1
|
Tay DWP, Tan LL, Heng E, Zulkarnain N, Ching KC, Wibowo M, Chin EJ, Tan ZYQ, Leong CY, Ng VWP, Yang LK, Seow DCS, Lim YW, Koh W, Koduru L, Kanagasundaram Y, Ng SB, Lim YH, Wong FT. Exploring a general multi-pronged activation strategy for natural product discovery in Actinomycetes. Commun Biol 2024; 7:50. [PMID: 38184720 PMCID: PMC10771470 DOI: 10.1038/s42003-023-05648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/29/2023] [Indexed: 01/08/2024] Open
Abstract
Natural products possess significant therapeutic potential but remain underutilized despite advances in genomics and bioinformatics. While there are approaches to activate and upregulate natural product biosynthesis in both native and heterologous microbial strains, a comprehensive strategy to elicit production of natural products as well as a generalizable and efficient method to interrogate diverse native strains collection, remains lacking. Here, we explore a flexible and robust integrase-mediated multi-pronged activation approach to reliably perturb and globally trigger antibiotics production in actinobacteria. Across 54 actinobacterial strains, our approach yielded 124 distinct activator-strain combinations which consistently outperform wild type. Our approach expands accessible metabolite space by nearly two-fold and increases selected metabolite yields by up to >200-fold, enabling discovery of Gram-negative bioactivity in tetramic acid analogs. We envision these findings as a gateway towards a more streamlined, accelerated, and scalable strategy to unlock the full potential of Nature's chemical repertoire.
Collapse
Grants
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- C211917006 Agency for Science, Technology and Research (A*STAR)
- C233017006 Agency for Science, Technology and Research (A*STAR)
- C211917003 Agency for Science, Technology and Research (A*STAR)
- C211917006 Agency for Science, Technology and Research (A*STAR)
- C233017006 Agency for Science, Technology and Research (A*STAR)
- C211917006 Agency for Science, Technology and Research (A*STAR)
- National Research Foundation Singapore (National Research Foundation-Prime Minister’s office, Republic of Singapore)
Collapse
Affiliation(s)
- Dillon W P Tay
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore
| | - Lee Ling Tan
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Elena Heng
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Nadiah Zulkarnain
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Kuan Chieh Ching
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Mario Wibowo
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Elaine Jinfeng Chin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Zann Yi Qi Tan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Chung Yan Leong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Veronica Wee Pin Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Lay Kien Yang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Deborah C S Seow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Yi Wee Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore
| | - Winston Koh
- Bioinformatics Institute (BII), Agency of Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore, 138671, Republic of Singapore
| | - Lokanand Koduru
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Yoganathan Kanagasundaram
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Yee Hwee Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore.
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Republic of Singapore.
| | - Fong Tian Wong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore.
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore.
| |
Collapse
|
2
|
Gomide MS, Sales TT, Barros LRC, Limia CG, de Oliveira MA, Florentino LH, Barros LMG, Robledo ML, José GPC, Almeida MSM, Lima RN, Rehen SK, Lacorte C, Melo EO, Murad AM, Bonamino MH, Coelho CM, Rech E. Genetic switches designed for eukaryotic cells and controlled by serine integrases. Commun Biol 2020; 3:255. [PMID: 32444777 PMCID: PMC7244727 DOI: 10.1038/s42003-020-0971-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/28/2020] [Indexed: 11/16/2022] Open
Abstract
Recently, new serine integrases have been identified, increasing the possibility of scaling up genomic modulation tools. Here, we describe the use of unidirectional genetic switches to evaluate the functionality of six serine integrases in different eukaryotic systems: the HEK 293T cell lineage, bovine fibroblasts and plant protoplasts. Moreover, integrase activity was also tested in human cell types of therapeutic interest: peripheral blood mononuclear cells (PBMCs), neural stem cells (NSCs) and undifferentiated embryonic stem (ES) cells. The switches were composed of plasmids designed to flip two different genetic parts driven by serine integrases. Cell-based assays were evaluated by measurement of EGFP fluorescence and by molecular analysis of attL/attR sites formation after integrase functionality. Our results demonstrate that all the integrases were capable of inverting the targeted DNA sequences, exhibiting distinct performances based on the cell type or the switchable genetic sequence. These results should support the development of tunable genetic circuits to regulate eukaryotic gene expression.
Collapse
Affiliation(s)
- Mayna S Gomide
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
- Department of Cell Biology, Institute of Biological Science, University of Brasília, Brasília, 70910900, DF, Brazil
- School of Medicine, Federal University of Juiz de Fora, Juiz de Fora, 36036900, MG, Brazil
| | - Thais T Sales
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
- Department of Cell Biology, Institute of Biological Science, University of Brasília, Brasília, 70910900, DF, Brazil
| | - Luciana R C Barros
- Molecular Carcinogenesis Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, 20231050, RJ, Brazil
| | - Cintia G Limia
- Molecular Carcinogenesis Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, 20231050, RJ, Brazil
| | - Marco A de Oliveira
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
- Department of Cell Biology, Institute of Biological Science, University of Brasília, Brasília, 70910900, DF, Brazil
| | - Lilian H Florentino
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
| | - Leila M G Barros
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
| | - Maria L Robledo
- Molecular Carcinogenesis Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, 20231050, RJ, Brazil
| | - Gustavo P C José
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
| | - Mariana S M Almeida
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
| | - Rayane N Lima
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, 22281100, RJ, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, 21941902, RJ, Brazil
| | - Cristiano Lacorte
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
| | - Eduardo O Melo
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
- Graduation Program in Biotechnology, Federal University of Tocantins, Gurupi, 77402970, TO, Brazil
| | - André M Murad
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
| | - Martín H Bonamino
- Molecular Carcinogenesis Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, 20231050, RJ, Brazil.
- Vice-Presidency of Research and Biological Collections (VPPCB), FIOCRUZ - Oswaldo Cruz Foundation Institute, Rio de Janeiro, 21040900, RJ, Brazil.
| | - Cintia M Coelho
- Department of Genetic and Morphology, Institute of Biological Science, University of Brasília, Brasília, 70910900, DF, Brazil.
| | - Elibio Rech
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil.
| |
Collapse
|
3
|
Cody JP, Graham ND, Zhao C, Swyers NC, Birchler JA. Site-specific recombinase genome engineering toolkit in maize. PLANT DIRECT 2020; 4:e00209. [PMID: 32166212 PMCID: PMC7061458 DOI: 10.1002/pld3.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/08/2020] [Accepted: 02/18/2020] [Indexed: 05/20/2023]
Abstract
Site-specific recombinase enzymes function in heterologous cellular environments to initiate strand-switching reactions between unique DNA sequences termed recombinase binding sites. Depending on binding site position and orientation, reactions result in integrations, excisions, or inversions of targeted DNA sequences in a precise and predictable manner. Here, we established five different stable recombinase expression lines in maize through Agrobacterium-mediated transformation of T-DNA molecules that contain coding sequences for Cre, R, FLPe, phiC31 Integrase, and phiC31 excisionase. Through the bombardment of recombinase activated DsRed transient expression constructs, we have determined that all five recombinases are functional in maize plants. These recombinase expression lines could be utilized for a variety of genetic engineering applications, including selectable marker removal, targeted transgene integration into predetermined locations, and gene stacking.
Collapse
Affiliation(s)
- Jon P. Cody
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | | | - Changzeng Zhao
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Nathan C. Swyers
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | | |
Collapse
|
4
|
Abstract
When constructing transgenic cell lines via plasmid DNA integration, precise targeting to a desired genomic location is advantageous. It is also often advantageous to remove the bacterial backbone, since bacterial elements can lead to the epigenetic silencing of neighboring DNA. The least cumbersome method to remove the plasmid backbone is recombinase-mediated cassette exchange (RMCE). RMCE is accomplished by arranging recombinase sites in the genome and in a donor plasmid such that a recombinase can both integrate the donor plasmid and excise its bacterial backbone. When a single recombinase is used for RMCE, recombination between undesired pairings of the sites can lead to a significant number of unwanted cell lines. To reduce the frequency with which these side products occur, several variants of RMCE that increase desired outcomes have been developed. Nevertheless, an important feature lacking from these improved RMCE methods is that none have fully utilized the recombinases that have been demonstrated to be the most robust and stringent at performing genomic integration in plants and animals, i.e., the phiC31 and Bxb1 phage integrases. To address this need, we have developed an RMCE protocol using these two serine integrases that we call dual integrase cassette exchange (DICE). Our DICE system provides a means to achieve high-precision DNA integration at a desired location and is especially well suited for repeated recombination into the same locus. In this chapter, we provide our most current protocols for using DICE in feeder-free human-induced pluripotent stem cells .
Collapse
Affiliation(s)
- Alfonso P Farruggio
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Alway Building, M316, Stanford, CA, 94305-5120, USA
| | - Mital S Bhakta
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Alway Building, M316, Stanford, CA, 94305-5120, USA
| | - Michele P Calos
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Alway Building, M316, Stanford, CA, 94305-5120, USA.
| |
Collapse
|
5
|
A Recessive Pollination Control System for Wheat Based on Intein-Mediated Protein Splicing. Methods Mol Biol 2016. [PMID: 27714617 DOI: 10.1007/978-1-4939-6451-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A transgene-expression system for wheat that relies on the complementation of inactive precursor protein fragments through a split-intein system is described. The N- and C-terminal fragments of a barnase gene from Bacillus amyloliquifaciens were fused to intein sequences from Synechocystis sp. and transformed into wheat plants. Upon translation, both barnase fragments are assembled by an autocatalytic intein-mediated trans-splicing reaction, thus forming a cytotoxic enzyme. This chapter focuses on the use of introns and flexible polypeptide linkers to foster the expression of a split-barnase expression system in plants. The methods and protocols that were employed with the objective to test the effects of such genetic elements on transgene expression and to find the optimal design of expression vectors for use in wheat are provided. Split-inteins can be used to form an agriculturally important trait (male sterility) in wheat plants. The use of this principle for the production of hybrid wheat seed is described. The suggested toolbox will hopefully be a valuable contribution to future optimization strategies in this commercially important crop.
Collapse
|
6
|
Srivastava V, Thomson J. Gene stacking by recombinases. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:471-82. [PMID: 26332944 DOI: 10.1111/pbi.12459] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 05/09/2023]
Abstract
Efficient methods of stacking genes into plant genomes are needed to expedite transfer of multigenic traits to crop varieties of diverse ecosystems. Over two decades of research has identified several DNA recombinases that carryout efficient cis and trans recombination between the recombination sites artificially introduced into the plant chromosome. The specificity and efficiency of recombinases make them extremely attractive for genome engineering. In plant biotechnology, recombinases have mostly been used for removing selectable marker genes and have rarely been extended to more complex applications. The reversibility of recombination, a property of the tyrosine family of recombinases, does not lend itself to gene stacking approaches that involve rounds of transformation for integrating genes into the engineered sites. However, recent developments in the field of recombinases have overcome these challenges and paved the way for gene stacking. Some of the key advancements include the application of unidirectional recombination systems, modification of recombination sites and transgene site modifications to allow repeated site-specific integrations into the selected site. Gene stacking is relevant to agriculturally important crops, many of which are difficult to transform; therefore, development of high-efficiency gene stacking systems will be important for its application on agronomically important crops, and their elite varieties. Recombinases, by virtue of their specificity and efficiency in plant cells, emerge as powerful tools for a variety of applications including gene stacking.
Collapse
Affiliation(s)
- Vibha Srivastava
- Department of Crop, Soil & Environmental Science, University of Arkansas, Fayetteville, AR, USA
| | | |
Collapse
|
7
|
Sekan AS, Isayenkov SV, Blume YB. Development of marker-free transformants by site-specific recombinases. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715060080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Abstract
Engineered minimal chromosomes with sufficient mitotic and meiotic stability have an enormous potential as vectors for stacking multiple genes required for complex traits in plant biotechnology. Proof of principle for essential steps in chromosome engineering such as truncation of chromosomes by T-DNA-mediated telomere seeding and de novo formation of centromeres by cenH3 fusion protein tethering has been recently obtained. In order to generate robust protocols for application in plant biotechnology, these steps need to be combined and supplemented with additional methods such as site-specific recombination for the directed transfer of multiple genes of interest on the minichromosomes. At the same time, the development of these methods allows new insight into basic aspects of plant chromosome functions such as how centromeres assure proper distribution of chromosomes to daughter cells or how telomeres serve to cap the chromosome ends to prevent shortening of ends over DNA replication cycles and chromosome end fusion.
Collapse
Affiliation(s)
- Michael Florian Mette
- Research Group Chromosome Structure and Function, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Stadt Seeland OT Gatersleben, Germany,
| | | |
Collapse
|
9
|
Abstract
Hybrid wheat plants are superior in yield and growth characteristics compared with their homozygous parents. The commercial production of wheat hybrids is difficult because of the inbreeding nature of wheat and the lack of a practical fertility control that enforces outcrossing. We describe a hybrid wheat system that relies on the expression of a phytotoxic barnase and provides for male sterility. The barnase coding information is divided and distributed at two loci that are located on allelic positions of the host chromosome and are therefore "linked in repulsion." Functional complementation of the loci is achieved through coexpression of the barnase fragments and intein-mediated ligation of the barnase protein fragments. This system allows for growth and maintenance of male-sterile female crossing partners, whereas the hybrids are fertile. The technology does not require fertility restorers and is based solely on the genetic modification of the female crossing partner.
Collapse
|
10
|
Ismagul A, Iskakova G, Harris JC, Eliby S. Biolistic transformation of wheat with centrophenoxine as a synthetic auxin. Methods Mol Biol 2014; 1145:191-202. [PMID: 24816669 DOI: 10.1007/978-1-4939-0446-4_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cereal crops, including bread wheat (Triticum aestivum L.), are an important staple food worldwide. With a growing global population, it is evident that current crop production will not meet the rising demands being placed on modern agriculture. Efforts to improve crop yield and stress-tolerance by traditional breeding are labor intensive, time consuming, and highly dependent upon the ability to capture existing and novel genetic variation from a restricted genetic pool. Genetic engineering of crop species is one of several alternatives to traditional breeding for the introduction of novel genetic variation. This recently established technology has proved useful for the introduction of novel traits like pest resistance and herbicide tolerance. As a universal tool for genetic transformation, the Biolistic Gene Gun allows for the genomic integration of novel gene sequences from various sources into a whole host of living organisms.In this chapter, we present a novel and detailed protocol for the Biolistic Transformation of bread wheat that uses the pharmaceutical compound, Centrophenoxine (CPX). The application of CPX as the main auxin-like plant growth regulator in cereal genetic transformation replaces the potent but more toxic herbicide 2,4-D.
Collapse
Affiliation(s)
- Ainur Ismagul
- Australian Centre for Plant Functional Genomics, University of Adelaide, PMB 1, Glen Osmond, SA, Australia
| | | | | | | |
Collapse
|
11
|
Mosimann C, Puller AC, Lawson KL, Tschopp P, Amsterdam A, Zon LI. Site-directed zebrafish transgenesis into single landing sites with the phiC31 integrase system. Dev Dyn 2013; 242:949-963. [PMID: 23723152 PMCID: PMC3775328 DOI: 10.1002/dvdy.23989] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Linear DNA-based and Tol2-mediated transgenesis are powerful tools for the generation of transgenic zebrafish. However, the integration of multiple copies or transgenes at random genomic locations complicates comparative transgene analysis and makes long-term transgene stability unpredictable with variable expression. Targeted, site-directed transgene integration into pre-determined genomic loci can circumvent these issues. The phiC31 integrase catalyzes the unidirectional recombination reaction between heterotypic attP and attB sites and is an efficient platform for site-directed transgenesis. RESULTS We report the implementation of the phiC31 integrase-mediated attP/attB recombination for site-directed zebrafish transgenics of attB-containing transgene vectors into single genomic attP landing sites. We generated Tol2-based single-insertion attP transgenic lines and established their performance in phiC31 integrase-catalyzed integration of an attB-containing transgene vector. We found stable germline transmission into the next generation of an attB reporter transgene in 34% of all tested animals. We further characterized two functional attP landing site lines and determined their genomic location. Our experiments also demonstrate tissue-specific transgene applications as well as long-term stability of phiC31-mediated transgenes. CONCLUSIONS Our results establish phiC31 integrase-controlled site-directed transgenesis into single, genomic attP sites as space-, time-, and labor-efficient zebrafish transgenesis technique. The described reagents are available for distribution to the zebrafish community.
Collapse
Affiliation(s)
- Christian Mosimann
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Stem Cell Program, Children’s Hospital Boston, Boston, MA 02115, USA
- Division of Hematology/Oncology, Children’s Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ann-Christin Puller
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Stem Cell Program, Children’s Hospital Boston, Boston, MA 02115, USA
- Division of Hematology/Oncology, Children’s Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Katy L. Lawson
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Stem Cell Program, Children’s Hospital Boston, Boston, MA 02115, USA
- Division of Hematology/Oncology, Children’s Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Tschopp
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Adam Amsterdam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02319, USA
| | - Leonard I. Zon
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Stem Cell Program, Children’s Hospital Boston, Boston, MA 02115, USA
- Division of Hematology/Oncology, Children’s Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Ongley SE, Bian X, Neilan BA, Müller R. Recent advances in the heterologous expression of microbial natural product biosynthetic pathways. Nat Prod Rep 2013; 30:1121-38. [PMID: 23832108 DOI: 10.1039/c3np70034h] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The heterologous expression of microbial natural product biosynthetic pathways coupled with advanced DNA engineering enables optimisation of product yields, functional elucidation of cryptic gene clusters, and generation of novel derivatives. This review summarises the recent advances in cloning and maintenance of natural product biosynthetic gene clusters for heterologous expression and the efforts fundamental for discovering novel natural products in the post-genomics era, with a focus on polyketide synthases (PKSs) and non-ribosomal polypeptide synthetases (NRPS).
Collapse
Affiliation(s)
- Sarah E Ongley
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
| | | | | | | |
Collapse
|
13
|
De Paepe A, De Buck S, Nolf J, Van Lerberge E, Depicker A. Site-specific T-DNA integration in Arabidopsis thaliana mediated by the combined action of CRE recombinase and ϕC31 integrase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:172-184. [PMID: 23574114 DOI: 10.1111/tpj.12202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
Random T-DNA integration into the plant host genome can be problematic for a variety of reasons, including potentially variable transgene expression as a result of different integration positions and multiple T-DNA copies, the risk of mutating the host genome and the difficulty of stacking well-defined traits. Therefore, recombination systems have been proposed to integrate the T-DNA at a pre-selected site in the host genome. Here, we demonstrate the capacity of the ϕC31 integrase (INT) for efficient targeted T-DNA integration. Moreover, we show that the iterative site-specific integration system (ISSI), which combines the activities of the CRE recombinase and INT, enables the targeting of genes to a pre-selected site with the concomitant removal of the resident selectable marker. To begin, plants expressing both the CRE and INT recombinase and containing the target attP site were constructed. These plants were supertransformed with a T-DNA vector harboring the loxP site, the attB sites, a selectable marker and an expression cassette encoding a reporter protein. Three out of the 35 transformants obtained (9%) showed transgenerational site-specific integration (SSI) of this T-DNA and removal of the resident selectable marker, as demonstrated by PCR, Southern blot and segregation analysis. In conclusion, our results show the applicability of the ISSI system for precise and targeted Agrobacterium-mediated integration, allowing the serial integration of transgenic DNA sequences in plants.
Collapse
Affiliation(s)
- Annelies De Paepe
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Sylvie De Buck
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jonah Nolf
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Els Van Lerberge
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Ann Depicker
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| |
Collapse
|
14
|
|
15
|
Kapusi E, Kempe K, Rubtsova M, Kumlehn J, Gils M. phiC31 integrase-mediated site-specific recombination in barley. PLoS One 2012; 7:e45353. [PMID: 23024817 PMCID: PMC3443236 DOI: 10.1371/journal.pone.0045353] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 08/17/2012] [Indexed: 12/28/2022] Open
Abstract
The Streptomyces phage phiC31 integrase was tested for its feasibility in excising transgenes from the barley genome through site-specific recombination. We produced transgenic barley plants expressing an active phiC31 integrase and crossed them with transgenic barley plants carrying a target locus for recombination. The target sequence involves a reporter gene encoding green fluorescent protein (GFP), which is flanked by the attB and attP recognition sites for the phiC31 integrase. This sequence disruptively separates a gusA coding sequence from an upstream rice actin promoter. We succeeded in producing site-specific recombination events in the hybrid progeny of 11 independent barley plants carrying the above target sequence after crossing with plants carrying a phiC31 expression cassette. Some of the hybrids displayed fully executed recombination. Excision of the GFP gene fostered activation of the gusA gene, as visualized in tissue of hybrid plants by histochemical staining. The recombinant loci were detected in progeny of selfed F(1), even in individuals lacking the phiC31 transgene, which provides evidence of stability and generative transmission of the recombination events. In several plants that displayed incomplete recombination, extrachromosomal excision circles were identified. Besides the technical advance achieved in this study, the generated phiC31 integrase-expressing barley plants provide foundational stock material for use in future approaches to barley genetic improvement, such as the production of marker-free transgenic plants or switching transgene activity.
Collapse
Affiliation(s)
- Eszter Kapusi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Katja Kempe
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Myroslava Rubtsova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Mario Gils
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
- * E-mail:
| |
Collapse
|
16
|
Abstract
On the strengths of forward genetics and embryology, the zebrafish Danio rerio has become an ideal system for the study of early vertebrate development. However, additional tools will be needed to perform more sophisticated analyses and to successfully carry this model into new areas of study such as adult physiology, cancer, and aging. As improved tools make transgenesis more and more efficient, the stage has been set for precise modification of the zebrafish genome such as are done in other model organisms. Genome engineering strategies employing site-specific recombinase (SSR) systems such as Cre/lox and Flp/FRT have become invaluable to the study of gene function in the mouse and Drosophila and are now being exploited in zebrafish as well. My laboratory has begun to use another such SSR, the integrase encoded by the Streptomyces bacteriophage PhiC31, for manipulation of the zebrafish genome. The PhiC31 integrase promotes recombination between an attachment site in the phage (attP) and another on the bacterial chromosome (attB). Here I describe strategies using the PhiC31 integrase to mediate recombination of transgenes containing attP and attB sites in cis to excise elements with spatial and temporal specificity. The feasibility of the intramolecular recombination approach having been established, I discuss prospects for employing PhiC31 integrase for intermolecular recombination, i.e., transgene integration at defined sites in the genome.
Collapse
Affiliation(s)
- James A Lister
- Department of Human and Molecular Genetics and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Box 980033, Richmond, Virginia, USA
| |
Collapse
|
17
|
Wang Y, Yau YY, Perkins-Balding D, Thomson JG. Recombinase technology: applications and possibilities. PLANT CELL REPORTS 2011; 30:267-85. [PMID: 20972794 PMCID: PMC3036822 DOI: 10.1007/s00299-010-0938-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 05/02/2023]
Abstract
The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087-2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes.
Collapse
Affiliation(s)
- Yueju Wang
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014 USA
| | - Yuan-Yeu Yau
- Department of Plant and Microbial Biology, Plant Gene Expression Center, USDA-ARS, University of California-Berkeley, 800 Buchanan St., Albany, CA 94710 USA
| | | | - James G. Thomson
- Crop Improvement and Utilization Unit, USDA-ARS WRRC, 800 Buchanan St., Albany, CA 94710 USA
| |
Collapse
|
18
|
Hensel G, Himmelbach A, Chen W, Douchkov DK, Kumlehn J. Transgene expression systems in the Triticeae cereals. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:30-44. [PMID: 20739094 DOI: 10.1016/j.jplph.2010.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 07/19/2010] [Accepted: 07/21/2010] [Indexed: 05/29/2023]
Abstract
The control of transgene expression is vital both for the elucidation of gene function and for the engineering of transgenic crops. Given the dominance of the Triticeae cereals in the agricultural economy of the temperate world, the development of well-performing transgene expression systems of known functionality is of primary importance. Transgenes can be expressed either transiently or stably. Transient expression systems based on direct or virus-mediated gene transfer are particularly useful in situations where the need is to rapidly screen large numbers of genes. However, an unequivocal understanding of gene function generally requires that a transgene functions throughout the plant's life and is transmitted through the sexual cycle, since this alone allows its effect to be decoupled from the plant's response to the generally stressful gene transfer event. Temporal, spatial and quantitative control of a transgene's expression depends on its regulatory environment, which includes both its promoter and certain associated untranslated region sequences. While many transgenic approaches aim to manipulate plant phenotype via ectopic gene expression, a transgene sequence can be also configured to down-regulate the expression of its endogenous counterpart, a strategy which exploits the natural gene silencing machinery of plants. In this review, current technical opportunities for controlling transgene expression in the Triticeae species are described. Apart from protocols for transient and stable gene transfer, the choice of promoters and other untranslated regulatory elements, we also consider signal peptides, as they too govern the abundance and particularly the sub-cellular localization of transgene products.
Collapse
Affiliation(s)
- Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, Gatersleben, Germany
| | | | | | | | | |
Collapse
|
19
|
Kempe K, Rubtsova M, Berger C, Kumlehn J, Schollmeier C, Gils M. Transgene excision from wheat chromosomes by phage phiC31 integrase. PLANT MOLECULAR BIOLOGY 2010; 72:673-687. [PMID: 20127141 DOI: 10.1007/s11103-010-9606-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 01/17/2010] [Indexed: 05/28/2023]
Abstract
The Streptomyces phage phiC31 integrase was tested for its ability to excise transgenic DNA from the wheat genome by site-specific recombination. Plants that stably express phiC31 integrase were crossed to plants carrying a target construct bearing the phiC31 recognition sites, attP and attB. In the progeny, phiC31 recombinase mediates recombination between the att sites of the target locus, which results in excision of the intervening DNA. Recombination events could be identified in 34 independent wheat lines by PCR and Southern blot analysis and by sequencing of the excision footprints. Recombinant loci were inherited to the subsequent generation. The results presented here establish the integrase-att system as a tool for catalysing the precise elimination of DNA sequences from wheat chromosomes.
Collapse
Affiliation(s)
- Katja Kempe
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstr. 3, 06466, Gatersleben, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Thomson JG, Chan R, Thilmony R, Yau YY, Ow DW. PhiC31 recombination system demonstrates heritable germinal transmission of site-specific excision from the Arabidopsis genome. BMC Biotechnol 2010; 10:17. [PMID: 20178628 PMCID: PMC2837860 DOI: 10.1186/1472-6750-10-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background The large serine recombinase phiC31 from broad host range Streptomyces temperate phage, catalyzes the site-specific recombination of two recognition sites that differ in sequence, typically known as attachment sites attB and attP. Previously, we characterized the phiC31 catalytic activity and modes of action in the fission yeast Schizosaccharomyces pombe. Results In this work, the phiC31 recombinase gene was placed under the control of the Arabidopsis OXS3 promoter and introduced into Arabidopsis harboring a chromosomally integrated attB and attP-flanked target sequence. The phiC31 recombinase excised the attB and attP-flanked DNA, and the excision event was detected in subsequent generations in the absence of the phiC31 gene, indicating germinal transmission was possible. We further verified that the genomic excision was conservative and that introduction of a functional recombinase can be achieved through secondary transformation as well as manual crossing. Conclusion The phiC31 system performs site-specific recombination in germinal tissue, a prerequisite for generating stable lines with unwanted DNA removed. The precise site-specific deletion by phiC31 in planta demonstrates that the recombinase can be used to remove selectable markers or other introduced transgenes that are no longer desired and therefore can be a useful tool for genome engineering in plants.
Collapse
Affiliation(s)
- James G Thomson
- Crop Improvement and Utilization Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA.
| | | | | | | | | |
Collapse
|
21
|
Kempe K, Rubtsova M, Gils M. Intein-mediated protein assembly in transgenic wheat: production of active barnase and acetolactate synthase from split genes. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:283-97. [PMID: 19222807 DOI: 10.1111/j.1467-7652.2008.00399.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Engineering traits by the assembly of non-functional gene products is a promising tool for modern plant biotechnology. In this article, we describe the establishment of male sterility and herbicide resistance in wheat (Triticum aestivum) by complementing inactive precursor protein fragments through a split intein system. N- and C-terminal fragments of a barnase gene from Bacillus amyloliquifaciens were fused to intein sequences from the Synechocystis sp. gene DnaB and delivered into the wheat genome via biolistic particle bombardment. Both barnase fragments were expressed under the control of a tapetum-specific promoter. High efficiency of the split barnase system was achieved by introducing GGGGS linkers between the fusion domains of the assembled protein. Depending on the vector version that was transformed, up to 51% of primary transformed plants produced sterile pollen. In the F(1) progeny, the male-sterile phenotype segregated with both barnase gene fragments. Expression of the cytotoxic barnase in the tapetum did not apparently affect the vegetative phenotype and remained stable under increased temperatures. In addition, the reconstitution of sulphonylurea resistance was achieved by DnaE intein-mediated assembly of a mutated acetolactate synthase (ALS) protein from rice. The impacts of the technical advances revealed in this study on the concepts for trait control, transgene containment and hybrid breeding are discussed.
Collapse
Affiliation(s)
- Katja Kempe
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung Gatersleben, Corrensstr. 3, 06466 Gatersleben, Germany
| | | | | |
Collapse
|