1
|
Bharathi JK, Suresh P, Prakash MAS, Muneer S. Exploring recent progress of molecular farming for therapeutic and recombinant molecules in plant systems. Heliyon 2024; 10:e37634. [PMID: 39309966 PMCID: PMC11416299 DOI: 10.1016/j.heliyon.2024.e37634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/10/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
An excellent technique for producing pharmaceuticals called "molecular farming" enables the industrial mass production of useful recombinant proteins in genetically modified organisms. Protein-based pharmaceuticals are rising in significance because of a variety of factors, including their bioreactivity, precision, safety, and efficacy rate. Heterologous expression methods for the manufacturing of pharmaceutical products have been previously employed using yeast, bacteria, and animal cells. However, the high cost of mammalian cell system, and production, the chance for product complexity, and contamination, and the hurdles of scaling up to commercial production are the limitations of these traditional expression methods. Plants have been raised as a hopeful replacement system for the expression of biopharmaceutical products due to their potential benefits, which include low production costs, simplicity in scaling up to commercial manufacturing levels, and a lower threat of mammalian toxin contaminations and virus infections. Since plants are widely utilized as a source of therapeutic chemicals, molecular farming offers a unique way to produce molecular medicines such as recombinant antibodies, enzymes, growth factors, plasma proteins, and vaccines whose molecular basis for use in therapy is well established. Biopharming provides more economical and extensive pharmaceutical drug supplies, including vaccines for contagious diseases and pharmaceutical proteins for the treatment of conditions like heart disease and cancer. To assess its technical viability and the efficacy resulting from the adoption of molecular farming products, the following review explores the various methods and methodologies that are currently employed to create commercially valuable molecules in plant systems.
Collapse
Affiliation(s)
- Jothi Kanmani Bharathi
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India
| | - Preethika Suresh
- School of Bioscience and Biotechnology, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
- Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India
| | - Sowbiya Muneer
- Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
| |
Collapse
|
2
|
Chung YH, Church D, Koellhoffer EC, Osota E, Shukla S, Rybicki EP, Pokorski JK, Steinmetz NF. Integrating plant molecular farming and materials research for next-generation vaccines. NATURE REVIEWS. MATERIALS 2021; 7:372-388. [PMID: 34900343 DOI: 10.1038/s41578-021-00399-395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 05/28/2023]
Abstract
Biologics - medications derived from a biological source - are increasingly used as pharmaceuticals, for example, as vaccines. Biologics are usually produced in bacterial, mammalian or insect cells. Alternatively, plant molecular farming, that is, the manufacture of biologics in plant cells, transgenic plants and algae, offers a cheaper and easily adaptable strategy for the production of biologics, in particular, in low-resource settings. In this Review, we discuss current vaccination challenges, such as cold chain requirements, and highlight how plant molecular farming in combination with advanced materials can be applied to address these challenges. The production of plant viruses and virus-based nanotechnologies in plants enables low-cost and regional fabrication of thermostable vaccines. We also highlight key new vaccine delivery technologies, including microneedle patches and material platforms for intranasal and oral delivery. Finally, we provide an outlook of future possibilities for plant molecular farming of next-generation vaccines and biologics.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
| | - Derek Church
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
| | - Edward C Koellhoffer
- Department of Radiology, University of California, San Diego Health, La Jolla, CA USA
| | - Elizabeth Osota
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Biomedical Science Program, University of California, San Diego, La Jolla, CA USA
| | - Sourabh Shukla
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
| | - Edward P Rybicki
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Jonathan K Pokorski
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA USA
- Center for Nano-Immuno Engineering, University of California, San Diego, La Jolla, CA USA
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Department of Radiology, University of California, San Diego Health, La Jolla, CA USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA USA
- Center for Nano-Immuno Engineering, University of California, San Diego, La Jolla, CA USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA USA
| |
Collapse
|
3
|
Chung YH, Church D, Koellhoffer EC, Osota E, Shukla S, Rybicki EP, Pokorski JK, Steinmetz NF. Integrating plant molecular farming and materials research for next-generation vaccines. NATURE REVIEWS. MATERIALS 2021; 7:372-388. [PMID: 34900343 PMCID: PMC8647509 DOI: 10.1038/s41578-021-00399-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 05/04/2023]
Abstract
Biologics - medications derived from a biological source - are increasingly used as pharmaceuticals, for example, as vaccines. Biologics are usually produced in bacterial, mammalian or insect cells. Alternatively, plant molecular farming, that is, the manufacture of biologics in plant cells, transgenic plants and algae, offers a cheaper and easily adaptable strategy for the production of biologics, in particular, in low-resource settings. In this Review, we discuss current vaccination challenges, such as cold chain requirements, and highlight how plant molecular farming in combination with advanced materials can be applied to address these challenges. The production of plant viruses and virus-based nanotechnologies in plants enables low-cost and regional fabrication of thermostable vaccines. We also highlight key new vaccine delivery technologies, including microneedle patches and material platforms for intranasal and oral delivery. Finally, we provide an outlook of future possibilities for plant molecular farming of next-generation vaccines and biologics.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
| | - Derek Church
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
| | - Edward C. Koellhoffer
- Department of Radiology, University of California, San Diego Health, La Jolla, CA USA
| | - Elizabeth Osota
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Biomedical Science Program, University of California, San Diego, La Jolla, CA USA
| | - Sourabh Shukla
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
| | - Edward P. Rybicki
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Jonathan K. Pokorski
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA USA
- Center for Nano-Immuno Engineering, University of California, San Diego, La Jolla, CA USA
| | - Nicole F. Steinmetz
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA USA
- Department of Radiology, University of California, San Diego Health, La Jolla, CA USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA USA
- Center for Nano-Immuno Engineering, University of California, San Diego, La Jolla, CA USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA USA
| |
Collapse
|
4
|
Mamabolo MV, Theron J, Maree F, Crampton M. Production of foot-and-mouth disease virus SAT2 VP1 protein. AMB Express 2020; 10:2. [PMID: 31912326 PMCID: PMC6946773 DOI: 10.1186/s13568-019-0938-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/20/2019] [Indexed: 11/15/2022] Open
Abstract
The seven serotypes of foot-and-mouth disease virus (FMDV) differ on the surface exposed regions on the VP1, 2 and 3 proteins. Amongst the three, the VP1 protein has been produced the most for use in serotyping assays for some of the Euro-Asian serotypes. In this study the VP1 protein of the FMDV SAT2/ZIM/7/83 was expressed in Escherichia coli BL21 cells in Luria broth and EnPresso® B media in shake flasks. Production was further developed and the VP1 protein was produced at 2.15 g L−1 in fed-batch fermentations at 2 L scale. The protein formed insoluble inclusion bodies that were isolated, denatured and refolded. When tested in ELISA, the protein was found to be highly reactive with serum from a SAT2 vaccinated guinea pig, and not reactive to SAT1 and SAT3 antisera. These results open avenues to evaluate recombinantly expressed VP1 proteins for differentiation of the three Southern African Territories serotypes of FMDV that co-occur in Southern and East Africa. In addition, this could mitigate the need for employing virus as reagent, or having to raise reagent antibodies.
Collapse
|
5
|
Dubey KK, Luke GA, Knox C, Kumar P, Pletschke BI, Singh PK, Shukla P. Vaccine and antibody production in plants: developments and computational tools. Brief Funct Genomics 2019; 17:295-307. [PMID: 29982427 DOI: 10.1093/bfgp/ely020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plants as bioreactors have been widely used to express efficient vaccine antigens against viral, bacterial and protozoan infections. To date, many different plant-based expression systems have been analyzed, with a growing preference for transient expression systems. Antibody expression in diverse plant species for therapeutic applications is well known, and this review provides an overview of various aspects of plant-based biopharmaceutical production. Here, we highlight conventional and gene expression technologies in plants along with some illustrative examples. In addition, the portfolio of products that are being produced and how they relate to the success of this field are discussed. Stable and transient gene expression in plants, agrofiltration and virus infection vectors are also reviewed. Further, the present report draws attention to antibody epitope prediction using computational tools, one of the crucial steps of vaccine design. Finally, regulatory issues, biosafety and public perception of this technology are also discussed.
Collapse
Affiliation(s)
- Kashyap Kumar Dubey
- Department of Biotechnology, Central University of Haryana, Jant-Pali Mahendergarh, Haryana, India.,Microbial Process Development Laboratory, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, Scotland
| | - Caroline Knox
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Punit Kumar
- Microbial Process Development Laboratory, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Brett I Pletschke
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Puneet Kumar Singh
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
6
|
Ruiz V, Mozgovoj MV, Dus Santos MJ, Wigdorovitz A. Plant-produced viral bovine vaccines: what happened during the last 10 years? PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1071-1077. [PMID: 26250843 DOI: 10.1111/pbi.12440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/05/2015] [Accepted: 06/27/2015] [Indexed: 06/04/2023]
Abstract
Vaccination has proved to be an efficient strategy to deal with viral infections in both human and animal species. However, protection of cattle against viral infections is still a major concern in veterinary science. During the last two decades, the development of efficient plant-based expression strategies for recombinant proteins prompted the application of this methodology for veterinary vaccine purposes. The main goals of viral bovine vaccines are to improve the health and welfare of cattle and increase the production of livestock, in a cost-effective manner. This review explores some of the more prominent recent advances in plant-made viral bovine vaccines against foot-and-mouth disease virus (FMDV), bovine rotavirus (BRV), bovine viral diarrhoea virus (BVDV), bluetongue virus (BTV) and bovine papillomavirus (BPV), some of which are considered to be the most important viral causative agents of economic loss in cattle production.
Collapse
Affiliation(s)
- Vanesa Ruiz
- Instituto de Virología, CICVyA, INTA, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Marina V Mozgovoj
- Instituto de Virología, CICVyA, INTA, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - María José Dus Santos
- Instituto de Virología, CICVyA, INTA, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrés Wigdorovitz
- Instituto de Virología, CICVyA, INTA, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
7
|
Ling HY, Pelosi A, Walmsley AM. Current status of plant-made vaccines for veterinary purposes. Expert Rev Vaccines 2014; 9:971-82. [DOI: 10.1586/erv.10.87] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Wong CL, Sieo CC, Tan WS. Display of the VP1 epitope of foot-and-mouth disease virus on bacteriophage T7 and its application in diagnosis. J Virol Methods 2013; 193:611-9. [PMID: 23933075 DOI: 10.1016/j.jviromet.2013.07.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/17/2013] [Accepted: 07/20/2013] [Indexed: 11/29/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious epidemic disease threatening the cattle industry since the sixteenth century. In recent years, the development of diagnostic assays for FMD has benefited considerably from the advances of recombinant DNA technology. In this study, the immunodominant region of the capsid protein VP1 of the foot-and-mouth disease virus (FMDV) was fused to the T7 bacteriophage and expressed on the surface of the bacteriophage capsid protein. The recombinant protein of about 42 kDa was detected by the anti-T7 tag monoclonal antibody in Western blot analysis. Phage ELISA showed that both the vaccinated and positive infected bovine sera reacted significantly with the recombinant T7 particle. This study demonstrated the potential of the T7 phage displaying the VP1 epitope as a diagnostic reagent.
Collapse
Affiliation(s)
- Chuan Loo Wong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | | |
Collapse
|
9
|
High-yield production of the VP1 structural protein epitope from serotype O foot-and-mouth disease virus in Escherichia coli. J Ind Microbiol Biotechnol 2013; 40:705-13. [PMID: 23619971 DOI: 10.1007/s10295-013-1273-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
For effective control of foot-and-mouth disease (FMD), the development of rapid diagnostic systems and vaccines are required against its etiological agent, FMD virus (FMDV). To accomplish this, efficient large-scale expression of the FMDV VP1 protein, with high solubility, needs to be optimized. We attempted to produce high levels of a serotype O FMDV VP1 epitope in Escherichia coli. We identified the subtype-independent serotype O FMDV VP1 epitope sequence and used it to construct a glutathione S-transferase (GST) fusion protein. For efficient production of the FMDV VP1 epitope fused to GST (VP1e-GST), four E. coli strains and three temperatures were examined. The conditions yielding the greatest level of VP1e-GST with highest solubility were achieved with E. coli BL21(DE3) at 25 °C. For high-level production, fed-batch cultures were conducted in 5-l bioreactors. When cells were induced at a high density and complex feeding solutions were supplied, approximately 11 g of VP1e-GST was obtained from a 2.9-l culture. Following purification, the VP1 epitope was used to immunize rabbits, and we confirmed that it induced an immune response.
Collapse
|
10
|
Guan ZJ, Guo B, Huo YL, Guan ZP, Dai JK, Wei YH. Recent advances and safety issues of transgenic plant-derived vaccines. Appl Microbiol Biotechnol 2013; 97:2817-40. [PMID: 23447052 PMCID: PMC7080054 DOI: 10.1007/s00253-012-4566-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 01/08/2023]
Abstract
Transgenic plant-derived vaccines comprise a new type of bioreactor that combines plant genetic engineering technology with an organism's immunological response. This combination can be considered as a bioreactor that is produced by introducing foreign genes into plants that elicit special immunogenicity when introduced into animals or human beings. In comparison with traditional vaccines, plant vaccines have some significant advantages, such as low cost, greater safety, and greater effectiveness. In a number of recent studies, antigen-specific proteins have been successfully expressed in various plant tissues and have even been tested in animals and human beings. Therefore, edible vaccines of transgenic plants have a bright future. This review begins with a discussion of the immune mechanism and expression systems for transgenic plant vaccines. Then, current advances in different transgenic plant vaccines will be analyzed, including vaccines against pathogenic viruses, bacteria, and eukaryotic parasites. In view of the low expression levels for antigens in plants, high-level expression strategies of foreign protein in transgenic plants are recommended. Finally, the existing safety problems in transgenic plant vaccines were put forward will be discussed along with a number of appropriate solutions that will hopefully lead to future clinical application of edible plant vaccines.
Collapse
Affiliation(s)
- Zheng-jun Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi’an, 710069 People’s Republic of China
- Department of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000 China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Bin Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi’an, 710069 People’s Republic of China
| | - Yan-lin Huo
- Centre of Biological and Chemical Exiperiment, Yuncheng University, Yuncheng, Shanxi 044000 China
| | - Zheng-ping Guan
- Department of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangshu 210095 China
| | - Jia-kun Dai
- Enzyme Engineering Institute of Shaanxi, Academy of Sciences, Xi’an, Shaanxi 710600 People’s Republic of China
| | - Ya-hui Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi’an, 710069 People’s Republic of China
| |
Collapse
|
11
|
Wang Y, Shen Q, Jiang Y, Song Y, Fang L, Xiao S, Chen H. Immunogenicity of foot-and-mouth disease virus structural polyprotein P1 expressed in transgenic rice. J Virol Methods 2012; 181:12-7. [DOI: 10.1016/j.jviromet.2012.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/23/2011] [Accepted: 01/09/2012] [Indexed: 11/25/2022]
|
12
|
Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F. Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 2011; 30:524-40. [PMID: 21959304 DOI: 10.1016/j.biotechadv.2011.09.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/23/2011] [Accepted: 09/12/2011] [Indexed: 11/29/2022]
Abstract
At present, environmental degradation and the consistently growing population are two main problems on the planet earth. Fulfilling the needs of this growing population is quite difficult from the limited arable land available on the globe. Although there are legal, social and political barriers to the utilization of biotechnology, advances in this field have substantially improved agriculture and human life to a great extent. One of the vital tools of biotechnology is genetic engineering (GE) which is used to modify plants, animals and microorganisms according to desired needs. In fact, genetic engineering facilitates the transfer of desired characteristics into other plants which is not possible through conventional plant breeding. A variety of crops have been engineered for enhanced resistance to a multitude of stresses such as herbicides, insecticides, viruses and a combination of biotic and abiotic stresses in different crops including rice, mustard, maize, potato, tomato, etc. Apart from the use of GE in agriculture, it is being extensively employed to modify the plants for enhanced production of vaccines, hormones, etc. Vaccines against certain diseases are certainly available in the market, but most of them are very costly. Developing countries cannot afford the disease control through such cost-intensive vaccines. Alternatively, efforts are being made to produce edible vaccines which are cheap and have many advantages over the commercialized vaccines. Transgenic plants generated for this purpose are capable of expressing recombinant proteins including viral and bacterial antigens and antibodies. Common food plants like banana, tomato, rice, carrot, etc. have been used to produce vaccines against certain diseases like hepatitis B, cholera, HIV, etc. Thus, the up- and down-regulation of desired genes which are used for the modification of plants have a marked role in the improvement of genetic crops. In this review, we have comprehensively discussed the role of genetic engineering in generating transgenic lines/cultivars of different crops with improved nutrient quality, biofuel production, enhanced production of vaccines and antibodies, increased resistance against insects, herbicides, diseases and abiotic stresses as well as the safety measures for their commercialization.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, A.S. College, 190008, University of Kashmir, Srinagar, India.
| | | | | | | | | | | | | |
Collapse
|
13
|
ZHANG SZ, ZHANG GL, RONG TZ, PAN L, ZHOU P, ZHANG YG. Transformation of Two VP1 Genes of O- and Asia 1-Type Foot-and-Mouth Disease Virus into Maize. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60048-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Youm JW, Jeon JH, Kim H, Min SR, Kim MS, Joung H, Jeong WJ, Kim HS. High-level expression of a human β-site APP cleaving enzyme in transgenic tobacco chloroplasts and its immunogenicity in mice. Transgenic Res 2010; 19:1099-108. [PMID: 20229285 PMCID: PMC7089353 DOI: 10.1007/s11248-010-9383-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 03/04/2010] [Indexed: 11/28/2022]
Abstract
Plastid transformation has to date been applied to the expression of heterologous genes involved in agronomic traits and to the production of useful recombinant proteins. Here, we report a feasibility study for producing the human β-site APP cleaving enzyme (BACE) via transformation of tobacco chloroplasts. Stable integration of human BACE into the plastome was confirmed by PCR. Genomic Southern blot analysis detected the presence of the tobacco aadA and human BACE genes between trnI and trnA in the plastome. Northern blot analysis revealed that the aadA and BACE genes were both properly transcribed into a dicistronic transcriptional unit. Human BACE protein expression in transplastomic tobacco was determined by western blot analysis. ELISA analysis revealed that, based on a dilution series of E. coli-derived BACE as a standard, transplastomic lines accumulated BACE to levels of 2.0% of total soluble proteins. When mice were gavaged with the transplastomic tobacco extracts, they showed an immune response against the BACE antigen. The successful production of plastid-based BACE protein has the potential for developing a plant-based vaccine against Alzheimer disease.
Collapse
Affiliation(s)
- Jung Won Youm
- Plant Systems Engineering Research Center, KRIBB, Daejeon, 305-806 Korea
| | - Jae Heung Jeon
- Plant Systems Engineering Research Center, KRIBB, Daejeon, 305-806 Korea
| | - Hee Kim
- Digital Biotech Inc., R&D, Ansan City, KyungGiDo, 425-839 Korea
| | - Sung Ran Min
- Plant Systems Engineering Research Center, KRIBB, Daejeon, 305-806 Korea
| | - Mi Sun Kim
- Plant Systems Engineering Research Center, KRIBB, Daejeon, 305-806 Korea
| | - Hyouk Joung
- Plant Systems Engineering Research Center, KRIBB, Daejeon, 305-806 Korea
| | - Won Joong Jeong
- Plant Systems Engineering Research Center, KRIBB, Daejeon, 305-806 Korea
| | - Hyun Soon Kim
- Plant Systems Engineering Research Center, KRIBB, Daejeon, 305-806 Korea
| |
Collapse
|
15
|
Cardi T, Lenzi P, Maliga P. Chloroplasts as expression platforms for plant-produced vaccines. Expert Rev Vaccines 2010; 9:893-911. [PMID: 20673012 DOI: 10.1586/erv.10.78] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Production of recombinant subunit vaccines from genes incorporated in the plastid genome is advantageous because of the attainable expression level due to high transgene copy number and the absence of gene silencing; biocontainment as a consequence of maternal inheritance of plastids and no transgene presence in the pollen; and expression of multiple transgenes in prokaryotic-like operons. We discuss the core technology of plastid transformation in Chlamydomonas reinhardtii, a unicellular alga, and Nicotiana tabacum (tobacco), a flowering plant species, and demonstrate the utility of the technology for the production of recombinant vaccine antigens.
Collapse
Affiliation(s)
- Teodoro Cardi
- CNR-IGV, Institute of Plant Genetics, Portici, Italy.
| | | | | |
Collapse
|
16
|
Shen H, Qian B, Chen W, Liu Z, Yang L, Zhang D, Liang W. Immunogenicity of recombinant F4 (K88) fimbrial adhesin FaeG expressed in tobacco chloroplast. Acta Biochim Biophys Sin (Shanghai) 2010; 42:558-67. [PMID: 20705597 DOI: 10.1093/abbs/gmq060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To test the possibility of producing the novel vaccine in plants against diarrhea normally found in neonatal and newly weaned piglets, the faeG gene, encoding a major F4ac fimbrial subunit protein, was introduced into the tobacco chloroplast genome. After two rounds of selection under spectinomycin, we obtained the transgenic plants nearly homoplasmic. RNA gel blot analysis indicated that faeG and the antibiotic selective gene aminoglycoside 3' adenylyltransferase (aadA) were highly transcribed as a dicistron, while the translational level of recombinant FaeG in transplastomic tobacco was about 0.15% of total soluble protein. The immunogenicity of recombinant FaeG produced in tobacco chloroplasts was confirmed by the observation that FaeG-specific antibodies were elicited in mice immunized with total soluble protein of transgenic plants, as well as the result that mouse sera stimulated by chloroplast-derived recombinant FaeG could neutralize F4ac enterotoxigenic Escherichia coli (ETEC) in vivo. This study provides a new alternative for producing the ETEC vaccine using the chloroplast expression system.
Collapse
MESH Headings
- Adhesins, Escherichia coli/genetics
- Adhesins, Escherichia coli/immunology
- Adhesins, Escherichia coli/metabolism
- Animals
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Blotting, Northern
- Blotting, Western
- Chloroplasts/metabolism
- DNA, Chloroplast/genetics
- Enterotoxigenic Escherichia coli/immunology
- Escherichia coli Infections/blood
- Escherichia coli Infections/immunology
- Escherichia coli Infections/microbiology
- Escherichia coli Vaccines/genetics
- Escherichia coli Vaccines/immunology
- Escherichia coli Vaccines/metabolism
- Female
- Gene Expression
- Immunization
- Mice
- Mice, Inbred BALB C
- Nucleotidyltransferases/genetics
- Nucleotidyltransferases/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Rabbits
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Huifeng Shen
- School of life Sciences and Biotechnology, Shanghai Jiao tong University, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Estimation of the homoplasmy degree for transplastomic tobacco using quantitative real-time PCR. Eur Food Res Technol 2010. [DOI: 10.1007/s00217-010-1265-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Lentz EM, Segretin ME, Morgenfeld MM, Wirth SA, Dus Santos MJ, Mozgovoj MV, Wigdorovitz A, Bravo-Almonacid FF. High expression level of a foot and mouth disease virus epitope in tobacco transplastomic plants. PLANTA 2010; 231:387-95. [PMID: 20041332 DOI: 10.1007/s00425-009-1058-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/30/2009] [Indexed: 05/10/2023]
Abstract
Chloroplast transformation has an extraordinary potential for antigen production in plants because of the capacity to accumulate high levels of recombinant proteins and increased biosafety due to maternal plastid inheritance in most crops. In this article, we evaluate tobacco chloroplasts transformation for the production of a highly immunogenic epitope containing amino acid residues 135-160 of the structural protein VP1 of the foot and mouth disease virus (FMDV). To increase the accumulation levels, the peptide was expressed as a fusion protein with the beta-glucuronidase reporter gene (uidA). The recombinant protein represented the 51% of the total soluble proteins in mature leaves, a level higher than those of the Rubisco large subunit, the most abundant protein in the leaf of a wild-type plant. Despite this high accumulation of heterologous protein, the transplastomic plants and wild-type tobacco were phenotypically indistinguishable. The FMDV epitope expressed in transplastomic plants was immunogenic in mice. These results show that transplastomic tobacco express efficiently the recombinant protein, and we conclude that this technology allows the production of large quantities of immunogenic proteins.
Collapse
Affiliation(s)
- Ezequiel Matías Lentz
- Laboratorio de Virología y Biotecnología Vegetal, INGEBI-UBA/CONICET, Ciudad Autónoma de Buenos Aires, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Joensuu JJ, Niklander-Teeri V, Brandle JE. Transgenic plants for animal health: plant-made vaccine antigens for animal infectious disease control. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2008; 7:553-577. [PMID: 32214922 PMCID: PMC7089046 DOI: 10.1007/s11101-008-9088-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 02/05/2008] [Indexed: 05/19/2023]
Abstract
A variety of plant species have been genetically modified to accumulate vaccine antigens for human and animal health and the first vaccine candidates are approaching the market. The regulatory burden for animal vaccines is less than that for human use and this has attracted the attention of researchers and companies, and investment in plant-made vaccines for animal infectious disease control is increasing. The dosage cost of vaccines for animal infectious diseases must be kept to a minimum, especially for non-lethal diseases that diminish animal welfare and growth, so efficient and economic production, storage and delivery are critical for commercialization. It has become clear that transgenic plants are an economic and efficient alternative to fermentation for large-scale production of vaccine antigens. The oral delivery of plant-made vaccines is particularly attractive since the expensive purification step can be avoided further reducing the cost per dose. This review covers the current status of plant-produced vaccines for the prevention of disease in animals and focuses on barriers to the development of such products and methods to overcome them.
Collapse
Affiliation(s)
- J. J. Joensuu
- Department of Applied Biology, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON Canada N5V 4T3
| | - V. Niklander-Teeri
- Department of Applied Biology, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
| | - J. E. Brandle
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON Canada N5V 4T3
| |
Collapse
|
20
|
Abstract
Biolistic delivery of DNA initiated plastid transformation research and still is the most widelyused approach to generate transplastomic lines in both algae and higher plants. The principal designof transformation vectors is similar in both phylogenetic groups. Although important additions tothe list of species transformed in their plastomes have been made in algae and in higher plants, thekey organisms in the area are still the two species, in which stable plastid transformation was initiallysuccessful, i.e., Chlamydomonas reinhardtii and tobacco. Basicresearch into organelle biology has substantially benefited from the homologous recombination-basedcapability to precisely insert at predetermined loci, delete, disrupt, or exchange plastid genomesequences. Successful expression of recombinant proteins, including pharmaceutical proteins, hasbeen demonstrated in Chlamydomonas as well as in higher plants,where some interesting agronomic traits were also engineered through plastid transformation.
Collapse
|