1
|
Lv W, Tu Y, Xu T, Zhang Y, Chen J, Yang N, Wang Y. The Mitochondrial Distribution and Morphology Family 33 Gene FgMDM33 Is Involved in Autophagy and Pathogenesis in Fusarium graminearum. J Fungi (Basel) 2024; 10:579. [PMID: 39194905 DOI: 10.3390/jof10080579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
The mitochondrial distribution and morphology family 33 gene (MDM33) regulates mitochondrial homeostasis by mediating the mitochondrial fission process in yeast. The wheat head blight Fusarium graminearum contains an FgMdm33 protein that is orthologous to Saccharomyces cerevisiae Mdm33, albeit its function remains unknown. We have reported here the roles of FgMdm33 in regulating fungal morphogenesis, mitochondrial morphology, autophagy, apoptosis, and fungal pathogenicity. The ΔFgmdm33 mutants generated through a homologous recombination strategy in this study exhibited defects in terms of mycelial growth, conidia production, and virulence. Hyphal cells lacking FgMDM33 displayed elongated mitochondria and a dispensable respiratory-deficient growth phenotype, indicating the possible involvement of FgMDM33 in mitochondrial fission. The ΔFgmdm33 mutants displayed a remarkable reduction in the proteolysis of GFP-FgAtg8, whereas the formation of autophagic bodies in the hyphal cells of mutants was recorded under the induction of mitophagy. In addition, the transcriptional expression of the apoptosis-inducing factor 1 gene (FgAIF1) was significantly upregulated in the ΔFgmdm33 mutants. Cumulatively, these results indicate that FgMDM33 is involved in mitochondrial fission, non-selective macroautophagy, and apoptosis and that it regulates fungal growth, conidiation, and pathogenicity of the head blight pathogen.
Collapse
Affiliation(s)
- Wuyun Lv
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yiyi Tu
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Ting Xu
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - You Zhang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Junjie Chen
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Nan Yang
- The People's Government Office of Bengbu City, Bengbu 233000, China
| | - Yuchun Wang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Fusarium oxysporum f. sp. niveum Pumilio 1 Regulates Virulence on Watermelon through Interacting with the ARP2/3 Complex and Binding to an A-Rich Motif in the 3' UTR of Diverse Transcripts. mBio 2023; 14:e0015723. [PMID: 36856417 PMCID: PMC10128047 DOI: 10.1128/mbio.00157-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Fusarium oxysporum f. sp. niveum (Fon), a soilborne phytopathogenic fungus, causes watermelon Fusarium wilt, resulting in serious yield losses worldwide. However, the underlying molecular mechanism of Fon virulence is largely unknown. The present study investigated the biological functions of six FonPUFs, encoding RNA binding Pumilio proteins, and especially explored the molecular mechanism of FonPUF1 in Fon virulence. A series of phenotypic analyses indicated that FonPUFs have distinct but diverse functions in vegetative growth, asexual reproduction, macroconidia morphology, spore germination, cell wall, or abiotic stress response of Fon. Notably, the deletion of FonPUF1 attenuates Fon virulence by impairing the invasive growth and colonization ability inside the watermelon plants. FonPUF1 possesses RNA binding activity, and its biochemical activity and virulence function depend on the RNA recognition motif or Pumilio domains. FonPUF1 associates with the actin-related protein 2/3 (ARP2/3) complex by interacting with FonARC18, which is also required for Fon virulence and plays an important role in regulating mitochondrial functions, such as ATP generation and reactive oxygen species production. Transcriptomic profiling of ΔFonPUF1 identified a set of putative FonPUF1-dependent virulence-related genes in Fon, possessing a novel A-rich binding motif in the 3' untranslated region (UTR), indicating that FonPUF1 participates in additional mechanisms critical for Fon virulence. These findings highlight the functions and molecular mechanism of FonPUFs in Fon virulence. IMPORTANCE Fusarium oxysporum is a devastating plant-pathogenic fungus that causes vascular wilt disease in many economically important crops, including watermelon, worldwide. F. oxysporum f. sp. nievum (Fon) causes serious yield loss in watermelon production. However, the molecular mechanism of Fusarium wilt development by Fon remains largely unknown. Here, we demonstrate that six putative Pumilio proteins-encoding genes (FonPUFs) differentially operate diverse basic biological processes, including stress response, and that FonPUF1 is required for Fon virulence. Notably, FonPUF1 possesses RNA binding activity and associates with the actin-related protein 2/3 complex to control mitochondrial functions. Furthermore, FonPUF1 coordinates the expression of a set of putative virulence-related genes in Fon by binding to a novel A-rich motif present in the 3' UTR of a diverse set of target mRNAs. Our study disentangles the previously unexplored molecular mechanism involved in regulating Fon virulence, providing a possibility for the development of novel strategies for disease management.
Collapse
|
3
|
Tu Q, Wang L, An Q, Shuai J, Xia X, Dong Y, Zhang X, Li G, He Y. Comparative transcriptomics identifies the key in planta-expressed genes of Fusarium graminearum during infection of wheat varieties. Front Genet 2023; 14:1166832. [PMID: 37144121 PMCID: PMC10151574 DOI: 10.3389/fgene.2023.1166832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Fusarium head blight (FHB), caused mainly by the fungus Fusarium graminearum, is one of the most devastating diseases in wheat, which reduces the yield and quality of grain. Fusarium graminearum infection of wheat cells triggers dynamic changes of gene expression in both F. graminearum and wheat, leading to molecular interactions between pathogen and host. The wheat plant in turn activates immune signaling or host defense pathways against FHB. However, the mechanisms by which F. graminearum infects wheat varieties with different levels of host resistance are largely limited. In this study, we conducted a comparative analysis of the F. graminearum transcriptome in planta during the infection of susceptible and resistant wheat varieties at three timepoints. A total of 6,106 F. graminearum genes including those functioning in cell wall degradation, synthesis of secondary metabolites, virulence, and pathogenicity were identified during the infection of different hosts, which were regulated by hosts with different genetic backgrounds. Genes enriched with metabolism of host cell wall components and defense response processes were specifically dynamic during the infection with different hosts. Our study also identified F. graminearum genes that were specifically suppressed by signals derived from the resistant plant host. These genes may represent direct targets of the plant defense against infection by this fungus. Briefly, we generated databases of in planta-expressed genes of F. graminearum during infection of two different FHB resistance level wheat varieties, highlighted their dynamic expression patterns and functions of virulence, invasion, defense response, metabolism, and effector signaling, providing valuable insight into the interactions between F. graminearum and susceptible/resistant wheat varieties.
Collapse
Affiliation(s)
- Qiang Tu
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences and Engineering, Wheat Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Lirong Wang
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences and Engineering, Wheat Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Qi An
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences and Engineering, Wheat Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Jie Shuai
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences and Engineering, Wheat Research Institute, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xiaobo Xia
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yifan Dong
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xu Zhang
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Gang Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Gang Li, ; Yi He,
| | - Yi He
- CIMMYT-JAAS Joint Center for Wheat Diseases, The Research Center of Wheat Scab, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- *Correspondence: Gang Li, ; Yi He,
| |
Collapse
|
4
|
Peroxisome Proliferator FpPEX11 Is Involved in the Development and Pathogenicity in Fusarium pseudograminearum. Int J Mol Sci 2022; 23:ijms232012184. [PMID: 36293041 PMCID: PMC9603656 DOI: 10.3390/ijms232012184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Abstract
Fusarium crown rot (FCR) of wheat, an important soil-borne disease, presents a worsening trend year by year, posing a significant threat to wheat production. Fusarium pseudograminearum cv. b was reported to be the dominant pathogen of FCR in China. Peroxisomes are single-membrane organelles in eukaryotes that are involved in many important biochemical metabolic processes, including fatty acid β-oxidation. PEX11 is important proteins in peroxisome proliferation, while less is known in the fungus F. pseudograminearum. The functions of FpPEX11a, FpPEX11b, and FpPEX11c in F. pseudograminearum were studied using reverse genetics, and the results showed that FpPEX11a and FpPEX11b are involved in the regulation of vegetative growth and asexual reproduction. After deleting FpPEX11a and FpPEX11b, cell wall integrity was impaired, cellular metabolism processes including active oxygen metabolism and fatty acid β-oxidation were significantly blocked, and the production ability of deoxynivalenol (DON) decreased. In addition, the deletion of genes of FpPEX11a and FpPEX11b revealed a strongly decreased expression level of peroxisome-proliferation-associated genes and DON-synthesis-related genes. However, deletion of FpPEX11c did not significantly affect these metabolic processes. Deletion of the three protein-coding genes resulted in reduced pathogenicity of F. pseudograminearum. In summary, FpPEX11a and FpPEX11b play crucial roles in the growth and development, asexual reproduction, pathogenicity, active oxygen accumulation, and fatty acid utilization in F. pseudograminearum.
Collapse
|
5
|
Sun F, Lv B, Zhang X, Wang C, Zhang L, Chen X, Liang Y, Chen L, Zou S, Dong H. The Endoplasmic Reticulum Cargo Receptor FgErv14 Regulates DON Production, Growth and Virulence in Fusarium graminearum. Life (Basel) 2022; 12:life12060799. [PMID: 35743830 PMCID: PMC9224835 DOI: 10.3390/life12060799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/14/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Fusarium graminearum is a plant filamentous pathogenic fungi and the predominant causal agent of Fusarium head blight (FHB) in cereals worldwide. The regulators of the secretory pathway contribute significantly to fungal mycotoxin synthesis, development, and virulence. However, their roles in these processes in F. graminearum remain poorly understood. Here, we identified and functionally characterized the endoplasmic reticulum (ER) cargo receptor FgErv14 in F. graminearum. Firstly, it was observed that FgErv14 is mainly localized in the ER. Then, we constructed the FgErv14 deletion mutant (ΔFgerv14) and found that the absence of the FgErv14 caused a serious reduction in vegetative growth, significant defects in asexual and sexual reproduction, and severely impaired virulence. Furthermore, we found that the ΔFgerv14 mutant exhibited a reduced expression of TRI genes and defective toxisome generation, both of which are critical for deoxynivalenol (DON) biosynthesis. Importantly, we found the green fluorescent protein (GFP)-tagged FgRud3 was dispersed in the cytoplasm, whereas GFP-FgSnc1-PEM was partially trapped in the late Golgi in ΔFgerv14 mutant. These results demonstrate that FgErv14 mediates anterograde ER-to-Golgi transport as well as late secretory Golgi-to-Plasma membrane transport and is necessary for DON biosynthesis, asexual and sexual reproduction, vegetative growth, and pathogenicity in F. graminearum.
Collapse
Affiliation(s)
- Fengjiang Sun
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (F.S.); (X.Z.); (C.W.); (L.Z.); (X.C.); (Y.L.); (H.D.)
| | - Beibei Lv
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China;
| | - Xuemeng Zhang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (F.S.); (X.Z.); (C.W.); (L.Z.); (X.C.); (Y.L.); (H.D.)
| | - Chenyu Wang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (F.S.); (X.Z.); (C.W.); (L.Z.); (X.C.); (Y.L.); (H.D.)
| | - Liyuan Zhang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (F.S.); (X.Z.); (C.W.); (L.Z.); (X.C.); (Y.L.); (H.D.)
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Xiaochen Chen
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (F.S.); (X.Z.); (C.W.); (L.Z.); (X.C.); (Y.L.); (H.D.)
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Yuancun Liang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (F.S.); (X.Z.); (C.W.); (L.Z.); (X.C.); (Y.L.); (H.D.)
| | - Lei Chen
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (F.S.); (X.Z.); (C.W.); (L.Z.); (X.C.); (Y.L.); (H.D.)
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (L.C.); (S.Z.)
| | - Shenshen Zou
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (F.S.); (X.Z.); (C.W.); (L.Z.); (X.C.); (Y.L.); (H.D.)
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (L.C.); (S.Z.)
| | - Hansong Dong
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (F.S.); (X.Z.); (C.W.); (L.Z.); (X.C.); (Y.L.); (H.D.)
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
6
|
Ma D, Wang G, Zhu J, Mu W, Dou D, Liu F. Green Leaf Volatile Trans-2-Hexenal Inhibits the Growth of Fusarium graminearum by Inducing Membrane Damage, ROS Accumulation, and Cell Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5646-5657. [PMID: 35481379 DOI: 10.1021/acs.jafc.2c00942] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fusarium graminearum, the main agent of Fusarium head blight (FHB), can cause serious yield loss and secrete mycotoxins to contaminate grain. Here, the biological activity of trans-2-hexenal (T2H) against F. graminearum was determined and its mode of action (MOA) was investigated. Furthermore, surface plasmon resonance with liquid chromatography-tandem mass spectrometry (SPR-LC-MS/MS), bioinformatic analysis, and gene knockout technique were combined to identify the binding proteins of T2H in F. graminearum cells. T2H exhibited satisfactory inhibitory activity against F. graminearum in vitro. Good lipophilicity greatly enhanced the affinity of T2H to F. graminearum mycelia and further caused membrane damage. The FgTRR (thioredoxin reductase) gene negatively regulates the sensitivity of F. graminearum to T2H by reducing the generation of reactive oxygen species (ROS) induced by T2H. Two mutant strains with FgSLX1 (structure-specific endonuclease subunit) and FgCOPB (coatomer subunit β) genes knockout showed decreased sensitivity to T2H, suggesting that these two genes may be involved in the antimicrobial activity of T2H. Taken together, T2H can inhibit F. graminearum growth by multiple MOAs and can be used as a biofumigant to control the occurrence of FHB in the field.
Collapse
Affiliation(s)
- Dicheng Ma
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Guoxian Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Jiamei Zhu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Daolong Dou
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
7
|
Tian Y, Fu X, Zhang G, Zhang R, Kang Z, Gao K, Mendgen K. Mechanisms in Growth-Promoting of Cucumber by the Endophytic Fungus Chaetomium globosum Strain ND35. J Fungi (Basel) 2022; 8:jof8020180. [PMID: 35205933 PMCID: PMC8878499 DOI: 10.3390/jof8020180] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Endophytic fungi are effective in plant growth and development by secreting various kinds of plant hormones and nutrients. However, the cellular and molecular interactions between the endophytic fungi and plant growth-promoting have remained less explored. The present study was designed to explore the effects of the infection and colonization events of Chaetomium globosum strain ND35 on cucumber growth and the expression pattern of some metabolically important genes in development of the cucumber radicle. The results demonstrated that strain ND35 can infect and colonize the outer layers (cortical cells) of cucumber root and form a symbiotic structure with the host cell, similar to a periarbuscular membrane and establish chemical communication with the plant. Through transcriptome analysis, we found the differentially expressed genes (DEGs) caused by strain ND35 were mainly enriched in phenylpropanoid biosynthesis, plant hormone signal transduction, plant-pathogen interaction and photosynthesis. Correspondingly, the contents of reactive oxygen species (ROS), hydrogen peroxide (H2O2), indole-3-acetic acid (IAA), gibberellin (GA), zeatin (ZT), salicylic acid (SA), jasmonic acid (JA) and the activity of phenylalanine ammonia lyase (PAL), 4-coumarate-CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and peroxidase (POD) in ND35-colonized seedlings were generally higher than those of non-inoculated seedlings. Overall, the infection and colonization events of C. globosum strain ND35 increased cucumber growth through complex regulation of plant hormones biosynthesis and metabolism. Furthermore, although the endophytic fungus strain ND35 produced IAA, GA, ZT, and ergosterol in the fermentation broth, and there are enabled to promote growth of cucumber, it is uncertain whether there are ND35-derived microbial hormones in plants. This study of the interaction between cucumber and strain ND35 contributes to a better understanding of the plant-endophytic fungi interactions, and may help to develop new strategies for crop production.
Collapse
Affiliation(s)
- Yehan Tian
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
| | - Xuesong Fu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
| | - Gongchen Zhang
- Qingdao Academy of Agricultural Science, Qingdao 266100, China;
| | - Rui Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China;
| | - Kexiang Gao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
- Correspondence:
| | - Kurt Mendgen
- Department of Biology, University of Constance, 78457 Constance, Germany;
| |
Collapse
|
8
|
Tian Y, Zhao Y, Fu X, Yu C, Gao K, Liu H. Isolation and Identification of Talaromyces sp. Strain Q2 and Its Biocontrol Mechanisms Involved in the Control of Fusarium Wilt. Front Microbiol 2021; 12:724842. [PMID: 34690965 PMCID: PMC8531730 DOI: 10.3389/fmicb.2021.724842] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Fusarium wilt is an important disease of many food crops and often causes serious damages to yield and food quality. Consequently, numerous studies mainly focused on exploring the control strategy for Fusarium oxysporum as well as the mechanism of interaction between the F. oxysporum and other beneficial soil microorganisms. In this study, we have screened and identified an efficient biocontrol strain from the soil with infection of F. oxysporum f. sp. momordica (referred to as Fom), Talaromyces purpurogenus Q2 (referred to as TpQ2), which could be effective to reduce relative abundance of the rhizospheric Fom, leading to a significant decrease of Fusarium wilt disease incidence in bitter gourd during the greenhouse and field trails. TpQ2 can reduce the relative abundance of rhizospheric Fom through inhibition of growth and development of Fom. During the co-cultivation of TpQ2 and Fom, we confirmed that TpQ2 could significantly suppress the growth and development of Fom through disturbing the normal hyphae shape and function of the cell walls of Fom via secreting cell wall-degrading enzymes and suppression of the expression of cell wall biosynthesis genes, such as FomCFEM. In the meantime, TpQ2 showed a strong negative correlation with F. oxysporum in soil and positive correlation with beneficial indigenous microorganisms that had significant negative correlation with Fusarium populations, such as Streptomycetes, Lysobacter, and Sphingobium. To summarize, TpQ2 has a good biocontrol efficacy on Fusarium wilt of bitter gourd. The biocontrol mechanisms of TpQ2 on Fusarium wilt are complex and diverse.
Collapse
Affiliation(s)
| | | | | | | | - Kexiang Gao
- College of Plant Protection, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Shandong, China
| | - Huixiang Liu
- College of Plant Protection, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Shandong, China
| |
Collapse
|
9
|
Jin X, Guo L, Jin B, Zhu S, Mei X, Wu J, Liu T, He X. Inhibitory mechanism of 6-Pentyl-2H-pyran-2-one secreted by Trichoderma atroviride T2 against Cylindrocarpon destructans. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104683. [PMID: 32980051 DOI: 10.1016/j.pestbp.2020.104683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Root rot caused by Cylindrocarpon destructans is one of the most devastating diseases of Panax notoginseng, and Trichoderma species are potential agents for the biocontrol of fungal diseases. Thus, we screened a total of 10 Trichoderma isolates against C. destructans and selected Trichoderma atroviride T2 as an antagonistic strain for further research. 6-Pentyl-2H-pyran-2-one (6PP) was identified as an important active metabolite in the fermentation broth of the strain and exhibited antifungal activity against C. destructans. Transcriptome and metabolome analyses showed that 6PP significantly disturbed the metabolic homeostasis of C. destructans, particularly the metabolism of amino acids. By constructing a gene coexpression network, ECHS1 was identified as the hub gene correlated with 6PP stress. 6PP significantly downregulated the expression of ECHS1 at the transcriptional level and combined with the ECHS1 protein. Autophagy occurred in C. destructans cells under 6PP stress. In conclusion, 6PP may induce autophagy in C. destructans by downregulating ECHS1 at the transcriptional level and inhibiting ECHS1 protein activity. 6PP is a potential candidate for the development of new fungicides against C. destructans.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201 Kunming, China
| | - Liwei Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201 Kunming, China
| | - Baihui Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201 Kunming, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201 Kunming, China
| | - Xinyue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201 Kunming, China
| | - Jiaqing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201 Kunming, China
| | - Tao Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201 Kunming, China.
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201 Kunming, China; School of Landscape and Horticulture, Southwest Forestry University, 650224 Kunming, China.
| |
Collapse
|
10
|
The ADP-ribosylation factor-like small GTPase FgArl1 participates in growth, pathogenicity and DON production in Fusarium graminearum. Fungal Biol 2020; 124:969-980. [PMID: 33059848 DOI: 10.1016/j.funbio.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/08/2020] [Accepted: 08/20/2020] [Indexed: 01/04/2023]
Abstract
Fusarium graminearum is the main pathogen of Fusarium head blight (FHB) in wheat and related species, which causes serious production decreases and economic losses and produces toxins such as deoxynivalenol (DON), which endangers the health of humans and livestock. Vesicle transport is a basic physiological process required for cell survival in eukaryotes. Many regulators of vesicle transport are reported to be involved in the pathogenicity of fungi. In yeast and mammalian cells, the ADP-ribosylation factor-like small GTPase Arl1 and its orthologs are involved in regulating vesicular trafficking, cytoskeletal reorganization and other significant biological processes. However, the role of Arl1 in F. graminearum is not well understood. In this study, we characterized the Arl1-homologous protein FgArl1 in F. graminearum and showed that FgArl1 is located in the trans-Golgi apparatus. The deletion of FgARL1 resulted in a significant decrease in vegetative growth and pathogenicity. Further analyses of the ΔFgarl1 mutant revealed defects in the production of DON. Taken together, these results indicate that FgArl1 is important in the development and pathogenicity of F. graminearum.
Collapse
|
11
|
The type II phosphoinositide 4-kinase FgLsb6 is important for the development and virulence of Fusarium graminearum. Fungal Genet Biol 2020; 144:103443. [PMID: 32800918 DOI: 10.1016/j.fgb.2020.103443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/29/2022]
Abstract
Fusarium graminearum is the main pathogenic fungus causing Fusarium head blight (FHB), which is a wheat disease with a worldwide prevalence. In eukaryotes, phosphatidylinositol 4-phosphate (PI4P), which participates in many physiological processes, is located primarily in different organelles, including the trans-Golgi network (TGN), plasma membrane and endosomes. Type II phosphatidylinositol 4-kinases (PI4Ks) are involved in regulating the production of PI4P in yeast, plants and mammalian cells. However, the role of these proteins in phytopathogenic fungi is not well understood. In this study, we characterized the type II PI4K protein FgLsb6 in F. graminearum, a homolog of Lsb6 in Saccharomyces cerevisiae. Unlike Lsb6, FgLsb6 localizes to the vacuoles and endosomes. The ΔFglsb6 mutant displayed defects in vegetative growth, deoxynivalenol (DON) production and pathogenicity. Furthermore, the ΔFglsb6 deletion mutant also exhibited increased resistance to osmotic, oxidative and cell wall stresses. Further analyses of the ΔFglsb6 mutant showed that it was defective in the generation of PI4P on endosomes and endocytosis. Collectively, our data suggest that the decreased vegetative growth and pathogenicity of ΔFglsb6 was due to the conservative roles of FgLsb6 in the generation of PI4P on endosomes and endocytosis.
Collapse
|
12
|
The Dynamin-Like GTPase FgSey1 Plays a Critical Role in Fungal Development and Virulence in Fusarium graminearum. Appl Environ Microbiol 2020; 86:AEM.02720-19. [PMID: 32220839 DOI: 10.1128/aem.02720-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
Fusarium graminearum, the main pathogenic fungus causing Fusarium head blight (FHB), produces deoxynivalenol (DON), a key virulence factor, which is synthesized in the endoplasmic reticulum (ER). Sey1/atlastin, a dynamin-like GTPase protein, is known to be required for homotypic fusion of ER membranes, but the functions of this protein are unknown in pathogenic fungi. Here, we characterized Sey1/atlastin homologue FgSey1 in F. graminearum Like Sey1/atlastin, FgSey1 is located in the ER. The FgSEY1 deletion mutant exhibited significantly reduced vegetative growth, asexual development, DON biosynthesis, and virulence. Moreover, the ΔFgsey1 mutant was impaired in the formation of normal lipid droplets (LDs) and toxisomes, both of which participate in DON biosynthesis. The GTPase, helix bundle (HB), transmembrane segment (TM), and cytosolic tail (CT) domains of FgSey1 are essential for its function, but only the TM domain is responsible for its localization. Furthermore, the mutants FgSey1K63A and FgSey1T87A lacked GTPase activity and failed to rescue the defects of the ΔFgsey1 mutant. Collectively, our data suggest that the dynamin-like GTPase protein FgSey1 affects the generation of LDs and toxisomes and is required for DON biosynthesis and pathogenesis in F. graminearum IMPORTANCE Fusarium graminearum is a major plant pathogen that causes Fusarium head blight (FHB) of wheats worldwide. In addition to reducing the plant yield, F. graminearum infection of wheats also results in the production of deoxynivalenol (DON) mycotoxins, which are harmful to humans and animals and therefore cause great economic losses through pollution of food products and animal feed. At present, effective strategies for controlling FHB are not available. Therefore, understanding the regulation mechanisms of fungal development, pathogenesis, and DON biosynthesis is important for the development of effective control strategies of this disease. In this study, we demonstrated that a dynamin-like GTPase protein Sey1/atlastin homologue, FgSey1, is required for vegetative growth, DON production, and pathogenicity in F. graminearum Our results provide novel information on critical roles of FgSey1 in fungal pathogenicity; therefore, FgSey1 could be a potential target for effective control of the disease caused by F. graminearum.
Collapse
|
13
|
Pathogenicity and Virulence Factors of Fusarium graminearum Including Factors Discovered Using Next Generation Sequencing Technologies and Proteomics. Microorganisms 2020; 8:microorganisms8020305. [PMID: 32098375 PMCID: PMC7075021 DOI: 10.3390/microorganisms8020305] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 01/19/2023] Open
Abstract
Fusarium graminearum is a devasting mycotoxin-producing pathogen of grain crops. F. graminearum has been extensively studied to understand its pathogenicity and virulence factors. These studies gained momentum with the advent of next-generation sequencing (NGS) technologies and proteomics. NGS and proteomics have enabled the discovery of a multitude of pathogenicity and virulence factors of F. graminearum. This current review aimed to trace progress made in discovering F. graminearum pathogenicity and virulence factors in general, as well as pathogenicity and virulence factors discovered using NGS, and to some extent, using proteomics. We present more than 100 discovered pathogenicity or virulence factors and conclude that although a multitude of pathogenicity and virulence factors have already been discovered, more work needs to be done to take advantage of NGS and its companion applications of proteomics.
Collapse
|