI: 10.1126/sciadv.1602996] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/26/2017] [Indexed: 05/21/2023]
Abstract
Hybridization is widespread in nature and, in some instances, can result in the formation of a new hybrid species. We investigate the genetic foundation of this poorly understood process through whole-genome analysis of the hybrid Italian sparrow and its progenitors. We find overall balanced yet heterogeneous levels of contribution from each parent species throughout the hybrid genome and identify areas of novel divergence in the hybrid species exhibiting signals consistent with balancing selection. High-divergence areas are disproportionately located on the Z chromosome and overrepresented in gene networks relating to key traits separating the focal species, which are likely involved in reproductive barriers and/or species-specific adaptations. Of special interest are genes and functional groups known to affect body patterning, beak morphology, and the immune system, which are important features of diversification and fitness. We show that a combination of mosaic parental inheritance and novel divergence within the hybrid lineage has facilitated the origin and maintenance of an avian hybrid species.
Collapse
Affiliation(s)
- Tore O. Elgvin
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, P.O. Box 1066, N-0316 Oslo, Norway
| | - Cassandra N. Trier
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, P.O. Box 1066, N-0316 Oslo, Norway
| | - Ole K. Tørresen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, P.O. Box 1066, N-0316 Oslo, Norway
| | - Ingerid J. Hagen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences, Faculty for Biosciences, Centre for Integrative Genetics, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Alexander J. Nederbragt
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, P.O. Box 1066, N-0316 Oslo, Norway
| | - Mark Ravinet
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, P.O. Box 1066, N-0316 Oslo, Norway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Glenn-Peter Sætre
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, P.O. Box 1066, N-0316 Oslo, Norway
- Corresponding author.
| |
Collapse
|
41
|
Karavaeva IE, Golyshev SA, Smirnova EA, Sokolov SS, Severin FF, Knorre DA. Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA. J Cell Sci 2017; 130:1274-1284. [PMID: 28193734 DOI: 10.1242/jcs.197269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/09/2017] [Indexed: 12/15/2022] Open
Abstract
Non-identical copies of mitochondrial DNA (mtDNA) compete with each other within a cell and the ultimate variant of mtDNA present depends on their relative replication rates. Using yeast Saccharomyces cerevisiae cells as a model, we studied the effects of mitochondrial inhibitors on the competition between wild-type mtDNA and mutant selfish mtDNA in heteroplasmic zygotes. We found that decreasing mitochondrial transmembrane potential by adding uncouplers or valinomycin changes the competition outcomes in favor of the wild-type mtDNA. This effect was significantly lower in cells with disrupted mitochondria fission or repression of the autophagy-related genes ATG8, ATG32 or ATG33, implying that heteroplasmic zygotes activate mitochondrial degradation in response to the depolarization. Moreover, the rate of mitochondrially targeted GFP turnover was higher in zygotes treated with uncoupler than in haploid cells or untreated zygotes. Finally, we showed that vacuoles of zygotes with uncoupler-activated autophagy contained DNA. Taken together, our data demonstrate that mitochondrial depolarization inhibits clonal expansion of selfish mtDNA and this effect depends on mitochondrial fission and autophagy. These observations suggest an activation of mitochondria quality control mechanisms in heteroplasmic yeast zygotes.
Collapse
Affiliation(s)
- Iuliia E Karavaeva
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskiye Gory 1-73, Moscow 119991, Russia
| | - Sergey A Golyshev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia
| | - Ekaterina A Smirnova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia
| | - Svyatoslav S Sokolov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia
| | - Fedor F Severin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia
| | - Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia
| |
Collapse
|
42
|
Donnelly K, Cottrell J, Ennos RA, Vendramin GG, A'Hara S, King S, Perry A, Wachowiak W, Cavers S. Reconstructing the plant mitochondrial genome for marker discovery: a case study using Pinus. Mol Ecol Resour 2017; 17:943-954. [DOI: 10.1111/1755-0998.12646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/25/2016] [Accepted: 12/14/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin Donnelly
- NERC Centre for Ecology and Hydrology, Edinburgh; Bush Estate Penicuik Midlothian EH26 0QB UK
- Institute of Evolutionary Biology; School of Biological Sciences; Ashworth Laboratories; University of Edinburgh; Edinburgh EH9 3JT UK
| | - Joan Cottrell
- Forest Research, Northern Research Station; Roslin Midlothian EH25 9SY UK
| | - Richard A. Ennos
- Institute of Evolutionary Biology; School of Biological Sciences; Ashworth Laboratories; University of Edinburgh; Edinburgh EH9 3JT UK
| | - Giovanni Giuseppe Vendramin
- Institute of Biosciences and BioResources; Division of Florence; National Research Council; Via Madonna del Piano, 10 50019 Sesto Fiorentino (Firenze) Italy
| | - Stuart A'Hara
- Forest Research, Northern Research Station; Roslin Midlothian EH25 9SY UK
| | - Sarah King
- NERC Centre for Ecology and Hydrology, Edinburgh; Bush Estate Penicuik Midlothian EH26 0QB UK
| | - Annika Perry
- NERC Centre for Ecology and Hydrology, Edinburgh; Bush Estate Penicuik Midlothian EH26 0QB UK
| | - Witold Wachowiak
- NERC Centre for Ecology and Hydrology, Edinburgh; Bush Estate Penicuik Midlothian EH26 0QB UK
- Institute of Dendrology; Polish Academy of Sciences; Parkowa 5 62-035 Kórnik Poland
| | - Stephen Cavers
- NERC Centre for Ecology and Hydrology, Edinburgh; Bush Estate Penicuik Midlothian EH26 0QB UK
| |
Collapse
|
43
|
Kim TW, Lee HJ, Kim YK, Oh HS, Han SH. Genetic identification of prey species from teeth in faeces from the Endangered leopard cat Prionailurus bengalensis using mitochondrial cytochrome b gene sequence. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:170-174. [PMID: 28093009 DOI: 10.1080/24701394.2016.1261852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
To understand the dietary ecology of the leopard cat (Prionailurus bengalensis), DNA analysis was performed to identify prey species using DNA isolated from teeth harvested from the faeces of this feline species. From 70 DNA samples, a total of 52 mitochondrial DNA (mtDNA) cytochrome b (cytb) gene sequences of mammals were identified. The results of a sequence identity test indicated that those sequences were derived from four rodent species (Apodemus agrarius, Apodemus peninsulae, Eothenomys regulus and Tamias sibiricus) and two shrew species (Crocidura lasiura and Crocidura shantungensis). The sequences contained nine unique cytb sequences from site 1 and 13 from site 2. These results indicate that the leopard cat hunts rodents and shrews, and at least nine animals at site 1 and 13 animals at site 2 were eaten. These findings suggest that the animal molecular signatures that remain undigested in the faeces may provide useful ecological information about food items and may contribute to a better understanding of the leopard cat's feeding ecology.
Collapse
Affiliation(s)
- Tae-Wook Kim
- a Faculty of Science Education , Jeju National University , Jeju-do , South Korea
| | - Hwa-Jin Lee
- a Faculty of Science Education , Jeju National University , Jeju-do , South Korea
| | - Yoo-Kyung Kim
- a Faculty of Science Education , Jeju National University , Jeju-do , South Korea
| | - Hong-Shik Oh
- a Faculty of Science Education , Jeju National University , Jeju-do , South Korea
| | - Sang-Hyun Han
- b Educational Science Research Institute, Jeju National University , Jeju-do , South Korea
| |
Collapse
|
44
|
Han SH, Oh HS. Genetic identification for prey birds of the Endangered peregrine falcon (Falco peregrinus). Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:175-180. [PMID: 28071972 DOI: 10.1080/24701394.2016.1261853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To reveal the dietary ecology of the peregrine falcon (Falco peregrinus), we conducted a molecular analysis for mitochondrial genes (COI and CYTB) to identify the prey species collected from a feeding place found on Sasu Island, South Korea. The results from noninvasive genetic analysis showed that the sequences obtained came from nine species of birds (Cuculus canorus, Eurystomus orientalis, Limosa limosa, Microscelis amaurotis, Oriolus chinensis, Phasianus colchicus, Sterna hirundo, Streptopelia orientalis, and Turdus pallidus). Five of the species (C. canorus, M. amaurotis, S. hirundo, S. orientalis, and T. pallidus) had previously been observed on this island, but the other four species (E. orientalis, L. limosa, O. chinensis, and P. colchicus) were newly identified as present. No mtDNA sequences of land animals such as amphibians, reptiles, and mammals were found in the dietary remains, suggesting that the peregrine falcon preys mostly on other birds rather than on other animals inhabiting Sasu Island. This island has rich avian diversity and abundant animal populations and therefore supplies sufficient dietary resources for the peregrine falcon. Our findings suggested that a DNA-based molecular method may be useful to identify the prey species of these birds and may be valuable in future studies of the Endangered peregrine falcon.
Collapse
Affiliation(s)
- Sang-Hyun Han
- a Educational Science Research Institute, Jeju National University , Jeju , South Korea
| | - Hong-Shik Oh
- b Faculty of Science Education, Jeju National University , Jeju , South Korea
| |
Collapse
|
45
|
Françoso E, Zuntini AR, Carnaval AC, Arias MC. Comparative phylogeography in the Atlantic forest and Brazilian savannas: pleistocene fluctuations and dispersal shape spatial patterns in two bumblebees. BMC Evol Biol 2016; 16:267. [PMID: 27927169 PMCID: PMC5142330 DOI: 10.1186/s12862-016-0803-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 10/14/2016] [Indexed: 01/23/2023] Open
Abstract
Background Bombus morio and B. pauloensis are sympatric widespread bumblebee species that occupy two major Brazilian biomes, the Atlantic forest and the savannas of the Cerrado. Differences in dispersion capacity, which is greater in B. morio, likely influence their phylogeographic patterns. This study asks which processes best explain the patterns of genetic variation observed in B. morio and B. pauloensis, shedding light on the phenomena that shaped the range of local populations and the spatial distribution of intra-specific lineages. Results Results suggest that Pleistocene climatic oscillations directly influenced the population structure of both species. Correlative species distribution models predict that the warmer conditions of the Last Interglacial contributed to population contraction, while demographic expansion happened during the Last Glacial Maximum. These results are consistent with physiological data suggesting that bumblebees are well adapted to colder conditions. Intra-specific mitochondrial genealogies are not congruent between the two species, which may be explained by their documented differences in dispersal ability. Conclusions While populations of the high-dispersal B. morio are morphologically and genetically homogeneous across the species range, B. pauloensis encompasses multiple (three) mitochondrial lineages, and show clear genetic, geographic, and morphological differences. Because the lineages of B. pauloensis are currently exposed to distinct climatic conditions (and elevations), parapatric diversification may occur within this taxon. The eastern portion of the state of São Paulo, the most urbanized area in Brazil, represents the center of genetic diversity for B. pauloensis. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0803-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elaine Françoso
- Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, sala 320, 05508-090, São Paulo, SP, Brazil.
| | - Alexandre Rizzo Zuntini
- Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, 13083-970, Campinas, SP, Brazil
| | - Ana Carolina Carnaval
- Department of Biology, City College of New York, New York, USA.,The Graduate Center, City University of New York, New York, NY, USA
| | - Maria Cristina Arias
- Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, sala 320, 05508-090, São Paulo, SP, Brazil
| |
Collapse
|
46
|
Goodall-Copestake WP. One tunic but more than one barcode: evolutionary insights from dynamic mitochondrial DNA inSalpa thompsoni(Tunicata: Salpida). Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Freshwater vertebrate metabarcoding on Illumina platforms using double-indexed primers of the mitochondrial 16S rRNA gene. CONSERV GENET RESOUR 2016. [DOI: 10.1007/s12686-016-0550-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Yang J, Liu G, Zhao N, Chen S, Liu D, Ma W, Hu Z, Zhang M. Comparative mitochondrial genome analysis reveals the evolutionary rearrangement mechanism in Brassica. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:527-536. [PMID: 27079962 DOI: 10.1111/plb.12414] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
The genus Brassica has many species that are important for oil, vegetable and other food products. Three mitochondrial genome types (mitotype) originated from its common ancestor. In this paper, a B. nigra mitochondrial main circle genome with 232,407 bp was generated through de novo assembly. Synteny analysis showed that the mitochondrial genomes of B. rapa and B. oleracea had a better syntenic relationship than B. nigra. Principal components analysis and development of a phylogenetic tree indicated maternal ancestors of three allotetraploid species in Us triangle of Brassica. Diversified mitotypes were found in allotetraploid B. napus, in which napus-type B. napus was derived from B. oleracea, while polima-type B. napus was inherited from B. rapa. In addition, the mitochondrial genome of napus-type B. napus was closer to botrytis-type than capitata-type B. oleracea. The sub-stoichiometric shifting of several mitochondrial genes suggested that mitochondrial genome rearrangement underwent evolutionary selection during domestication and/or plant breeding. Our findings clarify the role of diploid species in the maternal origin of allotetraploid species in Brassica and suggest the possibility of breeding selection of the mitochondrial genome.
Collapse
Affiliation(s)
- J Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - G Liu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - N Zhao
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - S Chen
- School of Plant Biology (M084), The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - D Liu
- Biomarker Technologies Corporation, Beijing, China
| | - W Ma
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Z Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - M Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| |
Collapse
|
49
|
Kim B, Kim K, Yang TJ, Kim S. Completion of the mitochondrial genome sequence of onion (Allium cepa L.) containing the CMS-S male-sterile cytoplasm and identification of an independent event of the ccmF N gene split. Curr Genet 2016; 62:873-885. [PMID: 27016941 DOI: 10.1007/s00294-016-0595-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/16/2023]
Abstract
Cytoplasmic male-sterility (CMS) conferred by the CMS-S cytoplasm has been most commonly used for onion (Allium cepa L.) F1 hybrid seed production. We first report the complete mitochondrial genome sequence containing CMS-S cytoplasm in this study. Initially, seven contigs were de novo assembled from 150-bp paired-end raw reads produced from the total genomic DNA using the Illumina NextSeq500 platform. These contigs were connected into a single circular genome consisting of 316,363 bp (GenBank accession: KU318712) by PCR amplification. Although all 24 core protein-coding genes were present, no ribosomal protein-coding genes, except rps12, were identified in the onion mitochondrial genome. Unusual trans-splicing of the cox2 gene was verified, and the cox1 gene was identified as part of the chimeric orf725 gene, which is a candidate gene responsible for inducing CMS. In addition to orf725, two small chimeric genes were identified, but no transcripts were detected for these two open reading frames. Thirteen chloroplast-derived sequences, with sizes of 126-13,986 bp, were identified in the intergenic regions. Almost 10 % of the onion mitochondrial genome was composed of repeat sequences. The vast majority of repeats were short repeats of <100 base pairs. Interestingly, the gene encoding ccmFN was split into two genes. The ccmF N gene split is first identified outside the Brassicaceae family. The breakpoint in the onion ccmF N gene was different from that of other Brassicaceae species. This split of the ccmF N gene was also present in 30 other Allium species. The complete onion mitochondrial genome sequence reported in this study would be fundamental information for elucidation of onion CMS evolution.
Collapse
Affiliation(s)
- Bongju Kim
- Department of Plant Biotechnology, Biotechnology Research Institute, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Kyunghee Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.,Phyzen Genomics Institute, 501-1, Gwanak Century Tower, Gwanak-gu, Seoul, 151-836, Republic of Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sunggil Kim
- Department of Plant Biotechnology, Biotechnology Research Institute, Chonnam National University, Gwangju, 500-757, Republic of Korea.
| |
Collapse
|
50
|
Frequent, geographically structured heteroplasmy in the mitochondria of a flowering plant, ribwort plantain (Plantago lanceolata). Heredity (Edinb) 2016; 117:1-7. [PMID: 26956565 PMCID: PMC4901351 DOI: 10.1038/hdy.2016.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 12/20/2022] Open
Abstract
Recent research has convincingly documented cases of mitochondrial heteroplasmy in a small set of wild and cultivated plant species. Heteroplasmy is suspected to be common in flowering plants and investigations of additional taxa may help understand the mechanisms generating heteroplasmy as well as its effects on plant phenotypes. The role of mitochondrial heteroplasmy is of particular interest in plants as cytoplasmic male sterility is controlled by mitochondrial genotypes, sometimes leading to co-occurring female and hermaphroditic individuals (gynodioecy). Paternal leakage may be important in the evolution of mating systems in such populations. We conducted a genetic survey of the gynodioecious plant Plantago lanceolata, in which heteroplasmy has not previously been reported, and estimated the frequencies of mitochondrial genotypes and heteroplasmy. Sanger sequence genotyping of 179 individuals from 15 European populations for two polymorphic mitochondrial loci, atp6 and rps12, identified 15 heteroplasmic individuals. These were distributed among 6 of the 10 populations that had polymorphisms in the target loci and represented 8% of all sampled individuals and 15% of the individuals in those 6 populations. The incidence was highest in Northern England and Scotland. Our results are consistent with geographic differences in the incidence of paternal leakage and/or the rates of nuclear restoration of male fertility.
Collapse
|