1
|
Deng H, Liang X, Liu J, Zheng X, Fan TP, Cai Y. Advances and perspectives on perylenequinone biosynthesis. Front Microbiol 2022; 13:1070110. [PMID: 36605511 PMCID: PMC9808054 DOI: 10.3389/fmicb.2022.1070110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Under illumination, the fungal secondary metabolites, perylenequinones (PQs) react with molecular oxygen to generate reactive oxygen species (ROS), which, in excess can damage cellular macromolecules and trigger apoptosis. Based on this property, PQs have been widely used as photosensitizers and applied in pharmaceuticals, which has stimulated research into the discovery of new PQs and the elucidation of their biosynthetic pathways. The PQs-associated literature covering from April 1967 to September 2022 is reviewed in three sections: (1) the sources, structural diversity, and biological activities of microbial PQs; (2) elucidation of PQ biosynthetic pathways, associated genes, and mechanisms of regulation; and (3) advances in pathway engineering and future potential strategies to modify cellular metabolism and improve PQ production.
Collapse
Affiliation(s)
- Huaxiang Deng
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China,*Correspondence: Huaxiang Deng,
| | - Xinxin Liang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jinbin Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi’an, Shanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China,Yujie Cai,
| |
Collapse
|
2
|
Braga GÚL, Silva-Junior GJ, Brancini GTP, Hallsworth JE, Wainwright M. Photoantimicrobials in agriculture. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112548. [PMID: 36067596 DOI: 10.1016/j.jphotobiol.2022.112548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Classical approaches for controlling plant pathogens may be impaired by the development of pathogen resistance to chemical pesticides and by limited availability of effective antimicrobial agents. Recent increases in consumer awareness of and/or legislation regarding environmental and human health, and the urgent need to improve food security, are driving increased demand for safer antimicrobial strategies. Therefore, there is a need for a step change in the approaches used for controlling pre- and post-harvest diseases and foodborne human pathogens. The use of light-activated antimicrobial substances for the so-called antimicrobial photodynamic treatment is known to be effective not only in a clinical context, but also for use in agriculture to control plant-pathogenic fungi and bacteria, and to eliminate foodborne human pathogens from seeds, sprouted seeds, fruits, and vegetables. Here, we take a holistic approach to review and re-evaluate recent findings on: (i) the ecology of naturally-occurring photoantimicrobials, (ii) photodynamic processes including the light-activated antimicrobial activities of some plant metabolites, and (iii) fungus-induced photosensitization of plants. The inhibitory mechanisms of both natural and synthetic light-activated substances, known as photosensitizers, are discussed in the contexts of microbial stress biology and agricultural biotechnology. Their modes-of-antimicrobial action make them neither stressors nor toxins/toxicants (with specific modes of poisonous activity), but a hybrid/combination of both. We highlight the use of photoantimicrobials for the control of plant-pathogenic fungi and quantify their potential contribution to global food security.
Collapse
Affiliation(s)
- Gilberto Ú L Braga
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| | | | - Guilherme T P Brancini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, United Kingdom.
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
3
|
Rangel LI, Bolton MD. The unsung roles of microbial secondary metabolite effectors in the plant disease cacophony. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102233. [PMID: 35679804 DOI: 10.1016/j.pbi.2022.102233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Plants counter disease with an array of responses to styme pathogen ingress. In contrast to this cacophony, plant pathogens orchestrate a finely tuned repertoire of virulence mechanisms in their attempt to cause disease. One such example is the production of secondary metabolite effectors (SMEs). Despite many attempts to functionally categorize SMEs, their many roles in plant disease have proven they march to the beat of their producer's drum. Some lesser studied features of SMEs in plant disease include self-resistance (SR) and manipulation of the microbiome to enhance pathogen virulence. SR can be accomplished in three general compositions, with the first being the transport of the SME to a benign location; the second being modification of the SME so it cannot harm the producer; and the third being metabolic regulation of the SME or the producer homolog of the SME target. SMEs may also play an interlude prior to disease by shaping the plant microbial community, allowing producers to better establish themselves. Taken together, SMEs are integral players in the phytopathology canon.
Collapse
Affiliation(s)
- Lorena I Rangel
- Edward T. Schafer Agricultural Research Center, U.S. Dept. Agriculture, Fargo, ND, USA
| | - Melvin D Bolton
- Edward T. Schafer Agricultural Research Center, U.S. Dept. Agriculture, Fargo, ND, USA.
| |
Collapse
|
4
|
Chen Y, Xu C, Yang H, Liu Z, Zhang Z, Yan R, Zhu D. L-Arginine enhanced perylenequinone production in the endophytic fungus Shiraia sp. Slf14(w) via NO signaling pathway. Appl Microbiol Biotechnol 2022; 106:2619-2636. [PMID: 35291023 DOI: 10.1007/s00253-022-11877-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 11/26/2022]
Abstract
Perylenequinones (PQ) are natural polyketides used as anti-microbial, -cancers, and -viral photodynamic therapy agents. Herein, the effects of L-arginine (Arg) on PQ biosynthesis of Shiraia sp. Slf14(w) and the underlying molecular mechanism were investigated. The total content of PQ reached 817.64 ± 72.53 mg/L under optimal conditions of Arg addition, indicating a 30.52-fold improvement over controls. Comparative transcriptome analysis demonstrated that Arg supplement promoted PQ precursors biosynthesis of Slf14(w) by upregulating the expression of critical genes associated with the glycolysis pathway, and acetyl-CoA and malonyl-CoA synthesis. By downregulating the expression of genes related to the glyoxylate cycle pathway and succinate dehydrogenase, more acetyl-CoA flow into the formation of PQ. Arg supplement upregulated the putative biosynthetic gene clusters for PQ and activated the transporter proteins (MFS and ABC) for exudation of PQ. Further studies showed that Arg increased the gene transcription levels of nitric oxide synthase (NOS) and nitrate reductase (NR), and activated NOS and NR, thus promoting the formation of nitric oxide (NO). A supplement of NO donor sodium nitroprusside (SNP) also confirmed that NO triggered promoted biosynthesis and efflux of PQ. PQ production stimulated by Arg or/and SNP can be significantly inhibited upon the addition of NO scavenger carboxy-PTIO, NOS inhibitor Nω-nitro-L-arginine, or soluble guanylate cyclase inhibitor NS-2028. These results showed that Arg-derived NO, as a signaling molecule, is involved in the biosynthesis and regulation of PQ in Slf14(W) through the NO-cGMP-PKG signaling pathway. Our results provide a valuable strategy for large-scale PQ production and contribute to further understanding of NO signaling in the fungal metabolite biosynthesis. KEY POINTS: • PQ production of Shiraia sp. Slf14(w) was significantly improved by L-arginine addition. • Arginine-derived NO was firstly reported to be involved in the biosynthesis and regulation of PQ. • The NO-cGMP-PKG signaling pathway was proposed for the first time to participate in PQ biosynthesis.
Collapse
Affiliation(s)
- Yunni Chen
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Chenglong Xu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Huilin Yang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhenying Liu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Zhibin Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Riming Yan
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Du Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China.
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
5
|
Ma YJ, Li XP, Wang Y, Wang JW. Nitric oxide donor sodium nitroprusside-induced transcriptional changes and hypocrellin biosynthesis of Shiraia sp. S9. Microb Cell Fact 2021; 20:92. [PMID: 33910564 PMCID: PMC8082767 DOI: 10.1186/s12934-021-01581-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/17/2021] [Indexed: 12/22/2022] Open
Abstract
Background Nitric oxide (NO) is a ubiquitous signaling mediator in various physiological processes. However, there are less reports concerning the effects of NO on fungal secondary metabolites. Hypocrellins are effective anticancer photodynamic therapy (PDT) agents from fungal perylenequinone pigments of Shiraia. NO donor sodium nitroprusside (SNP) was used as a chemical elicitor to promote hypocrellin biosynthesis in Shiraia mycelium cultures. Results SNP application at 0.01–0.20 mM was found to stimulate significantly fungal production of perylenequinones including hypocrellin A (HA) and elsinochrome A (EA). SNP application could not only enhance HA content by 178.96% in mycelia, but also stimulate its efflux to the medium. After 4 days of SNP application at 0.02 mM, the highest total production (110.34 mg/L) of HA was achieved without any growth suppression. SNP released NO in mycelia and acted as a pro-oxidant, thereby up-regulating the gene expression and activity of reactive oxygen species (ROS) generating NADPH oxidase (NOX) and antioxidant enzymes, leading to the increased levels of superoxide anion (O2−) and hydrogen peroxide (H2O2). Gene ontology (GO) analysis revealed that SNP treatment could up-regulate biosynthetic genes for hypocrellins and activate the transporter protein major facilitator superfamily (MFS) for the exudation. Moreover, SNP treatment increased the proportion of total unsaturated fatty acids in the hypha membranes and enhanced membrane permeability. Our results indicated both cellular biosynthesis of HA and its secretion could contribute to HA production induced by SNP. Conclusions The results of this study provide a valuable strategy for large-scale hypocrellin production and can facilitate further understanding and exploration of NO signaling in the biosynthesis of the important fungal metabolites. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01581-8.
Collapse
Affiliation(s)
- Yan Jun Ma
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.,College of Life Sciences, Northwest Normal University, Lanzhou, 730000, China
| | - Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yue Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
6
|
Świderska-Burek U, Daub ME, Thomas E, Jaszek M, Pawlik A, Janusz G. Phytopathogenic Cercosporoid Fungi-From Taxonomy to Modern Biochemistry and Molecular Biology. Int J Mol Sci 2020; 21:E8555. [PMID: 33202799 PMCID: PMC7697478 DOI: 10.3390/ijms21228555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/01/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022] Open
Abstract
Phytopathogenic cercosporoid fungi have been investigated comprehensively due to their important role in causing plant diseases. A significant amount of research has been focused on the biology, morphology, systematics, and taxonomy of this group, with less of a focus on molecular or biochemical issues. Early and extensive research on these fungi focused on taxonomy and their classification based on in vivo features. Lately, investigations have mainly addressed a combination of characteristics such as morphological traits, host specificity, and molecular analyses initiated at the end of the 20th century. Some species that are important from an economic point of view have been more intensively investigated by means of genetic and biochemical methods to better understand the pathogenesis processes. Cercosporin, a photoactivated toxin playing an important role in Cercospora diseases, has been extensively studied. Understanding cercosporin toxicity in relation to reactive oxygen species (ROS) production facilitated the discovery and regulation of the cercosporin biosynthesis pathway, including the gene cluster encoding pathway enzymes. Furthermore, these fungi may be a source of other biotechnologically important compounds, e.g., industrially relevant enzymes. This paper reviews methods and important results of investigations of this group of fungi addressed at different levels over the years.
Collapse
Affiliation(s)
- Urszula Świderska-Burek
- Department of Botany, Mycology and Ecology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland
| | - Margaret E. Daub
- Department Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA; (M.E.D.); (E.T.)
| | - Elizabeth Thomas
- Department Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA; (M.E.D.); (E.T.)
| | - Magdalena Jaszek
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (M.J.); (A.P.); (G.J.)
| | - Anna Pawlik
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (M.J.); (A.P.); (G.J.)
| | - Grzegorz Janusz
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (M.J.); (A.P.); (G.J.)
| |
Collapse
|
7
|
Deng H, Liang W, Fan TP, Zheng X, Cai Y. Modular engineering of Shiraia bambusicola for hypocrellin production through an efficient CRISPR system. Int J Biol Macromol 2020; 165:796-803. [PMID: 33010268 DOI: 10.1016/j.ijbiomac.2020.09.208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/18/2022]
Abstract
Shiraia bambusicola exhibits an excellent capability to produce high-value pharmacological drugs, such as hypocrellin. However, less effective molecular tools hamper the processes to discover or exploit these metabolites. To address this issue, the more effective CRISPR/Cas9 system was constructed by optimizing the sgRNA transcription elements and disrupting the endogenous non-homologous end-joining pathway. These tactics prompted the gene-targeting frequency of 100% and simultaneously multiplex genome editing in S. bambusicola. This optimal CRISPR system encouraged us to rewire the entire hypocrellin flux and improve the yield by orchestrating the substrate pool supply, the central hypocrellin pathway, and the antioxidant system. Thus, 8632 mg/L hypocrellin was obtained, resulting in a 12-fold increase than that of the wild-type strain. This engineered S. bambusicola can still endure oxidative stresses from higher target metabolites and sustain an excellent biological activity. This study provides a whole conception to establish the more efficient genome-editing system. Higher conserved transcription elements for sgRNA expressions inspire us to adopt this system for gene modifications of other filamentous fungi. The rational and global biosystems outline will offer guidance to modulate metabolite productivity in other filamentous fungi.
Collapse
Affiliation(s)
- Huaxiang Deng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Weiyue Liang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shanxi 710069, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Thomas E, Herrero S, Eng H, Gomaa N, Gillikin J, Noar R, Beseli A, Daub ME. Engineering Cercospora disease resistance via expression of Cercospora nicotianae cercosporin-resistance genes and silencing of cercosporin production in tobacco. PLoS One 2020; 15:e0230362. [PMID: 32176712 PMCID: PMC7075572 DOI: 10.1371/journal.pone.0230362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/27/2020] [Indexed: 11/18/2022] Open
Abstract
Fungi in the genus Cercospora cause crop losses world-wide on many crop species. The wide host range and success of these pathogens has been attributed to the production of a photoactivated toxin, cercosporin. We engineered tobacco for resistance to Cercospora nicotianae utilizing two strategies: 1) transformation with cercosporin autoresistance genes isolated from the fungus, and 2) transformation with constructs to silence the production of cercosporin during disease development. Three C. nicotianae cercosporin autoresistance genes were tested: ATR1 and CFP, encoding an ABC and an MFS transporter, respectively, and 71cR, which encodes a hypothetical protein. Resistance to the pathogen was identified in transgenic lines expressing ATR1 and 71cR, but not in lines transformed with CFP. Silencing of the CTB1 polyketide synthase and to a lesser extent the CTB8 pathway regulator in the cercosporin biosynthetic pathway also led to the recovery of resistant lines. All lines tested expressed the transgenes, and a direct correlation between the level of transgene expression and disease resistance was not identified in any line. Resistance was also not correlated with the degree of silencing in the CTB1 and CTB8 silenced lines. We conclude that expression of fungal cercosporin autoresistance genes as well as silencing of the cercosporin pathway are both effective strategies for engineering resistance to Cercospora diseases where cercosporin plays a critical role.
Collapse
Affiliation(s)
- Elizabeth Thomas
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States of America
| | - Sonia Herrero
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States of America
| | - Hayde Eng
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States of America
| | - Nafisa Gomaa
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States of America
- Botany Department, Faculty of Science, Fayoum University, Al Fayoum, Egypt
| | - Jeff Gillikin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States of America
| | - Roslyn Noar
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States of America
| | - Aydin Beseli
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States of America
| | - Margaret E. Daub
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
9
|
Deng H, Bai Y, Fan TP, Zheng X, Cai Y. Advanced strategy for metabolite exploration in filamentous fungi. Crit Rev Biotechnol 2020; 40:180-198. [PMID: 31906740 DOI: 10.1080/07388551.2019.1709798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Filamentous fungi comprise an abundance of gene clusters that encode high-value metabolites, whereas affluent gene clusters remain silent during laboratory conditions. Complex cellular metabolism further limits these metabolite yields. Therefore, diverse strategies such as genetic engineering and chemical mutagenesis have been developed to activate these cryptic pathways and improve metabolite productivity. However, lower efficiencies of gene modifications and screen tools delayed the above processes. To address the above issues, this review describes an alternative design-construction evaluation optimization (DCEO) approach. The DCEO tool provides theoretical and practical principles to identify potential pathways, modify endogenous pathways, integrate exogenous pathways, and exploit novel pathways for their diverse metabolites and desirable productivities. This DCEO method also offers different tactics to balance the cellular metabolisms, facilitate the genetic engineering, and exploit the scalable metabolites in filamentous fungi.
Collapse
Affiliation(s)
- Huaxiang Deng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Center for Synthetic Biochemistry, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shanxi, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Hawkins NJ, Bass C, Dixon A, Neve P. The evolutionary origins of pesticide resistance. Biol Rev Camb Philos Soc 2019; 94:135-155. [PMID: 29971903 PMCID: PMC6378405 DOI: 10.1111/brv.12440] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 01/24/2023]
Abstract
Durable crop protection is an essential component of current and future food security. However, the effectiveness of pesticides is threatened by the evolution of resistant pathogens, weeds and insect pests. Pesticides are mostly novel synthetic compounds, and yet target species are often able to evolve resistance soon after a new compound is introduced. Therefore, pesticide resistance provides an interesting case of rapid evolution under strong selective pressures, which can be used to address fundamental questions concerning the evolutionary origins of adaptations to novel conditions. We ask: (i) whether this adaptive potential originates mainly from de novo mutations or from standing variation; (ii) which pre-existing traits could form the basis of resistance adaptations; and (iii) whether recurrence of resistance mechanisms among species results from interbreeding and horizontal gene transfer or from independent parallel evolution. We compare and contrast the three major pesticide groups: insecticides, herbicides and fungicides. Whilst resistance to these three agrochemical classes is to some extent united by the common evolutionary forces at play, there are also important differences. Fungicide resistance appears to evolve, in most cases, by de novo point mutations in the target-site encoding genes; herbicide resistance often evolves through selection of polygenic metabolic resistance from standing variation; and insecticide resistance evolves through a combination of standing variation and de novo mutations in the target site or major metabolic resistance genes. This has practical implications for resistance risk assessment and management, and lessons learnt from pesticide resistance should be applied in the deployment of novel, non-chemical pest-control methods.
Collapse
Affiliation(s)
- Nichola J. Hawkins
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenAL5 4SEU.K.
| | - Chris Bass
- Department of BiosciencesUniversity of Exeter, Penryn CampusCornwallTR10 9FEU.K.
| | - Andrea Dixon
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenAL5 4SEU.K.
- Department of Plant BiologyUniversity of GeorgiaAthensGA 30602U.S.A.
| | - Paul Neve
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenAL5 4SEU.K.
| |
Collapse
|
11
|
Yan JY, Zhao WS, Chen Z, Xing QK, Zhang W, Chethana KWT, Xue MF, Xu JP, Phillips AJL, Wang Y, Liu JH, Liu M, Zhou Y, Jayawardena RS, Manawasinghe IS, Huang JB, Qiao GH, Fu CY, Guo FF, Dissanayake AJ, Peng YL, Hyde KD, Li XH. Comparative genome and transcriptome analyses reveal adaptations to opportunistic infections in woody plant degrading pathogens of Botryosphaeriaceae. DNA Res 2018; 25:87-102. [PMID: 29036669 PMCID: PMC5824938 DOI: 10.1093/dnares/dsx040] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 09/10/2017] [Indexed: 11/13/2022] Open
Abstract
Botryosphaeriaceae are an important fungal family that cause woody plant diseases worldwide. Recent studies have established a correlation between environmental factors and disease expression; however, less is known about factors that trigger these diseases. The current study reports on the 43.3 Mb de novo genome of Lasiodiplodia theobromae and five other genomes of Botryosphaeriaceae pathogens. Botryosphaeriaceous genomes showed an expansion of gene families associated with cell wall degradation, nutrient uptake, secondary metabolism and membrane transport, which contribute to adaptations for wood degradation. Transcriptome analysis revealed that genes involved in carbohydrate catabolism, pectin, starch and sucrose metabolism, and pentose and glucuronate interconversion pathways were induced during infection. Furthermore, genes in carbohydrate-binding modules, lysine motif domain and the glycosyl hydrolase gene families were induced by high temperature. Among these genes, overexpression of two selected putative lignocellulase genes led to increased virulence in the transformants. These results demonstrate the importance of high temperatures in opportunistic infections. This study also presents a set of Botryosphaeriaceae-specific effectors responsible for the identification of virulence-related pathogen-associated molecular patterns and demonstrates their active participation in suppressing hypersensitive responses. Together, these findings significantly expand our understanding of the determinants of pathogenicity or virulence in Botryosphaeriaceae and provide new insights for developing management strategies against them.
Collapse
Affiliation(s)
- Ji Ye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wen Sheng Zhao
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Chen
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qi Kai Xing
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wei Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Plant Protection, China Agricultural University, Beijing, China
| | - K W Thilini Chethana
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Min Feng Xue
- Institute of Plant Protection, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jian Ping Xu
- Department of Biology, McMaster University, ON, Canada
| | - Alan J L Phillips
- University of Lisbon, Faculty of Sciences, Bio Systems and Integrative Sciences Institute (BioISI), Campo Grande, Lisbon, Portugal
| | - Yong Wang
- Department of Plant Pathology, Guizhou University, Guiyang, Guizhou, China
| | - Jian Hua Liu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mei Liu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ying Zhou
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ruvishika S Jayawardena
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Ishara S Manawasinghe
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Jin Bao Huang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guang Hang Qiao
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chun Yuan Fu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fei Fei Guo
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Asha J Dissanayake
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - You Liang Peng
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Kevin D Hyde
- Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Xing Hong Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
12
|
The NcZrg-17 gene of Neurospora crassa encodes a cation diffusion facilitator transporter required for vegetative development, tolerance to endoplasmic reticulum stress and cellulose degradation under low zinc conditions. Curr Genet 2017; 64:811-819. [DOI: 10.1007/s00294-017-0794-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
|
13
|
Deng H, Gao R, Liao X, Cai Y. Characterization of a major facilitator superfamily transporter in Shiraia bambusicola. Res Microbiol 2017; 168:664-672. [DOI: 10.1016/j.resmic.2017.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/03/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
|
14
|
Swart V, Crampton BG, Ridenour JB, Bluhm BH, Olivier NA, Meyer JJM, Berger DK. Complementation of CTB7 in the Maize Pathogen Cercospora zeina Overcomes the Lack of In Vitro Cercosporin Production. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:710-724. [PMID: 28535078 DOI: 10.1094/mpmi-03-17-0054-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gray leaf spot (GLS), caused by the sibling species Cercospora zeina or Cercospora zeae-maydis, is cited as one of the most important diseases threatening global maize production. C. zeina fails to produce cercosporin in vitro and, in most cases, causes large coalescing lesions during maize infection, a symptom generally absent from cercosporin-deficient mutants in other Cercospora spp. Here, we describe the C. zeina cercosporin toxin biosynthetic (CTB) gene cluster. The oxidoreductase gene CTB7 contained several insertions and deletions as compared with the C. zeae-maydis ortholog. We set out to determine whether complementing the defective CTB7 gene with the full-length gene from C. zeae-maydis could confer in vitro cercosporin production. C. zeina transformants containing C. zeae-maydis CTB7 were generated by Agrobacterium tumefaciens-mediated transformation and were evaluated for in vitro cercosporin production. When grown on nitrogen-limited medium in the light-conditions conducive to cercosporin production in other Cercospora spp.-one transformant accumulated a red pigment that was confirmed to be cercosporin by the KOH assay, thin-layer chromatography, and ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Our results indicated that C. zeina has a defective CTB7, but all other necessary machinery required for synthesizing cercosporin-like molecules and, thus, C. zeina may produce a structural variant of cercosporin during maize infection.
Collapse
Affiliation(s)
- Velushka Swart
- 1 Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute, University of Pretoria, Private Bag x20, Hatfield 0028, South Africa
| | - Bridget G Crampton
- 1 Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute, University of Pretoria, Private Bag x20, Hatfield 0028, South Africa
| | - John B Ridenour
- 2 Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A.; and
| | - Burt H Bluhm
- 2 Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A.; and
| | - Nicholas A Olivier
- 1 Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute, University of Pretoria, Private Bag x20, Hatfield 0028, South Africa
| | | | - Dave K Berger
- 1 Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute, University of Pretoria, Private Bag x20, Hatfield 0028, South Africa
| |
Collapse
|
15
|
Toh-E A, Ohkusu M, Shimizu K, Yamaguchi M, Ishiwada N, Watanabe A, Kamei K. Creation, characterization and utilization of Cryptococcus neoformans mutants sensitive to micafungin. Curr Genet 2017; 63:1093-1104. [PMID: 28560585 DOI: 10.1007/s00294-017-0713-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 11/27/2022]
Abstract
We constructed deletion mutants of Cryptococcus neoformans var neoformans (serotype D) genes encoding late ergosterol biosynthetic pathway enzymes and found that the mutations enhanced susceptibility to various drugs including micafungin, one of the echinocandins, to which wild-type Cryptococcus strains show no susceptibility. Furthermore, through isolation of a mutant resistant to micafungin from a micafungin-sensitive erg mutant and genetic analysis of it, we found that the responsible mutation occurred in the hotspot 2 of FKS1 encoding β-1, 3-glucan synthase, indicating that micafungin inhibited the growth of the erg mutant via inhibiting Fks1 activity. Addition of ergosterol to the culture of the erg mutants recovered the resistance to micafungin, suggesting that the presence of ergosterol in membrane inhibits the accession of micafungin to its target. We found that a loss of one of genes encoding subunits of v-ATPase, VPH1, made Cryptococcus cells sensitive to micafungin. Our observation that the erg2 vph1 double mutant was more sensitive to micafungin than either single mutant suggests that these two genes act differently in becoming resistant to micafungin. The erg mutants allowed us to study the physiological significance of β-1, 3-glucan synthesis in C. neoformans; the inhibition of β-1, 3-glucan synthesis induced cell death and changes in cellular morphology. By observing the erg mutant cells recovering from the growth inhibition imposed by micafungin, we recognized β-1, 3-glucan synthesis would suppress filamentous growth in C. neoformans.
Collapse
Affiliation(s)
- Akio Toh-E
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan.
| | - Misako Ohkusu
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan
| | - Kiminori Shimizu
- Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Masashi Yamaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan
| | - Naruhiko Ishiwada
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan
| |
Collapse
|
16
|
De Novo Transcriptome Assembly in Shiraia bambusicola to Investigate Putative Genes Involved in the Biosynthesis of Hypocrellin A. Int J Mol Sci 2016; 17:311. [PMID: 26927096 PMCID: PMC4813174 DOI: 10.3390/ijms17030311] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 11/17/2022] Open
Abstract
Shiraia bambusicola is a species of the monotypic genus Shiraia in the phylum Ascomycota. In China, it is known for its pharmacological properties that are used to treat rheumatic arthritis, sciatica, pertussis, tracheitis and so forth. Its major medicinal active metabolite is hypocrellin A, which exhibits excellent antiviral and antitumor properties. However, the genes involved in the hypocrellin A anabolic pathways were still unknown due to the lack of genomic information for this species. To investigate putative genes that are involved in the biosynthesis of hypocrellin A and determine the pathway, we performed transcriptome sequencing for Shiraia bambusicola S4201-W and the mutant S4201-D1 for the first time. S4201-W has excellent hypocrellin A production, while the mutant S4201-D1 does not. Then, we obtained 38,056,034 and 39,086,896 clean reads from S4201-W and S4201-D1, respectively. In all, 17,923 unigenes were de novo assembled, and the N50 length was 1970 bp. Based on the negative binomial distribution test, 716 unigenes were found to be upregulated, and 188 genes were downregulated in S4201-D1, compared with S4201-W. We have found seven unigenes involved in the biosynthesis of hypocrellin A and proposed a putative hypocrellin A biosynthetic pathway. These data will provide a valuable resource and theoretical basis for future molecular studies of hypocrellin A, help identify the genes involved in the biosynthesis of hypocrellin A and help facilitate functional studies for enhancing hypocrellin A production.
Collapse
|
17
|
Keller NP. Translating biosynthetic gene clusters into fungal armor and weaponry. Nat Chem Biol 2015; 11:671-7. [PMID: 26284674 DOI: 10.1038/nchembio.1897] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/23/2015] [Indexed: 01/06/2023]
Abstract
Filamentous fungi are renowned for the production of a diverse array of secondary metabolites (SMs) where the genetic material required for synthesis of a SM is typically arrayed in a biosynthetic gene cluster (BGC). These natural products are valued for their bioactive properties stemming from their functions in fungal biology, key among those protection from abiotic and biotic stress and establishment of a secure niche. The producing fungus must not only avoid self-harm from endogenous SMs but also deliver specific SMs at the right time to the right tissue requiring biochemical aid. This review highlights functions of BGCs beyond the enzymatic assembly of SMs, considering the timing and location of SM production and other proteins in the clusters that control SM activity. Specifically, self-protection is provided by both BGC-encoded mechanisms and non-BGC subcellular containment of toxic SM precursors; delivery and timing is orchestrated through cellular trafficking patterns and stress- and developmental-responsive transcriptional programs.
Collapse
Affiliation(s)
- Nancy P Keller
- Department of Bacteriology and Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Characterization of Cercospora nicotianae Hypothetical Proteins in Cercosporin Resistance. PLoS One 2015; 10:e0140676. [PMID: 26474162 DOI: 10.1371/journal.pone.0140676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/29/2015] [Indexed: 11/19/2022] Open
Abstract
The photoactivated toxin, cercosporin, produced by Cercospora species, plays an important role in pathogenesis of this fungus to host plants. Cercosporin has almost universal toxicity to cells due to its production of reactive oxygen species including singlet oxygen. For that reason, Cercospora species, which are highly resistant to their own toxin, are good candidates to identify genes for resistance to cercosporin and to the reactive oxygen species it produces. In previous research, the zinc cluster transcription factor CRG1 (cercosporin resistance gene 1) was found to be crucial for Cercospora species' resistance against cercosporin, and subtractive hybridization analysis identified 185 genes differentially expressed between Cercospora nicotianae wild type (wt) and a crg1 mutant. The focus of this work was to identify and characterize the hypothetical proteins that were identified in the Cercospora nicotianae subtractive library as potential resistance factors. Quantitative RT-PCR analysis of the 20 genes encoding hypothetical proteins showed that two, 24cF and 71cR, were induced under conditions of cercosporin toxicity, suggesting a role in resistance. Transformation and expression of 24cF and 71cR in the cercosporin-sensitive fungus, Neurospora crassa, showed that 71cR provided increased resistance to cercosporin toxicity, whereas no significant increase was observed in 24cF transformants. Gene disruption was used to generate C. nicotianae 71cR mutants; these mutants did not differ from wt C. nicotianae in cercosporin resistance or production. Quantitative RT-PCR analysis showed induction of other resistance genes in the 71cR mutant that may compensate for the loss of 71cR. Analysis of 71cR conserved domains and secondary and tertiary structure identify the protein as having an NTF2-like superfamily DUF1348 domain with unknown function, to be intracellular and localized in the cytosol, and to have similarities to proteins in the steroid delta-isomerase family.
Collapse
|