1
|
Gu J, Ma X, Ma Q, Xia Z, Lin Y, Yuan J, Li Y, Li C, Chen Y, Wang W, Zhang P, Wang ZY. RNA splicing modulates the postharvest physiological deterioration of cassava storage root. PLANT PHYSIOLOGY 2024; 196:461-478. [PMID: 38635971 DOI: 10.1093/plphys/kiae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Rapid postharvest physiological deterioration (PPD) of cassava (Manihot esculenta Crantz) storage roots is a major constraint that limits the potential of this plant as a food and industrial crop. Extensive studies have been performed to explore the regulatory mechanisms underlying the PPD processes in cassava to understand their molecular and physiological responses. However, the exceptional functional versatility of alternative splicing (AS) remains to be explored during the PPD process in cassava. Here, we identified several aberrantly spliced genes during the early PPD stage. An in-depth analysis of AS revealed that the abscisic acid (ABA) biosynthesis pathway might serve as an additional molecular layer in attenuating the onset of PPD. Exogenous ABA application alleviated PPD symptoms through maintaining ROS generation and scavenging. Interestingly, the intron retention transcript of MeABA1 (ABA DEFICIENT 1) was highly correlated with PPD symptoms in cassava storage roots. RNA yeast 3-hybrid and RNA immunoprecipitation (RIP) assays showed that the serine/arginine-rich protein MeSCL33 (SC35-like splicing factor 33) binds to the precursor mRNA of MeABA1. Importantly, overexpressing MeSCL33 in cassava conferred improved PPD resistance by manipulating the AS and expression levels of MeABA1 and then modulating the endogenous ABA levels in cassava storage roots. Our results uncovered the pivotal role of the ABA biosynthesis pathway and RNA splicing in regulating cassava PPD resistance and proposed the essential roles of MeSCL33 for conferring PPD resistance, broadening our understanding of SR proteins in cassava development and stress responses.
Collapse
Affiliation(s)
- Jinbao Gu
- Guangdong Academy of Sciences, Institute of Nanfan & Seed Industry, Guangzhou 510316, China
- Zhanjiang Research Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, China
| | - Xiaowen Ma
- Guangdong Academy of Sciences, Institute of Nanfan & Seed Industry, Guangzhou 510316, China
| | - Qiuxiang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Science, Shanghai 200032, China
| | - Zhiqiang Xia
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Yan Lin
- Guangdong Academy of Sciences, Institute of Nanfan & Seed Industry, Guangzhou 510316, China
| | - Jianbo Yuan
- Guangdong Academy of Sciences, Institute of Nanfan & Seed Industry, Guangzhou 510316, China
| | - Yang Li
- Guangdong Academy of Sciences, Institute of Nanfan & Seed Industry, Guangzhou 510316, China
- Zhanjiang Research Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, China
| | - Cong Li
- Guangdong Academy of Sciences, Institute of Nanfan & Seed Industry, Guangzhou 510316, China
- Zhanjiang Research Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, China
| | - Yanhang Chen
- Guangdong Academy of Sciences, Institute of Nanfan & Seed Industry, Guangzhou 510316, China
- Zhanjiang Research Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, China
| | - Wenquan Wang
- College of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Science, Shanghai 200032, China
| | - Zhen-Yu Wang
- Guangdong Academy of Sciences, Institute of Nanfan & Seed Industry, Guangzhou 510316, China
- Zhanjiang Research Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, China
| |
Collapse
|
2
|
Li H, Sheng RC, Zhang CN, Wang LC, Li M, Wang YH, Qiao YH, Klosterman SJ, Chen JY, Kong ZQ, Subbarao KV, Chen FM, Zhang DD. Two zinc finger proteins, VdZFP1 and VdZFP2, interact with VdCmr1 to promote melanized microsclerotia development and stress tolerance in Verticillium dahliae. BMC Biol 2023; 21:237. [PMID: 37904147 PMCID: PMC10617112 DOI: 10.1186/s12915-023-01697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/08/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Melanin plays important roles in morphological development, survival, host-pathogen interactions and in the virulence of phytopathogenic fungi. In Verticillum dahliae, increases in melanin are recognized as markers of maturation of microsclerotia which ensures the long-term survival and stress tolerance, while decreases in melanin are correlated with increased hyphal growth in the host. The conserved upstream components of the VdCmr1-regulated pathway controlling melanin production in V. dahliae have been extensively identified, but the direct activators of this pathway are still unclear. RESULTS We identified two genes encoding conserved C2H2-type zinc finger proteins VdZFP1 and VdZFP2 adjacent to VdPKS9, a gene encoding a negative regulator of both melanin biosynthesis and microsclerotia formation in V. dahliae. Both VdZFP1 and VdZFP2 were induced during microsclerotia development and were involved in melanin deposition. Their localization changed from cytoplasmic to nuclear in response to osmotic pressure. VdZFP1 and VdZFP2 act as modulators of microsclerotia melanization in V. dahliae, as confirmed by melanin biosynthesis inhibition and supplementation with the melanin pathway intermediate scytalone in albino strains. The results indicate that VdZFP1 and VdZFP2 participate in melanin biosynthesis by positively regulating VdCmr1. Based on the results obtained with yeast one- and two-hybrid (Y1H and Y2H) and bimolecular fluorescence complementation (BiFC) systems, we determined the melanin biosynthesis relies on the direct interactions among VdZFP1, VdZFP2 and VdCmr1, and these interactions occur on the cell walls of microsclerotia. Additionally, VdZFP1 and/or VdZFP2 mutants displayed increased sensitivity to stress factors rather than alterations in pathogenicity, reflecting the importance of melanin in stress tolerance of V. dahliae. CONCLUSIONS Our results revealed that VdZFP1 and VdZFP2 positively regulate VdCmr1 to promote melanin deposition during microsclerotia development, providing novel insight into the regulation of melanin biosynthesis in V. dahliae.
Collapse
Affiliation(s)
- Huan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruo-Cheng Sheng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chen-Ning Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Li-Chao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Min Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Ya-Hong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Yu-Hang Qiao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, USA
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Zhi-Qiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o United States Agricultural Research Station,, Salinas, CA, USA.
| | - Feng-Mao Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
3
|
Shi W, Yang J, Chen D, Yin C, Zhang H, Xu X, Pan X, Wang R, Fei L, Li M, Qi L, Bhadauria V, Liu J, Peng YL. The rice blast fungus SR protein 1 regulates alternative splicing with unique mechanisms. PLoS Pathog 2022; 18:e1011036. [PMID: 36480554 PMCID: PMC9767378 DOI: 10.1371/journal.ppat.1011036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/20/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Serine/arginine-rich (SR) proteins are well known as splicing factors in humans, model animals and plants. However, they are largely unknown in regulating pre-mRNA splicing of filamentous fungi. Here we report that the SR protein MoSrp1 enhances and suppresses alternative splicing in a model fungal plant pathogen Magnaporthe oryzae. Deletion of MoSRP1 caused multiple defects, including reduced virulence and thousands of aberrant alternative splicing events in mycelia, most of which were suppressed or enhanced intron splicing. A GUAG consensus bound by MoSrp1 was identified in more than 94% of the intron or/and proximate exons having the aberrant splicing. The dual functions of regulating alternative splicing of MoSrp1 were exemplified in enhancing and suppressing the consensus-mediated efficient splicing of the introns in MoATF1 and MoMTP1, respectively, which both were important for mycelial growth, conidiation, and virulence. Interestingly, MoSrp1 had a conserved sumoylation site that was essential to nuclear localization and enhancing GUAG binding. Further, we showed that MoSrp1 interacted with a splicing factor and two components of the exon-joining complex via its N-terminal RNA recognition domain, which was required to regulate mycelial growth, development and virulence. In contrast, the C-terminus was important only for virulence and stress responses but not for mycelial growth and development. In addition, only orthologues from Pezizomycotina species could completely rescue defects of the deletion mutants. This study reveals that the fungal conserved SR protein Srp1 regulates alternative splicing in a unique manner.
Collapse
Affiliation(s)
- Wei Shi
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jun Yang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Deng Chen
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Changfa Yin
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Huixia Zhang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaozhou Xu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiao Pan
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ruijin Wang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Liwang Fei
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Mengfei Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Linlu Qi
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Vijai Bhadauria
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junfeng Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
4
|
Cheng X, Zhao C, Gao L, Zeng L, Xu Y, Liu F, Huang J, Liu L, Liu S, Zhang X. Alternative splicing reprogramming in fungal pathogen Sclerotinia sclerotiorum at different infection stages on Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:1008665. [PMID: 36311105 PMCID: PMC9597501 DOI: 10.3389/fpls.2022.1008665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Alternative splicing (AS) is an important post-transcriptional mechanism promoting the diversity of transcripts and proteins to regulate various life processes in eukaryotes. Sclerotinia stem rot is a major disease of Brassica napus caused by Sclerotinia sclerotiorum, which causes severe yield loss in B. napus production worldwide. Although many transcriptome studies have been carried out on the growth, development, and infection of S. sclerotiorum, the genome-wide AS events of S. sclerotiorum remain poorly understood, particularly at the infection stage. In this study, transcriptome sequencing was performed to systematically explore the genome-scale AS events of S. sclerotiorum at five important infection stages on a susceptible oilseed rape cultivar. A total of 130 genes were predicted to be involved in AS from the S. sclerotiorum genome, among which 98 genes were differentially expressed and may be responsible for AS reprogramming for its successful infection. In addition, 641 differential alternative splicing genes (DASGs) were identified during S. sclerotiorum infection, accounting for 5.76% of all annotated S. sclerotiorum genes, and 71 DASGs were commonly found at all the five infection stages. The most dominant AS type of S. sclerotiorum was found to be retained introns or alternative 3' splice sites. Furthermore, the resultant AS isoforms of 21 DASGs became pseudogenes, and 60 DASGs encoded different putative proteins with different domains. More importantly, 16 DASGs of S. sclerotiorum were found to have signal peptides and possibly encode putative effectors to facilitate the infection of S. sclerotiorum. Finally, about 69.27% of DASGs were found to be non-differentially expressed genes, indicating that AS serves as another important way to regulate the infection of S. sclerotiorum on plants besides the gene expression level. Taken together, this study provides a genome-wide landscape for the AS of S. sclerotiorum during infection as well as an important resource for further elucidating the pathogenic mechanisms of S. sclerotiorum.
Collapse
Affiliation(s)
- Xiaohui Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lixia Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Lingyi Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yu Xu
- Hebei Provincial Academy of Ecological and Environmental Sciences, Shijiazhuang, China
| | - Fan Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Junyan Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lijiang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
5
|
Hu C, Chen P, Zhou X, Li Y, Ma K, Li S, Liu H, Li L. Arms Race between the Host and Pathogen Associated with Fusarium Head Blight of Wheat. Cells 2022; 11:2275. [PMID: 35892572 PMCID: PMC9332245 DOI: 10.3390/cells11152275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium head blight (FHB), or scab, caused by Fusarium species, is an extremely destructive fungal disease in wheat worldwide. In recent decades, researchers have made unremitting efforts in genetic breeding and control technology related to FHB and have made great progress, especially in the exploration of germplasm resources resistant to FHB; identification and pathogenesis of pathogenic strains; discovery and identification of disease-resistant genes; biochemical control, and so on. However, FHB burst have not been effectively controlled and thereby pose increasingly severe threats to wheat productivity. This review focuses on recent advances in pathogenesis, resistance quantitative trait loci (QTLs)/genes, resistance mechanism, and signaling pathways. We identify two primary pathogenetic patterns of Fusarium species and three significant signaling pathways mediated by UGT, WRKY, and SnRK1, respectively; many publicly approved superstar QTLs and genes are fully summarized to illustrate the pathogenetic patterns of Fusarium species, signaling behavior of the major genes, and their sophisticated and dexterous crosstalk. Besides the research status of FHB resistance, breeding bottlenecks in resistant germplasm resources are also analyzed deeply. Finally, this review proposes that the maintenance of intracellular ROS (reactive oxygen species) homeostasis, regulated by several TaCERK-mediated theoretical patterns, may play an important role in plant response to FHB and puts forward some suggestions on resistant QTL/gene mining and molecular breeding in order to provide a valuable reference to contain FHB outbreaks in agricultural production and promote the sustainable development of green agriculture.
Collapse
Affiliation(s)
- Chunhong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Peng Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Xinhui Zhou
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Yangchen Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Keshi Ma
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Shumei Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Huaipan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466000, China
| |
Collapse
|
6
|
Jeon J, Kim KT, Choi J, Cheong K, Ko J, Choi G, Lee H, Lee GW, Park SY, Kim S, Kim ST, Min CW, Kang S, Lee YH. Alternative splicing diversifies the transcriptome and proteome of the rice blast fungus during host infection. RNA Biol 2022; 19:373-385. [PMID: 35311472 PMCID: PMC8942408 DOI: 10.1080/15476286.2022.2043040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Alternative splicing (AS) contributes to diversifying and regulating cellular responses to environmental conditions and developmental cues by differentially producing multiple mRNA and protein isoforms from a single gene. Previous studies on AS in pathogenic fungi focused on profiling AS isoforms under a limited number of conditions. We analysed AS profiles in the rice blast fungus Magnaporthe oryzae, a global threat to rice production, using high-quality transcriptome data representing its vegetative growth (mycelia) and multiple host infection stages. We identified 4,270 AS isoforms derived from 2,413 genes, including 499 genes presumably regulated by infection-specific AS. AS appears to increase during infection, with 32.7% of the AS isoforms being produced during infection but absent in mycelia. Analysis of the isoforms observed at each infection stage showed that 636 AS isoforms were more abundant than corresponding annotated mRNAs, especially after initial hyphal penetration into host cell. Many such dominant isoforms were predicted to encode regulatory proteins such as transcription factors and phospho-transferases. We also identified the genes encoding distinct proteins via AS and confirmed the translation of some isoforms via a proteomic analysis, suggesting potential AS-mediated neo-functionalization of some genes during infection. Comprehensive profiling of the pattern of genome-wide AS during multiple stages of rice-M. oryzae interaction established a foundational resource that will help investigate the role and regulation of AS during rice infection.
Collapse
Affiliation(s)
- Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Korea
- Plant Immunity Research Center, Seoul National University, Seoul, Korea
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon, Korea
| | - Jaeyoung Choi
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, Korea
| | - Kyeongchae Cheong
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Korea
| | - Jaeho Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Korea
| | - Hyunjun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | | | - Sook-Young Park
- Department of Agricultural Life Science, Sunchon National University, Suncheon, Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, Korea
- Life and Energy Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang, Korea
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA USA
| | - Yong-Hwan Lee
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Korea
- Plant Immunity Research Center, Seoul National University, Seoul, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
7
|
Liu X, Pan X, Chen D, Yin C, Peng J, Shi W, Qi L, Wang R, Zhao W, Zhang Z, Yang J, Peng YL. Prp19-associated splicing factor Cwf15 regulates fungal virulence and development in the rice blast fungus. Environ Microbiol 2021; 23:5901-5916. [PMID: 34056823 DOI: 10.1111/1462-2920.15616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/29/2022]
Abstract
The splicing factor Cwf15 is an essential component of the Prp19-associated component of the spliceosome and regulates intron splicing in several model species, including yeasts and human cells. However, the roles of Cwf15 remain unexplored in plant pathogenic fungi. Here, we report that MoCWF15 in the rice blast fungus Magnaporthe oryzae is non-essential to viability and important to fungal virulence, growth and conidiation. MoCwf15 contains a putative nuclear localization signal (NLS) and is localized into the nucleus. The NLS sequence but not the predicted phosphorylation site or two sumoylation sites was essential for the biological functions of MoCwf15. Importantly, MoCwf15 physically interacted with the Prp19-associated splicing factors MoCwf4, MoSsa1 and MoCyp1, and negatively regulated protein accumulations of MoCyp1 and MoCwf4. Furthermore, with the deletion of MoCWF15, aberrant intron splicing occurred in near 400 genes, 20 of which were important to the fungal development and virulence. Taken together, MoCWF15 regulates fungal growth and infection-related development by modulating the intron splicing efficiency of a subset of genes in the rice blast fungus.
Collapse
Affiliation(s)
- Xinsen Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiao Pan
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Deng Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Changfa Yin
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Junbo Peng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Wei Shi
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Linlu Qi
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ruijin Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wensheng Zhao
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China.,Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - You-Liang Peng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
8
|
Zhang J, Cui W, Abdul Haseeb H, Guo W. VdNop12, containing two tandem RNA recognition motif domains, is a crucial factor for pathogenicity and cold adaption in Verticillium dahliae. Environ Microbiol 2020; 22:5387-5401. [PMID: 33000558 DOI: 10.1111/1462-2920.15268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022]
Abstract
Previous studies have reported the ability of fungi to overwinter in soil or on crop debris under different environmental conditions, but how fungi adapt to chilling is still largely unknown. In this study, we have identified and characterized the RNA binding protein (RBP) (VdNop12) by screening an Agrobacterium tumefaciens-mediated transformation-mediated insertional mutational library of Verticillium dahliae. We determined that this protein was essential to the pathogen for virulence on cotton plants. VdNop12 contains two tandem RNA recognition motif domains, and its orthologs are widely distributed in filamentous fungi. Mutants produced by disruption of VdNop12 showed defects in vegetative growth, conidiation and cell wall integrity. The mutant also showed an increase in sensitivity to low temperature, as compared to the wildtype and complementation strains. Yeast complementation assay showed that VdNop12 could functionally restore the growth phenotype of ΔScNop12 mutant of Saccharomyces cerevisiae at 15°C. We demonstrated that the VdNop12 is localized in the nucleus, and its loss resulted in the downregulated expression of several genes related to cAMP-PKA and MAPK pathways in V. dahliae. Our results demonstrated a crucial role of RBPs in the regulation of morphology, cold adaption, and pathogenic development in V. dahliae.
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiye Cui
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hafiz Abdul Haseeb
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Guo
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|