1
|
Li W, Cao S, Sun H, Yang X, Xu L, Zhang X, Deng Y, Pavlov IN, Litovka YA, Chen H. Genome Analyses Reveal the Secondary Metabolites that Potentially Influence the Geographical Distribution of Fusarium pseudograminearum Populations. PLANT DISEASE 2024; 108:1812-1819. [PMID: 38277654 DOI: 10.1094/pdis-09-23-1743-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Fusarium crown rot (FCR), caused by Fusarium pseudograminearum, significantly impacts wheat yield and quality in China's Huanghuai region. The rapid F. pseudograminearum epidemic and FCR outbreak within a decade remain unexplained. In this study, two high-quality, chromosome-level genomes of F. pseudograminearum strains producing 3-acetyl-deoxynivalenol (3AcDON) and 15-acetyl-deoxynivalenol (15AcDON) toxins were assembled. Additionally, 38 related strains were resequenced. Genomic differences such as single nucleotide polymorphisms (SNPs), insertions/deletions (indels), and structural variations (SVs) among F. pseudograminearum strains were analyzed. The whole-genome SNP locus-based population classification mirrored the toxin chemotype (3AcDON and 15AcDON)-based classification, indicating the presence of genes associated with the trichothecene toxin gene cluster. Further analysis of differential SNP, indel, and SV loci between the 3AcDON and 15AcDON populations revealed a predominant connection to secondary metabolite synthesis genes. Notably, the majority of the secondary metabolite biosynthesis gene cluster loci were located in SNP-dense genomic regions, suggesting high mutability and a possible contribution to F. pseudograminearum population structure and environmental adaptability. This study provides insightful perspectives on the distribution and evolution of F. pseudograminearum and for forecasting the spread of wheat FCR, thereby aiding in the development of preventive measures and control strategies.
Collapse
Affiliation(s)
- Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Xiaoyue Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Lei Xu
- Nanjing Genepioneer Biotechnologies Co., Ltd., Nanjing 210046, Jiangsu, China
| | - Xin Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Yuanyu Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Igor N Pavlov
- Laboratory of Reforestation, Mycology and Plant Pathology, V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk 660036, Russia
- Department of Chemical Technology of Wood and Biotechnology, Reshetnev Siberian State University of Science and Technology, Krasnoyarsk 660049, Russia
| | - Yulia A Litovka
- Laboratory of Reforestation, Mycology and Plant Pathology, V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk 660036, Russia
- Department of Chemical Technology of Wood and Biotechnology, Reshetnev Siberian State University of Science and Technology, Krasnoyarsk 660049, Russia
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
2
|
Steinert K, Atanasoff-Kardjalieff AK, Messner E, Gorfer M, Niehaus EM, Humpf HU, Studt-Reinhold L, Kalinina SA. Tools to make Stachybotrys chartarum genetically amendable: Key to unlocking cryptic biosynthetic gene clusters. Fungal Genet Biol 2024; 172:103892. [PMID: 38636782 DOI: 10.1016/j.fgb.2024.103892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
The soil and indoor fungus Stachybotrys chartarum can induce respiratory disorders, collectively referred to as stachybotryotoxicosis, owing to its prolific production of diverse bioactive secondary metabolites (SMs) or mycotoxins. Although many of these toxins responsible for the harmful effects on animals and humans have been identified in the genus Stachybotrys, however a number of SMs remain elusive. Through in silico analyses, we have identified 37 polyketide synthase (PKS) genes, highlighting that the chemical profile potential of Stachybotrys is far from being fully explored. Additionally, by leveraging phylogenetic analysis of known SMs produced by non-reducing polyketide synthases (NR-PKS) in other filamentous fungi, we showed that Stachybotrys possesses a rich reservoir of untapped SMs. To unravel natural product biosynthesis in S. chartarum, genetic engineering methods are crucial. For this purpose, we have developed a reliable protocol for the genetic transformation of S. chartarum and applied it to the ScPKS14 biosynthetic gene cluster. This cluster is homologous to the already known Claviceps purpurea CpPKS8 BGC, responsible for the production of ergochromes. While no novel SMs were detected, we successfully applied genetic tools, such as the generation of deletionand overexpression strains of single cluster genes. This toolbox can now be readily employed to unravel not only this particular BGC but also other candidate BGCs present in S. chartarum, making this fungus accessible for genetic engineering.
Collapse
Affiliation(s)
| | - Anna K Atanasoff-Kardjalieff
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | - Elias Messner
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | - Markus Gorfer
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Eva-Maria Niehaus
- Institute of Food Chemistry, University of Münster, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Münster, Germany
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria.
| | | |
Collapse
|
3
|
Bejenari M, Spedtsberg EML, Mathiesen J, Jeppesen AC, Cernat L, Toussaint A, Apostol C, Stoianov V, Pedersen TB, Nielsen MR, Sørensen JL. First-class - biosynthesis of 6-MSA and bostrycoidin type I polyketides in Yarrowia lipolytica. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1327777. [PMID: 38586602 PMCID: PMC10995274 DOI: 10.3389/ffunb.2024.1327777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/09/2024] [Indexed: 04/09/2024]
Abstract
Fungal polyketides are a large group of secondary metabolites, valuable due to their diverse spectrum of pharmacological activities. Polyketide biosynthesis in filamentous fungi presents some challenges: small yield and low-purity titers. To tackle these issues, we switched to the yeast Yarrowia lipolytica, an easily cultivable heterologous host. As an oleaginous yeast, Y. lipolytica displays a high flux of acetyl- and malonyl-CoA precursors used in lipid synthesis. Likewise, acetyl- and malonyl-CoA are the building blocks of many natural polyketides, and we explored the possibility of redirecting this flux toward polyketide production. Despite its promising prospect, Y. lipolytica has so far only been used for heterologous expression of simple type III polyketide synthases (PKSs) from plants. Therefore, we decided to evaluate the potential of Y. lipolytica by targeting the more complex fungal polyketides synthesized by type I PKSs. We employed a CRISPR-Cas9-mediated genome editing method to achieve markerless gene integration of the genes responsible for bostrycoidin biosynthesis in Fusarium solani (fsr1, fsr2, and fsr3) and 6-methylsalicylic acid (6-MSA) biosynthesis in Aspergillus hancockii (6MSAS). Moreover, we attempted titer optimization through metabolic engineering by overexpressing two enzymes, TGL4 and AOX2, involved in lipid β-oxidation, but we did not observe an effect on polyketide production. With maximum titers of 403 mg/L 6-MSA and 35 mg/L bostrycoidin, the latter being substantially higher than our previous results in Saccharomyces cerevisiae (2.2 mg/L), this work demonstrates the potential of Y. lipolytica as a platform for heterologous production of complex fungal polyketides.
Collapse
Affiliation(s)
- Mihaela Bejenari
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Eva Mie Lang Spedtsberg
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
- Department of Energy, Aalborg University, Esbjerg, Denmark
| | - Julie Mathiesen
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | | | - Lucia Cernat
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Aouregane Toussaint
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire Végétale, CEA, CNRS, INRA, IRIG-LPCV, Grenoble, France
| | - Cristina Apostol
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Victor Stoianov
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | | | - Mikkel Rank Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | | |
Collapse
|
4
|
Bejenari M, Nielsen L, Spedtsberg EML, Nielsen MR, Pedersen TB, Sørensen JL. Yeast recombinational cloning for heterologous biosynthesis of polyketides: a molecular microbiology laboratory module for undergraduate students. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2023; 24:e00242-22. [PMID: 38108002 PMCID: PMC10720416 DOI: 10.1128/jmbe.00242-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/30/2023] [Indexed: 12/19/2023]
Abstract
Recombinant plasmids are essential tools in molecular biotechnology, and reliable plasmid assembly methods have, therefore, become a prerequisite for the successful cloning and transfer of genes. Among the multitude of available plasmid assembly strategies, in vivo homologous recombinational cloning in yeast has emerged as a cost-effective and relatively simple method. Since we use this method routinely in our group for assembling large plasmids with secondary metabolite gene clusters and for direct heterologous production of polyketides in Saccharomyces cerevisiae, we developed an exercise module for undergraduate students where they would get hands-on experience with these molecular practices. The exercises target several molecular techniques, including PCR, restriction enzyme digestion, and yeast recombinational cloning. The students will learn about plasmid assembly and yeast transformation methods by performing these experiments while inherently acquiring new skills valuable for their subsequent laboratory work or projects.
Collapse
Affiliation(s)
- Mihaela Bejenari
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Line Nielsen
- Department of Energy, Aalborg University, Esbjerg, Denmark
| | | | - Mikkel Rank Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | | | | |
Collapse
|
5
|
Severinsen MM, Westphal KR, Terp M, Sørensen T, Olsen A, Bachleitner S, Studt-Reinhold L, Wimmer R, Sondergaard TE, Sørensen JL. Filling out the gaps - identification of fugralins as products of the PKS2 cluster in Fusarium graminearum. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1264366. [PMID: 38025899 PMCID: PMC10667903 DOI: 10.3389/ffunb.2023.1264366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
As one of the grain crop pathogenic fungi with the greatest impacts on agricultural economical as well as human health, an elaborate understanding of the life cycle and subsequent metabolome of Fusarium graminearum is of great interest. Throughout the lifetime of the fungus, it is known to produce a wide array of secondary metabolites, including polyketides. One of the F. graminearum polyketides which has remained a mystery until now has been elucidated in this work. Previously, it was suggested that the biosynthetic product of the PKS2 gene cluster was involved in active mycelial growth, the exact mechanism, however, remained unclear. In our work, disruption and overexpression of the PKS2 gene in F. graminearum enabled structural elucidation of a linear and a cyclic tetraketide with a double methyl group, named fugralin A and B, respectively. Further functional characterization showed that the compounds are not produced during infection, and that deletion and overexpression did not affect pathogenicity or visual growth. The compounds were shown to be volatile, which could point to possible functions that can be investigated further in future studies.
Collapse
Affiliation(s)
- Manja Mølgaard Severinsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Mikael Terp
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Trine Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Anders Olsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Simone Bachleitner
- Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lena Studt-Reinhold
- Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
6
|
Pokhrel A, Coleman JJ. Inventory of the Secondary Metabolite Biosynthetic Potential of Members within the Terminal Clade of the Fusarium solani Species Complex. J Fungi (Basel) 2023; 9:799. [PMID: 37623570 PMCID: PMC10455376 DOI: 10.3390/jof9080799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
The Fusarium solani species complex (FSSC) constitutes at least 77 phylogenetically distinct species including several agriculturally important and clinically relevant opportunistic pathogens. As with other Fusaria, they have been well documented to produce many secondary metabolites-compounds that are not required for the fungus to grow or develop but may be beneficial to the organism. An analysis of ten genomes from fungi within the terminal clade (clade 3) of the FSSC revealed each genome encoded 35 (F. cucurbitcola) to 48 (F. tenucristatum) secondary metabolite biosynthetic gene clusters (BGCs). A total of seventy-four different BGCs were identified from the ten FSSC genomes including seven polyketide synthases (PKS), thirteen nonribosomal peptide synthetases (NRPS), two terpene synthase BGCs, and a single dimethylallytryptophan synthase (DMATS) BGC conserved in all the genomes. Some of the clusters that were shared included those responsible for producing naphthoquinones such as fusarubins, a red pigmented compound, squalestatin, and the siderophores malonichrome, ferricrocin, and triacetylfusarinine. Eight novel NRPS and five novel PKS BGCs were identified, while BGCs predicted to produce radicicol, gibberellin, and fusaoctaxin were identified, which have not previously described in members of the FSSC. The diversity of the secondary metabolite repertoire of the FSSC may contribute to the expansive host range of these fungi and their ability to colonize broad habitats.
Collapse
Affiliation(s)
- Ambika Pokhrel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA;
- The Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Jeffrey J. Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
7
|
Seidl B, Rehak K, Bueschl C, Parich A, Buathong R, Wolf B, Doppler M, Mitterbauer R, Adam G, Khewkhom N, Wiesenberger G, Schuhmacher R. Gramiketides, Novel Polyketide Derivatives of Fusarium graminearum, Are Produced during the Infection of Wheat. J Fungi (Basel) 2022; 8:1030. [PMID: 36294594 PMCID: PMC9605136 DOI: 10.3390/jof8101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
The plant pathogen Fusarium graminearum is a proficient producer of mycotoxins and other in part still unknown secondary metabolites, some of which might act as virulence factors on wheat. The PKS15 gene is expressed only in planta, so far hampering the identification of an associated metabolite. Here we combined the activation of silent gene clusters by chromatin manipulation (kmt6) with blocking the metabolic flow into the competing biosynthesis of the two major mycotoxins deoxynivalenol and zearalenone. Using an untargeted metabolomics approach, two closely related metabolites were found in triple mutants (kmt6 tri5 pks4,13) deficient in production of the major mycotoxins deoxynivalenol and zearalenone, but not in strains with an additional deletion in PKS15 (kmt6 tri5 pks4,13 pks15). Characterization of the metabolites, by LC-HRMS/MS in combination with a stable isotope-assisted tracer approach, revealed that they are likely hybrid polyketides comprising a polyketide part consisting of malonate-derived acetate units and a structurally deviating part. We propose the names gramiketide A and B for the two metabolites. In a biological experiment, both gramiketides were formed during infection of wheat ears with wild-type but not with pks15 mutants. The formation of the two gramiketides during infection correlated with that of the well-known virulence factor deoxynivalenol, suggesting that they might play a role in virulence.
Collapse
Affiliation(s)
- Bernhard Seidl
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Katrin Rehak
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Christoph Bueschl
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Alexandra Parich
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Raveevatoo Buathong
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Ngamwongwan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Bernhard Wolf
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Maria Doppler
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
- Core Facility Bioactive Molecules: Screening and Analysis, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Rudolf Mitterbauer
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Netnapis Khewkhom
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Ngamwongwan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| |
Collapse
|
8
|
Pedersen TB, Nielsen MR, Kristensen SB, Spedtsberg EML, Sørensen T, Petersen C, Muff J, Sondergaard TE, Nielsen KL, Wimmer R, Gardiner DM, Sørensen JL. Speed dating for enzymes! Finding the perfect phosphopantetheinyl transferase partner for your polyketide synthase. Microb Cell Fact 2022; 21:9. [PMID: 35012550 PMCID: PMC8751348 DOI: 10.1186/s12934-021-01734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
The biosynthetic pathways for the fungal polyketides bikaverin and bostrycoidin, from Fusarium verticillioides and Fusarium solani respectively, were reconstructed and heterologously expressed in S. cerevisiae alongside seven different phosphopantetheinyl transferases (PPTases) from a variety of origins spanning bacterial, yeast and fungal origins. In order to gauge the efficiency of the interaction between the ACP-domains of the polyketide synthases (PKS) and PPTases, each were co-expressed individually and the resulting production of target polyketides were determined after 48 h of growth. In co-expression with both biosynthetic pathways, the PPTase from Fusarium verticillioides (FvPPT1) proved most efficient at producing both bikaverin and bostrycoidin, at 1.4 mg/L and 5.9 mg/L respectively. Furthermore, the remaining PPTases showed the ability to interact with both PKS's, except for a single PKS-PPTase combination. The results indicate that it is possible to boost the production of a target polyketide, simply by utilizing a more optimal PPTase partner, instead of the commonly used PPTases; NpgA, Gsp and Sfp, from Aspergillus nidulans, Brevibacillus brevis and Bacillus subtilis respectively.
Collapse
Affiliation(s)
- Tobias Bruun Pedersen
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Mikkel Rank Nielsen
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | | | - Eva Mie Lang Spedtsberg
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Trine Sørensen
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Celine Petersen
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Jens Muff
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Teis Esben Sondergaard
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Kåre Lehmann Nielsen
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Donald Max Gardiner
- The University of Queensland, 306 Carmody Rd, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jens Laurids Sørensen
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark.
| |
Collapse
|
9
|
Christiansen JV, Isbrandt T, Petersen C, Sondergaard TE, Nielsen MR, Pedersen TB, Sørensen JL, Larsen TO, Frisvad JC. Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. Appl Microbiol Biotechnol 2021; 105:8157-8193. [PMID: 34625822 DOI: 10.1007/s00253-021-11597-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Quinones represent an important group of highly structurally diverse, mainly polyketide-derived secondary metabolites widely distributed among filamentous fungi. Many quinones have been reported to have important biological functions such as inhibition of bacteria or repression of the immune response in insects. Other quinones, such as ubiquinones are known to be essential molecules in cellular respiration, and many quinones are known to protect their producing organisms from exposure to sunlight. Most recently, quinones have also attracted a lot of industrial interest since their electron-donating and -accepting properties make them good candidates as electrolytes in redox flow batteries, like their often highly conjugated double bond systems make them attractive as pigments. On an industrial level, quinones are mainly synthesized from raw components in coal tar. However, the possibility of producing quinones by fungal cultivation has great prospects since fungi can often be grown in industrially scaled bioreactors, producing valuable metabolites on cheap substrates. In order to give a better overview of the secondary metabolite quinones produced by and shared between various fungi, mainly belonging to the genera Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium, this review categorizes quinones into families such as emodins, fumigatins, sorbicillinoids, yanuthones, and xanthomegnins, depending on structural similarities and information about the biosynthetic pathway from which they are derived, whenever applicable. The production of these quinone families is compared between the different genera, based on recently revised taxonomy. KEY POINTS: • Quinones represent an important group of secondary metabolites widely distributed in important fungal genera such as Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. • Quinones are of industrial interest and can be used in pharmacology, as colorants and pigments, and as electrolytes in redox flow batteries. • Quinones are grouped into families and compared between genera according to the revised taxonomy.
Collapse
Affiliation(s)
- J V Christiansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - T Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - C Petersen
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - T E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - M R Nielsen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T B Pedersen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - J L Sørensen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
10
|
Westphal KR, Bachleitner S, Severinsen MM, Brundtø ML, Hansen FT, Sørensen T, Wollenberg RD, Lysøe E, Studt L, Sørensen JL, Sondergaard TE, Wimmer R. Cyclic, Hydrophobic Hexapeptide Fusahexin Is the Product of a Nonribosomal Peptide Synthetase in Fusarium graminearum. JOURNAL OF NATURAL PRODUCTS 2021; 84:2070-2080. [PMID: 34292732 DOI: 10.1021/acs.jnatprod.0c00947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The plant pathogenic fungus Fusarium graminearum is known to produce a wide array of secondary metabolites during plant infection. This includes several nonribosomal peptides. Recently, the fusaoctaxin (NRPS5/9) and gramilin (NRPS8) gene clusters were shown to be induced by host interactions. To widen our understanding of this important pathogen, we investigated the involvement of the NRPS4 gene cluster during infection and oxidative and osmotic stress. Overexpression of NRPS4 led to the discovery of a new cyclic hexapeptide, fusahexin (1), with the amino acid sequence cyclo-(d-Ala-l-Leu-d-allo-Thr-l-Pro-d-Leu-l-Leu). The structural analyses revealed an unusual ether bond between a proline Cδ to Cβ of the preceding threonine resulting in an oxazine ring system. The comparative genomic analyses showed that the small gene cluster only encodes an ABC transporter in addition to the five-module nonribosomal peptide synthetase (NRPS). Based on the structure of fusahexin and the domain architecture of NRPS4, we propose a biosynthetic model in which the terminal module is used to incorporate two leucine units. So far, iterative use of NRPS modules has primarily been described for siderophore synthetases, which makes NRPS4 a rare example of a fungal nonsiderophore NRPS with distinct iterative module usage.
Collapse
Affiliation(s)
- Klaus R Westphal
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Simone Bachleitner
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Manja M Severinsen
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Mathias L Brundtø
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Frederik T Hansen
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Trine Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Rasmus D Wollenberg
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Erik Lysøe
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, NO-1433 Ås, Norway
| | - Lena Studt
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Jens L Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, DK-6700 Esbjerg, Denmark
| | - Teis E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| |
Collapse
|
11
|
Westphal KR, Heidelbach S, Zeuner EJ, Riisgaard-Jensen M, Nielsen ME, Vestergaard SZ, Bekker NS, Skovmark J, Olesen CK, Thomsen KH, Niebling SK, Sørensen JL, Sondergaard TE. The effects of different potato dextrose agar media on secondary metabolite production in Fusarium. Int J Food Microbiol 2021; 347:109171. [PMID: 33872940 DOI: 10.1016/j.ijfoodmicro.2021.109171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022]
Abstract
Potatoes contain several nutrients essential for fungal growth, making them an excellent component of media such as the popular Potato Dextrose Agar (PDA) medium. Commercially, PDA is available from multiple retailers offering virtually the same product. These media, however, could contain small differences in composition of nutrients affecting the expression of secondary metabolites. This study aims to investigate the use of four PDA media from different manufacturers (Fluka, Oxoid, Sigma, and VWR) and their effect on the metabolite profile of four species of Fusarium (F. fujikuroi, F. graminearum, F. pseudograminearum and F. avenaceum). Secondary metabolites were analysed using HPLC-HRMS, from which statistically significant differences in intensities were observed for 9 out of 10 metabolites.
Collapse
Affiliation(s)
- Klaus Ringsborg Westphal
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Søren Heidelbach
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Emil Juel Zeuner
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Marie Riisgaard-Jensen
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Morten Eneberg Nielsen
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Sofie Zacho Vestergaard
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Nicolai Sundgaard Bekker
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Jesper Skovmark
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Christian Kjær Olesen
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Katrine Hartmann Thomsen
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Sara Kramer Niebling
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Jens Laurids Sørensen
- Aalborg University, Department of Chemistry and Bioscience, Niels Bohrsvej 8, 6700 Esbjerg, Denmark
| | - Teis Esben Sondergaard
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark.
| |
Collapse
|
12
|
Gressler M, Löhr NA, Schäfer T, Lawrinowitz S, Seibold PS, Hoffmeister D. Mind the mushroom: natural product biosynthetic genes and enzymes of Basidiomycota. Nat Prod Rep 2021; 38:702-722. [PMID: 33404035 DOI: 10.1039/d0np00077a] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to September 2020 Mushroom-forming fungi of the division Basidiomycota have traditionally been recognised as prolific producers of structurally diverse and often bioactive secondary metabolites, using the methods of chemistry for research. Over the past decade, -omics technologies were applied on these fungi, and sophisticated heterologous gene expression platforms emerged, which have boosted research into the genetic and biochemical basis of the biosyntheses. This review provides an overview on experimentally confirmed natural product biosyntheses of basidiomycete polyketides, amino acid-derived products, terpenoids, and volatiles. We also present challenges and solutions particular to natural product research with these fungi. 222 references are cited.
Collapse
Affiliation(s)
- Markus Gressler
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Nikolai A Löhr
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Tim Schäfer
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Stefanie Lawrinowitz
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Paula Sophie Seibold
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| |
Collapse
|
13
|
De novo Transcriptome of the Non-saxitoxin Producing Alexandrium tamutum Reveals New Insights on Harmful Dinoflagellates. Mar Drugs 2020; 18:md18080386. [PMID: 32722301 PMCID: PMC7460133 DOI: 10.3390/md18080386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Many dinoflagellates species, especially of the Alexandrium genus, produce a series of toxins with tremendous impacts on human and environmental health, and tourism economies. Alexandrium tamutum was discovered for the first time in the Gulf of Naples, and it is not known to produce saxitoxins. However, a clone of A. tamutum from the same Gulf showed copepod reproduction impairment and antiproliferative activity. In this study, the full transcriptome of the dinoflagellate A. tamutum is presented in both control and phosphate starvation conditions. RNA-seq approach was used for in silico identification of transcripts that can be involved in the synthesis of toxic compounds. Phosphate starvation was selected because it is known to induce toxin production for other Alexandrium spp. Results showed the presence of three transcripts related to saxitoxin synthesis (sxtA, sxtG and sxtU), and others potentially related to the synthesis of additional toxic compounds (e.g., 44 transcripts annotated as "polyketide synthase"). These data suggest that even if this A. tamutum clone does not produce saxitoxins, it has the potential to produce toxic metabolites, in line with the previously observed activity. These data give new insights into toxic microalgae, toxin production and their potential applications for the treatment of human pathologies.
Collapse
|
14
|
Nielsen MR, Holzwarth AKR, Brew E, Chrapkova N, Kaniki SEK, Kastaniegaard K, Sørensen T, Westphal KR, Wimmer R, Sondergaard TE, Sørensen JL. A new vector system for targeted integration and overexpression of genes in the crop pathogen Fusarium solani. Fungal Biol Biotechnol 2019; 6:25. [PMID: 31890232 PMCID: PMC6905090 DOI: 10.1186/s40694-019-0089-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/25/2019] [Indexed: 11/10/2022] Open
Abstract
Background Besides their ability to produce several interesting bioactive secondary metabolites, members of the Fusarium solani species complex comprise important pathogens of plants and humans. One of the major obstacles in understanding the biology of this species complex is the lack of efficient molecular tools for genetic manipulation. Results To remove this obstacle we here report the development of a reliable system where the vectors are generated through yeast recombinational cloning and inserted into a specific site in F. solani through Agrobacterium tumefaciens-mediated transformation. As proof-of-concept, the enhanced yellow fluorescent protein (eYFP) was inserted in a non-coding genomic position of F. solani and subsequent analyses showed that the resulting transformants were fluorescent on all tested media. In addition, we cloned and overexpressed the Zn(II)2Cys6 transcriptional factor fsr6 controlling mycelial pigmentation. A transformant displayed deep red/purple pigmentation stemming from bostrycoidin and javanicin. Conclusion By creating streamlined plasmid construction and fungal transformation systems, we are now able to express genes in the crop pathogen F. solani in a reliable and fast manner. As a case study, we targeted and activated the fusarubin (PKS3: fsr) gene cluster, which is the first case study of secondary metabolites being directly associated with the responsible gene cluster in F. solani via targeted activation. The system provides an approach that in the future can be used by the community to understand the biochemistry and genetics of the Fusarium solani species complex, and is obtainable from Addgene catalog #133094. Graphic abstract
Collapse
Affiliation(s)
- Mikkel Rank Nielsen
- 1Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | | | - Emmett Brew
- 1Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | - Natalia Chrapkova
- 1Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | | | - Kenneth Kastaniegaard
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Trine Sørensen
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Klaus Ringsborg Westphal
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Reinhard Wimmer
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Teis Esben Sondergaard
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Jens Laurids Sørensen
- 1Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| |
Collapse
|
15
|
Heterologous expression of intact biosynthetic gene clusters in Fusarium graminearum. Fungal Genet Biol 2019; 132:103248. [DOI: 10.1016/j.fgb.2019.103248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 11/18/2022]
|