1
|
Fan X, Matsumoto H, Xu H, Fang H, Pan Q, Lv T, Zhan C, Feng X, Liu X, Su D, Fan M, Ma Z, Berg G, Li S, Cernava T, Wang M. Aspergillus cvjetkovicii protects against phytopathogens through interspecies chemical signalling in the phyllosphere. Nat Microbiol 2024; 9:2862-2876. [PMID: 39103572 DOI: 10.1038/s41564-024-01781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
Resident microbiota produces small molecules that influence the chemical microenvironments on leaves, but its signalling roles in pathogen defence are not yet well understood. Here we show that Aspergillus cvjetkovicii, enriched in rice leaf microbiota, subverts Rhizoctonia solani infections via small-molecule-mediated interspecies signalling. 2,4-Di-tert-butylphenol (2,4-DTBP), identified as a key signalling molecule within the Aspergillus-enriched microbiota, effectively neutralizes reactive oxygen species-dependent pathogenicity by switching off bZIP-activated AMT1 transcription in R. solani. Exogenous application of A. cvjetkovicii and 2,4-DTBP demonstrated varying degrees of protective effects against R. solani infection in diverse crops, including cucumber, maize, soybean and tomato. In rice field experiments, they reduced the R. solani-caused disease index to 19.7-32.2%, compared with 67.2-82.6% in the control group. Moreover, 2,4-DTBP showed activity against other rice phytopathogens, such as Fusarium fujikuroi. These findings reveal a defensive strategy against phytopathogens in the phyllosphere, highlighting the potential of symbiotic microbiota-driven neutralization of pathogenicity.
Collapse
Affiliation(s)
- Xiaoyan Fan
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Haruna Matsumoto
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Haorong Xu
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Hongda Fang
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Qianqian Pan
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Tianxing Lv
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Chengfang Zhan
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Feng
- Agricultural Experiment Station, Zhejiang University, Hangzhou, China
| | - Xiaoyu Liu
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Western Australia, Australia
| | - Danrui Su
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Mengyuan Fan
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Shaojia Li
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK.
| | - Mengcen Wang
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China.
- Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Yang X, Cao S, Sun H, Deng Y, Zhang X, Li Y, Ma D, Chen H, Li W. The critical roles of the Zn 2Cys 6 transcription factor Fp487 in the development and virulence of Fusarium pseudograminearum: A potential target for Fusarium crown rot control. Microbiol Res 2024; 285:127784. [PMID: 38824820 DOI: 10.1016/j.micres.2024.127784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
Fusarium crown rot (FCR) caused by Fusarium pseudograminearum poses a significant threat to wheat production in the Huang-Huai-Hai region of China. However, the pathogenic mechanism of F. pseudograminearum is still poorly understood. Zn2Cys6 transcription factors, which are exclusive to fungi, play pivotal roles in regulating fungal development, drug resistance, pathogenicity, and secondary metabolism. In this study, we present the functional characterization of a Zn2Cys6 transcription factor F. pseudograminearum, designated Fp487. In F. pseudograminearum, Fp487 is shown to be required for mycelial growth through gene knockout and phenotypic analyses. Compared with wild-type CF14047, the ∆Fp487 mutant displayed a slight reduction in growth rate but a significant decrease in conidiogenesis, pathogenicity and 3-acetyl-deoxynivalenol (3AcDON) production. Moreover, the mutant exhibited heightened sensitivity to oxidative and cytomembrane stress. Furthermore, we synthesized dsRNA from the Fp487 gene in vitro, resulting in a reduction in the growth rate of F. pseudograminearum and its virulence on barley leaves through spray-induced gene silencing (SIGS). Notably, this study makes the first instance of inducing the expression of abundant dsRNA from F. pseudograminearum by engineering the Escherichia coli strain HT115 (DE3) and utilizing the SIGS technique to evaluate the virulence effect of dsRNA on F. pseudograminearum. In conclusion, our findings revealed the crucial role of Fp487 in regulating pathogenicity, stress responses, DON production, and conidiogenesis in F. pseudograminearum. Furthermore, Fp487 is a potential RNAi-based target for FCR control.
Collapse
Affiliation(s)
- Xiaoyue Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Yuanyu Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xin Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Yan Li
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Dongfang Ma
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
3
|
Zhang Y, He K, Guo X, Jiang J, Qian L, Xu J, Che Z, Huang X, Liu S. Transcriptomic Profiling of Fusarium pseudograminearum in Response to Carbendazim, Pyraclostrobin, Tebuconazole, and Phenamacril. J Fungi (Basel) 2023; 9:jof9030334. [PMID: 36983502 PMCID: PMC10057576 DOI: 10.3390/jof9030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Fusarium pseudograminearum has been identified as a significant pathogen. It causes Fusarium crown rot (FCR), which occurs in several major wheat-producing areas in China. Chemical control is the primary measure with which to control this disease. In this study, transcriptome sequencing (RNA-Seq) was used to determine the different mechanisms of action of four frequently used fungicides including carbendazim, pyraclostrobin, tebuconazole, and phenamacril on F. pseudograminearum. In brief, 381, 1896, 842, and 814 differentially expressed genes (DEGs) were identified under the carbendazim, pyraclostrobin, tebuconazole, and phenamacril treatments, respectively. After the joint analysis, 67 common DEGs were obtained, and further functional analysis showed that the ABC transported pathway was significantly enriched. Moreover, FPSE_04130 (FER6) and FPSE_11895 (MDR1), two important ABC multidrug transporter genes whose expression levels simultaneously increased, were mined under the different treatments, which unambiguously demonstrated the common effects. In addition, Mfuzz clustering analysis and WGCNA analysis revealed that the core DEGs are involved in several critical pathways in each of the four treatment groups. Taken together, these genes may play a crucial function in the mechanisms of F. pseudograminearum's response to the fungicides stress.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Kai He
- National Key Laboratory of Veterinary Public Health Security and School of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xuhao Guo
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Jia Jiang
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Le Qian
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Jianqiang Xu
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhiping Che
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaobo Huang
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Shengming Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
4
|
Duan C, Tian FH, Yao L, Lv JH, Jia CW, Li CT. Comparative transcriptome and WGCNA reveal key genes involved in lignocellulose degradation in Sarcomyxa edulis. Sci Rep 2022; 12:18379. [PMID: 36319671 PMCID: PMC9626453 DOI: 10.1038/s41598-022-23172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022] Open
Abstract
The developmental transcriptomes of Sarcomyxa edulis were assessed to explore the molecular mechanisms underlying lignocellulose degradation. Six stages were analyzed, spanning the entire developmental process: growth of mycelium until occupying half the bag (B1), mycelium under low-temperature stimulation after occupying the entire bag (B2), appearance of mycelium in primordia (B3), primordia (B4), mycelium at the harvest stage (B5), and mature fruiting body (B6). Samples from all six developmental stages were used for transcriptome sequencing, with three biological replicates for all experiments. A co-expression network of weighted genes associated with extracellular enzyme physiological traits was constructed using weighted gene co-expression network analysis (WGCNA). We obtained 19 gene co-expression modules significantly associated with lignocellulose degradation. In addition, 12 key genes and 8 kinds of TF families involved in lignocellulose degradation pathways were discovered from the four modules that exhibited the highest correlation with the target traits. These results provide new insights that advance our understanding of the molecular genetic mechanisms of lignocellulose degradation in S. edulis to facilitate its utilization by the edible mushroom industry.
Collapse
Affiliation(s)
- Chao Duan
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China ,grid.412545.30000 0004 1798 1300Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, 044000 Shanxi Province China
| | - Feng-hua Tian
- grid.443382.a0000 0004 1804 268XDepartment of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China ,grid.443382.a0000 0004 1804 268XInstitute of Edible Fungi, Guizhou University, Guiyang, China
| | - Lan Yao
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Jian-Hua Lv
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Chuan-Wen Jia
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Chang-Tian Li
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| |
Collapse
|
5
|
Zhao K, Liu L, Huang S. Genome-Wide Identification and Functional Analysis of the bZIP Transcription Factor Family in Rice Bakanae Disease Pathogen, Fusarium fujikuroi. Int J Mol Sci 2022; 23:ijms23126658. [PMID: 35743103 PMCID: PMC9223689 DOI: 10.3390/ijms23126658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 12/10/2022] Open
Abstract
Fungal basic leucine zipper (bZIP) proteins play a vital role in biological processes such as growth, biotic/abiotic stress responses, nutrient utilization, and invasion. In this study, genome-wide identification of bZIP genes in the fungus Fusarium fujikuroi, the pathogen of bakanae disease, was carried out. Forty-four genes encoding bZIP transcription factors (TFs) from the genome of F. fujikuroi (FfbZIP) were identified and functionally characterized. Structures, domains, and phylogenetic relationships of the sequences were analyzed by bioinformatic approaches. Based on the phylogenetic relationships with the FfbZIP proteins of eight other fungi, the bZIP genes can be divided into six groups (A–F). The additional conserved motifs have been identified and their possible functions were predicted. To analyze functions of the bZIP genes, 11 FfbZIPs were selected according to different motifs they contained and were knocked out by genetic recombination. Results of the characteristic studies revealed that these FfbZIPs were involved in oxygen stress, osmotic stress, cell wall selection pressure, cellulose utilization, cell wall penetration, and pathogenicity. In conclusion, this study enhanced understandings of the evolution and regulatory mechanism of the FfbZIPs in fungal growth, abiotic/biotic stress resistance, and pathogenicity, which could be the reference for other fungal bZIP studies.
Collapse
|
6
|
Zhao J, Peng M, Chen W, Xing X, Shan Y, Fan Z, Shi Y, Li H, Yang X, Li H, Chen L. Transcriptome Analysis and Functional Validation Identify a Putative bZIP Transcription Factor, Fpkapc, that Regulates Development, Stress Responses, and Virulence in Fusarium pseudograminearum. PHYTOPATHOLOGY 2022; 112:1299-1309. [PMID: 35000433 DOI: 10.1094/phyto-12-21-0520-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fusarium pseudograminearum is a soilborne, hemibiotrophic phytopathogenic fungus that causes Fusarium crown rot and Fusarium head blight in wheat. The basic leucine zipper proteins (bZIPs) are evolutionarily conserved transcription factors that play crucial roles in a range of growth and developmental processes and the responses to biotic and abiotic stresses. However, the roles of bZIP transcription factors remains unknown in F. pseudograminearum. In this study, a bZIP transcription factor Fpkapc was identified to localize to the nucleus in F. pseudograminearum. A mutant strain (Δfpkapc) was constructed to determine the role of Fpkapc in growth and pathogenicity of F. pseudograminearum. Transcriptomic analyses revealed that many genes involved in basic metabolism and oxidation-reduction processes were downregulated, whereas many genes involved in metal iron binding were upregulated in the Δfpkapc strain, compared with the wild type (WT). Correspondingly, the mutant had severe growth defects and displayed abnormal hyphal tips. Conidiation in the Fpkapc mutant was reduced, with more conidia in smaller size and fewer septa than in the WT. Also, relative to WT, the Δfpkapc strain showed greater tolerance to ion stress, but decreased tolerance to H2O2. The mutant caused smaller disease lesions on wheat and barley plants, but significantly increased TRI gene expression, compared with the WT. In summary, Fpkapc plays multiple roles in governing growth, development, stress responses, and virulence in F. pseudograminearum.
Collapse
Affiliation(s)
- Jingya Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Mengya Peng
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Wenbo Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Xiaoping Xing
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Yixuan Shan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Zhuo Fan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Haiyang Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Xue Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450000, China
| | - Linlin Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450000, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450000, China
| |
Collapse
|
7
|
Genome-Wide Identification and Expression Analysis of the Basic Leucine Zipper (bZIP) Transcription Factor Gene Family in Fusarium graminearum. Genes (Basel) 2022; 13:genes13040607. [PMID: 35456413 PMCID: PMC9028111 DOI: 10.3390/genes13040607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 12/14/2022] Open
Abstract
The basic leucine zipper (bZIP) is a widely found transcription factor family that plays regulatory roles in a variety of cellular processes including cell growth and development and various stress responses. However, the bZIP gene family has not been well studied at a genome-wide scale in Fusarium graminearum (Fg), a potent pathogen of cereal grains. In the present study, we conducted a genome-wide identification, characterization, and expression profiling of 22 F. graminearum bZIP (FgbZIP) genes at different developmental stages and under various abiotic stresses. All identified FgbZIPs were categorized into nine groups based on their sequence similarity and phylogenetic tree analysis. Furthermore, the gene structure analysis, conserved motif analysis, chromosomal localization, protein network studies, and synteny analysis were performed. The symmetry of the exon and intron varied with the phylogenetic groups. The post-translational modifications (PTMs) analysis also predicted several phosphorylation sites in FgbZIPs, indicating their functional diversity in cellular processes. The evolutionary study identified many orthogroups among eight species and also predicted several gene duplication events in F. graminearum. The protein modeling indicated the presence of a higher number of α-helices and random coils in their structures. The expression patterns of FgbZIP genes showed that 5 FgbZIP genes, including FgbZIP_1.1, FgbZIP_1.3, FgbZIP_2.6 FgbZIP_3.1 and FgbZIP_4.3, had high expression at different growth and conidiogenesis stages. Similarly, eight genes including FgbZIP_1.1, FgbZIP_1.6, FgbZIP_2.3, FgbZIP_2.4, FgbZIP_4.1, FgbZIP_4.2, FgbZIP_4.3 and FgbZIP_4.6 demonstrated their putative role in response to various abiotic stresses. In summary, these results provided basic information regarding FgbZIPs which are helpful for further functional analysis.
Collapse
|
8
|
Identification and Characterization of the Homeobox Gene Family in Fusarium pseudograminearum Reveal Their Roles in Pathogenicity. Biochem Genet 2022; 60:1601-1614. [DOI: 10.1007/s10528-021-10150-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/28/2021] [Indexed: 11/02/2022]
|
9
|
Gai Y, Li L, Liu B, Ma H, Chen Y, Zheng F, Sun X, Wang M, Jiao C, Li H. Distinct and essential roles of bZIP transcription factors in the stress response and pathogenesis in Alternaria alternata. Microbiol Res 2021; 256:126915. [PMID: 34953292 DOI: 10.1016/j.micres.2021.126915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/05/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022]
Abstract
The ability to cope with environmental abiotic stress and biotic stress is crucial for the survival of plants and microorganisms, which enable them to occupy multiple niches in the environment. Previous studies have shown that transcription factors play crucial roles in regulating various biological processes including multiple stress tolerance and response in eukaryotes. This work identified multiple critical transcription factor genes, metabolic pathways and gene ontology (GO) terms related to abiotic stress response were broadly activated by analyzing the transcriptome of phytopathogenic fungus Alternaria alternata under metal ions stresses, oxidative stress, salt stresses, and host-pathogen interaction. We investigated the biological functions and regulatory roles of the bZIP transcriptional factor (TF) genes in the phytopathogenic fungus A.alternata by analyzing targeted gene disrupted mutants. Morphological analysis provides evidence that the bZIP transcription factors (Gcn4, MeaB, Atf1, the ER stress regulator Hac1, and the all development altered-1 gene Ada1) are required for morphogenesis as the colony morphology of these gene deletion mutants was significantly different from that of the wild-type. In addition, bZIPs are involved in the resistance to multiple stresses such as oxidative stress (Ada1, Yap1, MetR) and virulence (Hac1, MetR, Yap1, Ada1) at varying degrees. Transcriptome data demonstrated that the inactivation of bZIPs (Hac1, Atf1, Ada1 and Yap1) significantly affected many genes in multiple critical metabolism pathways and gene ontology (GO) terms. Moreover,the ΔHac1 mutants displayed reduced aerial hypha and are hypersensitivity to endoplasmic reticulum disruptors such as tunicamycin and dithiothreitol. Transcriptome analysis showed that inactivation of Hac1 significantly affected the proteasome process and its downstream unfolded protein binding, indicating that Hac1 participates in the endoplasmic reticulum stress response through the conserved unfolded protein response. Taken together, our findings reveal that bZIP transcription factors function as key regulators of fungal morphogenesis, abiotic stress response and pathogenesis, and expand our understanding of how microbial pathogens utilize these genes to deal with environmental stresses and achieve successful infection in the host plant.
Collapse
Affiliation(s)
- Yunpeng Gai
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China; School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| | - Lei Li
- Department of Plant Pathology, South China Agricultural University, Guangzhou 510640, China
| | - Bing Liu
- Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Haijie Ma
- School of Agriculture and Food Sciences, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Yanan Chen
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fang Zheng
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xuepeng Sun
- School of Agriculture and Food Sciences, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chen Jiao
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hongye Li
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Qiao F, Yang X, Xu F, Huang Y, Zhang J, Song M, Zhou S, Zhang M, He D. TMT-based quantitative proteomic analysis reveals defense mechanism of wheat against the crown rot pathogen Fusarium pseudograminearum. BMC PLANT BIOLOGY 2021; 21:82. [PMID: 33557748 PMCID: PMC7869478 DOI: 10.1186/s12870-021-02853-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/24/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Fusarium crown rot is major disease in wheat. However, the wheat defense mechanisms against this disease remain poorly understood. RESULTS Using tandem mass tag (TMT) quantitative proteomics, we evaluated a disease-susceptible (UC1110) and a disease-tolerant (PI610750) wheat cultivar inoculated with Fusarium pseudograminearum WZ-8A. The morphological and physiological results showed that the average root diameter and malondialdehyde content in the roots of PI610750 decreased 3 days post-inoculation (dpi), while the average number of root tips increased. Root vigor was significantly increased in both cultivars, indicating that the morphological, physiological, and biochemical responses of the roots to disease differed between the two cultivars. TMT analysis showed that 366 differentially expressed proteins (DEPs) were identified by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment in the two comparison groups, UC1110_3dpi/UC1110_0dpi (163) and PI610750_3dpi/PI610750_0dpi (203). It may be concluded that phenylpropanoid biosynthesis (8), secondary metabolite biosynthesis (12), linolenic acid metabolites (5), glutathione metabolism (8), plant hormone signal transduction (3), MAPK signaling pathway-plant (4), and photosynthesis (12) contributed to the defense mechanisms in wheat. Protein-protein interaction network analysis showed that the DEPs interacted in both sugar metabolism and photosynthesis pathways. Sixteen genes were validated by real-time quantitative polymerase chain reaction and were found to be consistent with the proteomics data. CONCLUSION The results provided insight into the molecular mechanisms of the interaction between wheat and F. pseudograminearum.
Collapse
Affiliation(s)
- Fangfang Qiao
- College of Agronomy, Henan Agricultural University/ National Engineering Research Center for Wheat/ Co-construction State Key Laboratory of Wheat and Maize Crop Science/ Collaborative Innovation Center of Henan Grain Crops, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Xiwen Yang
- College of Agronomy, Henan Agricultural University/ National Engineering Research Center for Wheat/ Co-construction State Key Laboratory of Wheat and Maize Crop Science/ Collaborative Innovation Center of Henan Grain Crops, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Fengdan Xu
- College of Agronomy, Henan Agricultural University/ National Engineering Research Center for Wheat/ Co-construction State Key Laboratory of Wheat and Maize Crop Science/ Collaborative Innovation Center of Henan Grain Crops, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Yuan Huang
- College of Agronomy, Henan Agricultural University/ National Engineering Research Center for Wheat/ Co-construction State Key Laboratory of Wheat and Maize Crop Science/ Collaborative Innovation Center of Henan Grain Crops, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Jiemei Zhang
- College of Agronomy, Henan Agricultural University/ National Engineering Research Center for Wheat/ Co-construction State Key Laboratory of Wheat and Maize Crop Science/ Collaborative Innovation Center of Henan Grain Crops, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Miao Song
- College of Agronomy, Henan Agricultural University/ National Engineering Research Center for Wheat/ Co-construction State Key Laboratory of Wheat and Maize Crop Science/ Collaborative Innovation Center of Henan Grain Crops, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Sumei Zhou
- College of Agronomy, Henan Agricultural University/ National Engineering Research Center for Wheat/ Co-construction State Key Laboratory of Wheat and Maize Crop Science/ Collaborative Innovation Center of Henan Grain Crops, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Meng Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| | - Dexian He
- College of Agronomy, Henan Agricultural University/ National Engineering Research Center for Wheat/ Co-construction State Key Laboratory of Wheat and Maize Crop Science/ Collaborative Innovation Center of Henan Grain Crops, 15 Longzihu College District, Zhengzhou, 450046, China.
| |
Collapse
|
11
|
Wang L, Xie S, Zhang Y, Kang R, Zhang M, Wang M, Li H, Chen L, Yuan H, Ding S, Liang S, Li H. The FpPPR1 Gene Encodes a Pentatricopeptide Repeat Protein That Is Essential for Asexual Development, Sporulation, and Pathogenesis in Fusarium pseudograminearum. Front Genet 2021; 11:535622. [PMID: 33584782 PMCID: PMC7874006 DOI: 10.3389/fgene.2020.535622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
Fusarium crown rot (FCR) and Fusarium head blight (FHB) are caused by Fusarium pseudograminearum and are newly emerging diseases of wheat in China. In this study, we characterized FpPPR1, a gene that encodes a protein with 12 pentatricopeptide repeat (PPR) motifs. The radial growth rate of the ΔFpppr1 deletion mutant was significantly slower than the wild type strain WZ-8A on potato dextrose agar plates and exhibited significantly smaller colonies with sector mutations. The aerial mycelium of the mutant was almost absent in culture tubes. The ΔFpppr1 mutant was able to produce spores, but spores of abnormal size and altered conidium septum shape were produced with a significant reduction in sporulation compared to wild type. ΔFpppr1 failed to cause disease on wheat coleoptiles and barley leaves using mycelia plugs or spore suspensions. The mutant phenotypes were successfully restored to the wild type levels in complemented strains. FpPpr1-GFP signals in spores and mycelia predominantly overlapped with Mito-tracker signals, which substantiated the mitochondria targeting signal prediction of FpPpr1. RNAseq revealed significant transcriptional changes in the ΔFpppr1 mutant with 1,367 genes down-regulated and 1,333 genes up-regulated. NAD-binding proteins, thioredoxin, 2Fe-2S iron-sulfur cluster binding domain proteins, and cytochrome P450 genes were significantly down-regulated in ΔFpppr1, implying the dysfunction of mitochondria-mediated reductase redox stress in the mutant. The mating type idiomorphic alleles MAT1-1-1, MAT1-1-2, and MAT1-1-3 in F. pseudograminearum were also down-regulated after deletion of FpPPR1 and validated by real-time quantitative PCR. Additionally, 21 genes encoding putative heterokaryon incompatibility proteins were down-regulated. The yellow pigmentation of the mutant was correlated with reduced expression of PKS12 cluster genes. Taken together, our findings on FpPpr1 indicate that this PPR protein has multiple functions in fungal asexual development, regulation of heterokaryon formation, mating-type, and pathogenesis in F. pseudograminearum.
Collapse
Affiliation(s)
- Limin Wang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Shunpei Xie
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Yinshan Zhang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Ruijiao Kang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China.,Xuchang Vocational Technical College, Xuchang, China
| | - Mengjuan Zhang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Min Wang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Haiyang Li
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Linlin Chen
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Hongxia Yuan
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Shengli Ding
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Shen Liang
- Horticulture Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Honglian Li
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| |
Collapse
|