1
|
Lezin E, Durand M, Birer Williams C, Lopez Vazquez AL, Perrot T, Gautron N, Pétrignet J, Cuello C, Jansen HJ, Magot F, Szwarc S, Le Pogam P, Beniddir MA, Koudounas K, Oudin A, St-Pierre B, Giglioli-Guivarc'h N, Sun C, Papon N, Jensen MK, Dirks RP, O'Connor SE, Besseau S, Courdavault V. Genome-based discovery of pachysiphine synthases in Tabernaemontana elegans. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39427334 DOI: 10.1111/tpj.17085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024]
Abstract
Plant-specialized metabolism represents an inexhaustible source of active molecules, some of which have been used in human health for decades. Among these, monoterpene indole alkaloids (MIAs) include a wide range of valuable compounds with anticancer, antihypertensive, or neuroactive properties. This is particularly the case for the pachysiphine derivatives which show interesting antitumor and anti-Alzheimer activities but accumulate at very low levels in several Tabernaemontana species. Unfortunately, genome data in Tabernaemontanaceae are lacking and knowledge on the biogenesis of pachysiphine-related MIAs in planta remains scarce, limiting the prospects for the biotechnological supply of many pachysiphine-derived biopharmaceuticals. Here, we report a raw version of the toad tree (Tabernaemontana elegans) genome sequence. These new genomic resources led to the identification and characterization of a couple of genes encoding cytochrome P450 with pachysiphine synthase activity. Our phylogenomic and docking analyses highlight the different evolutionary processes that have been recruited to epoxidize the pachysiphine precursor tabersonine at a specific position and in a dedicated orientation, thus enriching our understanding of the diversification and speciation of the MIA metabolism in plants. These gene discoveries also allowed us to engineer the synthesis of MIAs in yeast through the combinatorial association of metabolic enzymes resulting in the tailor-made synthesis of non-natural MIAs. Overall, this work represents a step forward for the future supply of pachysiphine-derived drugs by microbial cell factories.
Collapse
Affiliation(s)
- Enzo Lezin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Mickael Durand
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Caroline Birer Williams
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Ana Luisa Lopez Vazquez
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Thomas Perrot
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Nicolas Gautron
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Julien Pétrignet
- Laboratoire Synthèse et Isolement de Molécules BioActives (SIMBA, EA 7502), Université de Tours, Tours, 37200, France
| | - Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Hans J Jansen
- Future Genomics Technologies, Leiden, 2333 BE, The Netherlands
| | - Florent Magot
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Sarah Szwarc
- Équipe Chimie des Substances Naturelles, BioCIS, Université Paris-Saclay, CNRS, Orsay, 91400, France
| | - Pierre Le Pogam
- Équipe Chimie des Substances Naturelles, BioCIS, Université Paris-Saclay, CNRS, Orsay, 91400, France
| | - Mehdi A Beniddir
- Équipe Chimie des Substances Naturelles, BioCIS, Université Paris-Saclay, CNRS, Orsay, 91400, France
| | - Konstantinos Koudounas
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Benoit St-Pierre
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | | | - Chao Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, Angers, F-49000, France
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Ron P Dirks
- Future Genomics Technologies, Leiden, 2333 BE, The Netherlands
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| |
Collapse
|
2
|
Zhong Z, Wu M, Yang T, Nan X, Zhang S, Zhang L, Jin L. Integrated transcriptomic and proteomic analyses uncover the early response mechanisms of Catharanthus roseus under ultraviolet-B radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112862. [PMID: 38330691 DOI: 10.1016/j.jphotobiol.2024.112862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Catharanthus roseus produces a large array of terpenoid indole alkaloids (TIAs) that are important natural source for many drugs. Ultraviolet B (UVB) radiation have been proved to have regulatory effect towards biosynthesis of TIAs, which were meaningful for boost of TIA production. To decipher more comprehensive molecular characteristics in C. roseus under UVB radiation, integrated analysis of the nuclear proteome together with the transcriptome data under UVB radiation were performed. Expression of genes related to transmembrane transporters gradually increased during the prolonged exposure to UVB radiation. Some of known TIA transporters were affected by UVB. Abundance of proteins associated with spliceosome and nucleocytoplasmic transport increased. Homologs belonging to ORCA and CrWRKY transcription factors family increased at both transcriptomic and proteomic levels. At the same time, the numbers of differential alternative splicing events between UVB-radiated and white-light-treated plants continuously increased. These results suggest that the nucleus participated in early response of C. roseus under UVB radiation, where alternative splicing events occurred and might regulate multiple pathways. Furthermore, integrative omics analysis indicates that expression of enzymes at the terminal stages of seco-iridoid pathway decreased with the prolonged radiation exposure, potentially inhibiting further rise of TIA synthesis under extended UVB exposure.
Collapse
Affiliation(s)
- Zhuoheng Zhong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Mengmin Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Tiancai Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiaoyue Nan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Shuyao Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Limin Jin
- Clinical Laboratory, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, PR China.
| |
Collapse
|
3
|
Zhang Y, Yuan M, Wu X, Zhang Q, Wang Y, Zheng L, Chiu T, Zhang H, Lan L, Wang F, Liao Y, Gong X, Yan S, Wang Y, Shen Y, Fu X. The construction and optimization of engineered yeast chassis for efficient biosynthesis of 8-hydroxygeraniol. MLIFE 2023; 2:438-449. [PMID: 38818263 PMCID: PMC10989129 DOI: 10.1002/mlf2.12099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/26/2023] [Accepted: 11/29/2023] [Indexed: 06/01/2024]
Abstract
Microbial production of monoterpenoid indole alkaloids (MIAs) provides a sustainable and eco-friendly means to obtain compounds with high pharmaceutical values. However, efficient biosynthesis of MIAs in heterologous microorganisms is hindered due to low supply of key precursors such as geraniol and its derivative 8-hydroxygeraniol catalyzed by geraniol 8-hydroxylase (G8H). In this study, we developed a facile evolution platform to screen strains with improved yield of geraniol by using the SCRaMbLE system embedded in the Sc2.0 synthetic yeast and confirmed the causal role of relevant genomic targets. Through genome mining, we identified several G8H enzymes that perform much better than the commonly used CrG8H for 8-hydroxygeraniol production in vivo. We further showed that the N-terminus of these G8H enzymes plays an important role in cellular activity by swapping experiments. Finally, the combination of the engineered chassis, optimized biosynthesis pathway, and utilization of G8H led to the final strain with more than 30-fold improvement in producing 8-hydroxygeraniol compared with the starting strain. Overall, this study will provide insights into the construction and optimization of yeast cells for efficient biosynthesis of 8-hydroxygeraniol and its derivatives.
Collapse
Affiliation(s)
- Yu Zhang
- BGI ResearchShenzhenChina
- BGI ResearchHangzhouChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
| | | | | | | | | | | | | | | | | | | | | | - Xuemei Gong
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
| | - Shirui Yan
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
- BGI ResearchChangzhouChina
| | - Yun Wang
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
- BGI ResearchChangzhouChina
| | - Yue Shen
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
- BGI ResearchChangzhouChina
| | - Xian Fu
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
- BGI ResearchChangzhouChina
| |
Collapse
|
4
|
Xian B, Xi Z, Ren C, Yan J, Chen J, Pei J. The establishment of transient expression systems and their application for gene function analysis of flavonoid biosynthesis in Carthamus tinctorius L. BMC PLANT BIOLOGY 2023; 23:186. [PMID: 37032332 PMCID: PMC10084634 DOI: 10.1186/s12870-023-04210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Safflower (Carthamus tinctorius L.) is an important economic crop and a traditional medicinal material rich in flavonoids, which can alleviate cardiovascular and cerebrovascular pathologies. Thus, many candidate genes involved in safflower flavonoid biosynthesis have been cloned. However, owing to the lack of a homologous gene expression system, research on gene function is limited to model plants. Therefore, a gene function identification protocol for safflower must be established. RESULTS In the present study, using safflower callus as the experimental material, Agrobacterium and biolistic transient expression systems were established. In the Agrobacterium transient expression system, the highest transformation rate was obtained at the original Agrobacterium concentration of OD600 0.4, infiltration concentration of OD600 0.6, infection for 20 min, co-culture for 3 days, and acetosyringone concentration of 100 μmol·L-1. In the biolistic transient expression system, the highest transformation efficiency was observed at helium pressure of 1,350 psi, vacuum degree of -0.8 bar, flight distance of 6.5 cm, one round of bombardment, plasmid concentration of 3 μg·shot-1, and gold particle concentration of 100 μg·shot-1. Further, these two transient expression systems were used for the functional analysis of CtCHS1 as an example. After overexpression, relative CtCHS1 expression increased, particularly in Agrobacterium-transformed calli. Additionally, the contents of some flavonoids were altered; for instance, naringenin and genistein levels were significantly increased in Agrobacterium-transformed calli, whereas luteolin, luteolin-7-O-rutinoside, and apigenin derivative levels were significantly decreased in biolistic-transformed calli. CONCLUSION Using safflower callus as the experimental material, highly efficient Agrobacterium and biolistic transient expression systems were successfully established, and the utility of both systems for investigating gene function was demonstrated. The proposed safflower callus transient expression systems will be useful for further functional analyses of flavonoid biosynthetic genes in safflower.
Collapse
Affiliation(s)
- Bin Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ziqing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chaoxiang Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- The State Bank of Chinese Drug Germplasm Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jie Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- The State Bank of Chinese Drug Germplasm Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
- The State Bank of Chinese Drug Germplasm Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
- The State Bank of Chinese Drug Germplasm Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Lemos Cruz P, Carqueijeiro I, Koudounas K, Bomzan DP, Stander EA, Abdallah C, Kulagina N, Oudin A, Lanoue A, Giglioli-Guivarc'h N, Nagegowda DA, Papon N, Besseau S, Clastre M, Courdavault V. Identification of a second 16-hydroxytabersonine-O-methyltransferase suggests an evolutionary relationship between alkaloid and flavonoid metabolisms in Catharanthus roseus. PROTOPLASMA 2023; 260:607-624. [PMID: 35947213 DOI: 10.1007/s00709-022-01801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to characterize MIA biosynthetic pathways for considering future metabolic engineering processes of supply. In line with previous work suggesting that diversification can potentially occur at various steps along the vindoline branch, we were here interested in investigating the involvement of distinct isoforms of tabersonine-16-O-methyltransferase (16OMT) which plays a pivotal role in the MIA biosynthetic pathway. By combining homology searches based on the previously characterized 16OMT1, phylogenetic analyses, functional assays in yeast, and biochemical and in planta characterizations, we identified a second isoform of 16OMT, referred to as 16OMT2. 16OMT2 appears to be a multifunctional enzyme working on both MIA and flavonoid substrates, suggesting that a constrained evolution of the enzyme for accommodating the MIA substrate has probably occurred to favor the apparition of 16OMT2 from an ancestral specific flavonoid-O-methyltransferase. Since 16OMT1 and 16OMT2 displays a high sequence identity and similar kinetic parameters for 16-hydroxytabersonine, we postulate that 16OMT1 may result from a later 16OMT2 gene duplication accompanied by a continuous neofunctionalization leading to an almost complete loss of flavonoid O-methyltransferase activity. Overall, these results participate in increasing our knowledge on the evolutionary processes that have likely led to enzyme co-optation for MIA synthesis.
Collapse
Affiliation(s)
- Pamela Lemos Cruz
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Ines Carqueijeiro
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | | | - Dikki Pedenla Bomzan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India
| | - Emily Amor Stander
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Cécile Abdallah
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Natalja Kulagina
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Audrey Oudin
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Arnaud Lanoue
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | | | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR, ICAT, F-49000, Angers, France
| | - Sébastien Besseau
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Marc Clastre
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Vincent Courdavault
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France.
| |
Collapse
|
6
|
Koudounas K, Guirimand G, Hoyos LFR, Carqueijeiro I, Cruz PL, Stander E, Kulagina N, Perrin J, Oudin A, Besseau S, Lanoue A, Atehortùa L, St-Pierre B, Giglioli-Guivarc'h N, Papon N, O'Connor SE, Courdavault V. Tonoplast and Peroxisome Targeting of γ-tocopherol N-methyltransferase Homologs Involved in the Synthesis of Monoterpene Indole Alkaloids. PLANT & CELL PHYSIOLOGY 2022; 63:200-216. [PMID: 35166361 DOI: 10.1093/pcp/pcab160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Many plant species from the Apocynaceae, Loganiaceae and Rubiaceae families evolved a specialized metabolism leading to the synthesis of a broad palette of monoterpene indole alkaloids (MIAs). These compounds are believed to constitute a cornerstone of the plant chemical arsenal but above all several MIAs display pharmacological properties that have been exploited for decades by humans to treat various diseases. It is established that MIAs are produced in planta due to complex biosynthetic pathways engaging a multitude of specialized enzymes but also a complex tissue and subcellular organization. In this context, N-methyltransferases (NMTs) represent an important family of enzymes indispensable for MIA biosynthesis but their characterization has always remained challenging. In particular, little is known about the subcellular localization of NMTs in MIA-producing plants. Here, we performed an extensive analysis on the subcellular localization of NMTs from four distinct medicinal plants but also experimentally validated that two putative NMTs from Catharanthus roseus exhibit NMT activity. Apart from providing unprecedented data regarding the targeting of these enzymes in planta, our results point out an additional layer of complexity to the subcellular organization of the MIA biosynthetic pathway by introducing tonoplast and peroxisome as new actors of the final steps of MIA biosynthesis.
Collapse
Affiliation(s)
- Konstantinos Koudounas
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | | | - Luisa Fernanda Rojas Hoyos
- Grupo de Biotransformación-Escuela de Microbiología, Universidad de Antioquia, Calle 70 No 52-21, A.A 1226, Medellín, Colombia
| | - Ines Carqueijeiro
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Pamela Lemos Cruz
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Emily Stander
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Natalja Kulagina
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Jennifer Perrin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Audrey Oudin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Sébastien Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Arnaud Lanoue
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Lucia Atehortùa
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellin 50010, Colombia
| | - Benoit St-Pierre
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | | | - Nicolas Papon
- GEIHP, SFR ICAT, University of Angers, Université de Bretagne Occidentale, 4 rue de Larrey - F49933, Angers 49000, France
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena 07745, Germany
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
- Graduate School of Sciences, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
7
|
Bomzan DP, Shilpashree HB, Nagegowda DA. Agrobacterium-Mediated in Planta Transformation in Periwinkle. Methods Mol Biol 2022; 2505:301-315. [PMID: 35732954 DOI: 10.1007/978-1-0716-2349-7_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Madagascar periwinkle (Catharanthus roseus, family Apocynaceae) is a reservoir of more than 130 monoterpene indole alkaloids (MIAs) including the famous anti-neoplastic dimeric MIAs vinblastine and vincristine, and anti-hypertensive monomeric MIAs ajmalicine and serpentine. Understanding the biosynthetic steps and regulatory factors leading to the formation of MIAs is crucial for rational engineering to achieve targeted enhancement of different MIAs. Due to its highly recalcitrant nature, C. roseus is considered genetically non-tractable for transformation at the whole-plant level. Though few reports have demonstrated tissue culture-mediated regeneration and transformation of C. roseus at whole-plant level recently, the efficiency and reproducibility of these protocols have been a major challenge. To overcome this, we have developed a tissue-culture-independent Agrobacterium-mediated in planta transformation method in C. roseus. Using this method, we were able to efficiently generate stable transgenic plants without relying on the cumbersome methods of tissue-culture regeneration and transformation. Moreover, the transformed plants obtained through this in planta method exhibited stability in subsequent generations. Our method is useful not only for the elucidation of biosynthetic and regulatory steps involved in MIA formation through transgenic plant approach but also for metabolic engineering at the whole-plant level in C. roseus.
Collapse
Affiliation(s)
- Dikki Pedenla Bomzan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - H B Shilpashree
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, India
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
8
|
Biosynthesis and Modulation of Terpenoid Indole Alkaloids in Catharanthus roseus: A Review of Targeting Genes and Secondary Metabolites. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The medicinal plant C. roseus synthesizes biologically active alkaloids via the terpenoid indole alkaloid (TIAs) biosynthetic pathway. Most of these alkaloids have high therapeutic value, such as vinblastine and vincristine. Plant signaling components, plant hormones, precursors, growth hormones, prenylated proteins, and transcriptomic factors regulate the complex networks of TIA biosynthesis. For many years, researchers have been evaluating the scientific value of the TIA biosynthetic pathway and its potential in commercial applications for market opportunities. Metabolic engineering has revealed the major blocks in metabolic pathways regulated at the molecular level, unknown structures, metabolites, genes, enzyme expression, and regulatory genes. Conceptually, this information is necessary to create transgenic plants and microorganisms for the commercial production of high-value dimer alkaloids, such as vinca alkaloids, vinblastine, and vincristine In this review, we present current knowledge of the regulatory mechanisms of these components in the C. roseus TIA pathway, from genes to metabolites.
Collapse
|
9
|
Djeghdir I, Chefdor F, Bertheau L, Koudounas K, Carqueijeiro I, Lemos Cruz P, Courdavault V, Depierreux C, Larcher M, Lamblin F, Héricourt F, Glévarec G, Oudin A, Carpin S. Evaluation of type-B RR dimerization in poplar: A mechanism to preserve signaling specificity? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111068. [PMID: 34763861 DOI: 10.1016/j.plantsci.2021.111068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Plants possess specific signaling pathways, such as the MultiStep Phosphorelay (MSP), which is involved in cytokinin and ethylene sensing, and light, drought or osmotic stress sensing. These MSP comprise histidine-aspartate kinases (HKs) as receptors, histidine phosphotransfer (HPts) proteins acting as phosphorelay proteins, and response regulators (RRs), some of which act as transcription factors (type-B RRs). In previous studies, we identified partners of the poplar osmosensing signaling pathway, composed of two HKs, three main HPts, and six type-B RRs. To date, it is unresolved as to how cytokinin or osmotic stress signal specificity is achieved in the MSP in order to generate specific responses. Here, we present a large-scale interaction study of poplar type-B RR dimerization. Using the two-hybrid assay, we were able to show the homodimerization of type-B RRs, the heterodimerization of duplicated type-B RRs, and surprisingly, a lack of interaction between some type-B RRs belonging to different duplicates. The lack of interaction of the duplicates RR12-14 and RR18-19, which are involved in the osmosensing pathway has been confirmed by BiFC experiments. This study reveals, for the first time, an overview of type-B RR dimerization in poplar and makes way for the hypothesis that signal specificity for cytokinin or osmotic stress could be in part due to the fact that it is impossible for specific type-B RRs to heterodimerize.
Collapse
Affiliation(s)
- I Djeghdir
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - F Chefdor
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - L Bertheau
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - K Koudounas
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - I Carqueijeiro
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - P Lemos Cruz
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - V Courdavault
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - C Depierreux
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - M Larcher
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - F Lamblin
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - F Héricourt
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - G Glévarec
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - A Oudin
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - S Carpin
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France.
| |
Collapse
|
10
|
Carqueijeiro I, Koudounas K, Dugé de Bernonville T, Sepúlveda LJ, Mosquera A, Bomzan DP, Oudin A, Lanoue A, Besseau S, Lemos Cruz P, Kulagina N, Stander EA, Eymieux S, Burlaud-Gaillard J, Blanchard E, Clastre M, Atehortùa L, St-Pierre B, Giglioli-Guivarc’h N, Papon N, Nagegowda DA, O’Connor SE, Courdavault V. Alternative splicing creates a pseudo-strictosidine β-d-glucosidase modulating alkaloid synthesis in Catharanthus roseus. PLANT PHYSIOLOGY 2021; 185:836-856. [PMID: 33793899 PMCID: PMC8133614 DOI: 10.1093/plphys/kiaa075] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/24/2020] [Indexed: 05/08/2023]
Abstract
Deglycosylation is a key step in the activation of specialized metabolites involved in plant defense mechanisms. This reaction is notably catalyzed by β-glucosidases of the glycosyl hydrolase 1 (GH1) family such as strictosidine β-d-glucosidase (SGD) from Catharanthus roseus. SGD catalyzes the deglycosylation of strictosidine, forming a highly reactive aglycone involved in the synthesis of cytotoxic monoterpene indole alkaloids (MIAs) and in the crosslinking of aggressor proteins. By exploring C. roseus transcriptomic resources, we identified an alternative splicing event of the SGD gene leading to the formation of a shorter isoform of this enzyme (shSGD) that lacks the last 71-residues and whose transcript ratio with SGD ranges from 1.7% up to 42.8%, depending on organs and conditions. Whereas it completely lacks β-glucosidase activity, shSGD interacts with SGD and causes the disruption of SGD multimers. Such disorganization drastically inhibits SGD activity and impacts downstream MIA synthesis. In addition, shSGD disrupts the metabolic channeling of downstream biosynthetic steps by hampering the recruitment of tetrahydroalstonine synthase in cell nuclei. shSGD thus corresponds to a pseudo-enzyme acting as a regulator of MIA biosynthesis. These data shed light on a peculiar control mechanism of β-glucosidase multimerization, an organization common to many defensive GH1 members.
Collapse
Affiliation(s)
- Inês Carqueijeiro
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Konstantinos Koudounas
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | | | - Liuda Johana Sepúlveda
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, 50010 Medellin, Colombia
| | - Angela Mosquera
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, 50010 Medellin, Colombia
| | - Dikki Pedenla Bomzan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
| | - Audrey Oudin
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Arnaud Lanoue
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Sébastien Besseau
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Pamela Lemos Cruz
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Natalja Kulagina
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Emily A Stander
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Sébastien Eymieux
- INSERM U1259, Plateforme IBiSA de Microscopie Electronique, Université de Tours, 37200 Tours, France
| | - Julien Burlaud-Gaillard
- INSERM U1259, Plateforme IBiSA de Microscopie Electronique, Université de Tours, 37200 Tours, France
| | - Emmanuelle Blanchard
- INSERM U1259, Plateforme IBiSA de Microscopie Electronique, Université de Tours, 37200 Tours, France
- Centre Hospitalier Régional de Tours, 37170 Tours, France
| | - Marc Clastre
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Lucia Atehortùa
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, 50010 Medellin, Colombia
| | - Benoit St-Pierre
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | | | - Nicolas Papon
- EA3142 “Groupe d'Etude des Interactions Hôte-Pathogène,” Université d’Angers, 49035 Angers, France
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
| | - Sarah E O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Vincent Courdavault
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
- Author for communication:
| |
Collapse
|
11
|
Tiwari P, Khare T, Shriram V, Bae H, Kumar V. Plant synthetic biology for producing potent phyto-antimicrobials to combat antimicrobial resistance. Biotechnol Adv 2021; 48:107729. [PMID: 33705914 DOI: 10.1016/j.biotechadv.2021.107729] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Inappropriate and injudicious use of antimicrobial drugs in human health, hygiene, agriculture, animal husbandry and food industries has contributed significantly to rapid emergence and persistence of antimicrobial resistance (AMR), one of the serious global public health threats. The crisis of AMR versus slower discovery of newer antibiotics put forth a daunting task to control these drug-resistant superbugs. Several phyto-antimicrobials have been identified in recent years with direct-killing (bactericidal) and/or drug-resistance reversal (re-sensitization of AMR phenotypes) potencies. Phyto-antimicrobials may hold the key in combating AMR owing to their abilities to target major microbial drug-resistance determinants including cell membrane, drug-efflux pumps, cell communication and biofilms. However, limited distribution, low intracellular concentrations, eco-geographical variations, beside other considerations like dynamic environments, climate change and over-exploitation of plant-resources are major blockades in full potential exploration phyto-antimicrobials. Synthetic biology (SynBio) strategies integrating metabolic engineering, RNA-interference, genome editing/engineering and/or systems biology approaches using plant chassis (as engineerable platforms) offer prospective tools for production of phyto-antimicrobials. With expanding SynBio toolkit, successful attempts towards introduction of entire gene cluster, reconstituting the metabolic pathway or transferring an entire metabolic (or synthetic) pathway into heterologous plant systems highlight the potential of this field. Through this perspective review, we are presenting herein the current situation and options for addressing AMR, emphasizing on the significance of phyto-antimicrobials in this apparently post-antibiotic era, and effective use of plant chassis for phyto-antimicrobial production at industrial scales along with major SynBio tools and useful databases. Current knowledge, recent success stories, associated challenges and prospects of translational success are also discussed.
Collapse
Affiliation(s)
- Pragya Tiwari
- Molecular Metabolic Engineering Lab, Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More Arts, Commerce and Science College, Savitribai Phule Pune University, Akurdi, Pune 411044, India
| | - Hanhong Bae
- Molecular Metabolic Engineering Lab, Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
12
|
Stander EA, Sepúlveda LJ, Dugé de Bernonville T, Carqueijeiro I, Koudounas K, Lemos Cruz P, Besseau S, Lanoue A, Papon N, Giglioli-Guivarc’h N, Dirks R, O’Connor SE, Atehortùa L, Oudin A, Courdavault V. Identifying Genes Involved in alkaloid Biosynthesis in Vinca minor Through Transcriptomics and Gene Co-Expression Analysis. Biomolecules 2020; 10:biom10121595. [PMID: 33255314 PMCID: PMC7761029 DOI: 10.3390/biom10121595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/19/2022] Open
Abstract
The lesser periwinkle Vinca minor accumulates numerous monoterpene indole alkaloids (MIAs) including the vasodilator vincamine. While the biosynthetic pathway of MIAs has been largely elucidated in other Apocynaceae such as Catharanthus roseus, the counterpart in V. minor remains mostly unknown, especially for reactions leading to MIAs specific to this plant. As a consequence, we generated a comprehensive V. minor transcriptome elaborated from eight distinct samples including roots, old and young leaves exposed to low or high light exposure conditions. This optimized resource exhibits an improved completeness compared to already published ones. Through homology-based searches using C. roseus genes as bait, we predicted candidate genes for all common steps of the MIA pathway as illustrated by the cloning of a tabersonine/vincadifformine 16-O-methyltransferase (Vm16OMT) isoform. The functional validation of this enzyme revealed its capacity of methylating 16-hydroxylated derivatives of tabersonine, vincadifformine and lochnericine with a Km 0.94 ± 0.06 µM for 16-hydroxytabersonine. Furthermore, by combining expression of fusions with yellow fluorescent proteins and interaction assays, we established that Vm16OMT is located in the cytosol and forms homodimers. Finally, a gene co-expression network was performed to identify candidate genes of the missing V. minor biosynthetic steps to guide MIA pathway elucidation.
Collapse
Affiliation(s)
- Emily Amor Stander
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Liuda Johana Sepúlveda
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Antioquia Medellin 050021, Colombia;
| | - Thomas Dugé de Bernonville
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Inês Carqueijeiro
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Konstantinos Koudounas
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Pamela Lemos Cruz
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Sébastien Besseau
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Arnaud Lanoue
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Nicolas Papon
- Host-Pathogen Interaction Study Group (GEIHP, EA 3142), UNIV Angers, UNIV Brest, 49933 Angers, France;
| | - Nathalie Giglioli-Guivarc’h
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Ron Dirks
- Future Genomics Technologies, 2333 BE Leiden, The Netherlands;
| | - Sarah Ellen O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | - Lucia Atehortùa
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Antioquia Medellin 050021, Colombia;
| | - Audrey Oudin
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
- Correspondence: (A.O.); (V.C.)
| | - Vincent Courdavault
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
- Correspondence: (A.O.); (V.C.)
| |
Collapse
|
13
|
Guirimand G, Guihur A, Perello C, Phillips M, Mahroug S, Oudin A, Dugé de Bernonville T, Besseau S, Lanoue A, Giglioli-Guivarc’h N, Papon N, St-Pierre B, Rodríguez-Concepcíon M, Burlat V, Courdavault V. Cellular and Subcellular Compartmentation of the 2 C-Methyl-D-Erythritol 4-Phosphate Pathway in the Madagascar Periwinkle. PLANTS (BASEL, SWITZERLAND) 2020; 9:E462. [PMID: 32272573 PMCID: PMC7238098 DOI: 10.3390/plants9040462] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
The Madagascar periwinkle (Catharanthus roseus) synthesizes the highly valuable monoterpene indole alkaloids (MIAs) through a long metabolic route initiated by the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. In leaves, a complex compartmentation of the MIA biosynthetic pathway occurs at both the cellular and subcellular levels, notably for some gene products of the MEP pathway. To get a complete overview of the pathway organization, we cloned four genes encoding missing enzymes involved in the MEP pathway before conducting a systematic analysis of transcript distribution and protein subcellular localization. RNA in situ hybridization revealed that all MEP pathway genes were coordinately and mainly expressed in internal phloem-associated parenchyma of young leaves, reinforcing the role of this tissue in MIA biosynthesis. At the subcellular level, transient cell transformation and expression of fluorescent protein fusions showed that all MEP pathway enzymes were targeted to plastids. Surprisingly, two isoforms of 1-deoxy-D-xylulose 5-phosphate synthase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase initially exhibited an artifactual aggregated pattern of localization due to high protein accumulation. Immunogold combined with transmission electron microscopy, transient transformations performed with a low amount of transforming DNA and fusion/deletion experiments established that both enzymes were rather diffuse in stroma and stromules of plastids as also observed for the last six enzymes of the pathway. Taken together, these results provide new insights into a potential role of stromules in enhancing MIA precursor exchange with other cell compartments to favor metabolic fluxes towards the MIA biosynthesis.
Collapse
Affiliation(s)
- Grégory Guirimand
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
- Graduate School of Science, Technology & Innovation, Kobe University, Kobe 657-8501, Japan
| | - Anthony Guihur
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1007 Lausanne, Switzerland
| | - Catalina Perello
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain; (C.P.); (M.R.-C.)
| | - Michael Phillips
- Department of Biology, University of Toronto–Mississauga, Mississauga, 3359 Mississauga Road, ON L5L 1C6, Canada;
| | - Samira Mahroug
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
- Department of Environment Sciences, University of Sidi-Bel-Abbes, 22000 Sidi Bel Abbès, Algeria
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Thomas Dugé de Bernonville
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Nathalie Giglioli-Guivarc’h
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Nicolas Papon
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, Université d’Angers, UNIV. Brest, F-49333 Angers, France;
| | - Benoit St-Pierre
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| | - Manuel Rodríguez-Concepcíon
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain; (C.P.); (M.R.-C.)
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France;
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, 31 avenue Monge, 37200 Tours, France; (G.G.); (A.G.); (S.M.); (A.O.); (T.D.d.B.); (S.B.); (A.L.); (N.G.-G.); (B.S.-P.)
| |
Collapse
|
14
|
Héricourt F, Larcher M, Chefdor F, Koudounas K, Carqueijeiro I, Lemos Cruz P, Courdavault V, Tanigawa M, Maeda T, Depierreux C, Lamblin F, Glévarec G, Carpin S. New Insight into HPts as Hubs in Poplar Cytokinin and Osmosensing Multistep Phosphorelays: Cytokinin Pathway Uses Specific HPts. PLANTS 2019; 8:plants8120591. [PMID: 31835814 PMCID: PMC6963366 DOI: 10.3390/plants8120591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 02/02/2023]
Abstract
We have previously identified proteins in poplar which belong to an osmosensing (OS) signaling pathway, called a multistep phosphorelay (MSP). The MSP comprises histidine-aspartate kinases (HK), which act as membrane receptors; histidine phosphotransfer (HPt) proteins, which act as phosphorelay proteins; and response regulators (RR), some of which act as transcription factors. In this study, we identified the HK proteins homologous to the Arabidopsis cytokinin (CK) receptors, which are first partners in the poplar cytokinin MSP, and focused on specificity of these two MSPs (CK and OS), which seem to share the same pool of HPt proteins. Firstly, we isolated five CK HKs from poplar which are homologous to Arabidopsis AHK2, AHK3, and AHK4, namely, HK2, HK3a, HK3b, HK4a, HK4b. These HKs were shown to be functional kinases, as observed in a functional complementation of a yeast HK deleted strain. Moreover, one of these HKs, HK4a, was shown to have kinase activity dependent on the presence of CK. Exhaustive interaction tests between these five CK HKs and the 10 HPts characterized in poplar were performed using two-hybrid and BiFC experiments. The resulting partnership was compared to that previously identified between putative osmosensors HK1a/1b and HPt proteins. Finally, in planta coexpression analysis of genes encoding these potential partners revealed that almost all HPts are coexpressed with CK HKs in four different poplar organs. Overall, these results allowed us to unravel the common and specific partnerships existing between OS and CK MSP in Populus.
Collapse
Affiliation(s)
- François Héricourt
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Mélanie Larcher
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Françoise Chefdor
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Konstantinos Koudounas
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Inês Carqueijeiro
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Pamela Lemos Cruz
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Vincent Courdavault
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Mirai Tanigawa
- Department of Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (M.T.); (T.M.)
| | - Tatsuya Maeda
- Department of Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; (M.T.); (T.M.)
| | - Christiane Depierreux
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Frédéric Lamblin
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
| | - Gaëlle Glévarec
- BBV, University of Tours, EA 2106, 31 Avenue Monge, 37200 Tours, France; (K.K.); (I.C.); (P.L.C.); (V.C.); (G.G.)
| | - Sabine Carpin
- LBLGC, University of Orléans, EA1207, INRA, USC1328, rue de Chartres, CEDEX 2, 45067 Orléans, France; (F.H.); (M.L.); (F.C.); (C.D.); (F.L.)
- Correspondence: ; Tel.: +33-2-3849-4804
| |
Collapse
|
15
|
Yee DA, DeNicola AB, Billingsley JM, Creso JG, Subrahmanyam V, Tang Y. Engineered mitochondrial production of monoterpenes in Saccharomyces cerevisiae. Metab Eng 2019; 55:76-84. [PMID: 31226348 PMCID: PMC6717016 DOI: 10.1016/j.ymben.2019.06.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022]
Abstract
Monoterpene indole alkaloids (MIAs) from plants encompass a broad class of structurally complex and medicinally valuable natural products. MIAs are biologically derived from the universal precursor strictosidine. Although the strictosidine biosynthetic pathway has been identified and reconstituted, extensive work is required to optimize production of strictosidine and its precursors in yeast. In this study, we engineered a fully integrated and plasmid-free yeast strain with enhanced production of the monoterpene precursor geraniol. The geraniol biosynthetic pathway was targeted to the mitochondria to protect the GPP pool from consumption by the cytosolic ergosterol pathway. The mitochondrial geraniol producer showed a 6-fold increase in geraniol production compared to cytosolic producing strains. We further engineered the monoterpene-producing strain to synthesize the next intermediates in the strictosidine pathway: 8-hydroxygeraniol and nepetalactol. Integration of geraniol hydroxylase (G8H) from Catharanthus roseus led to essentially quantitative conversion of geraniol to 8-hydroxygeraniol at a titer of 227 mg/L in a fed-batch fermentation. Further introduction of geraniol oxidoreductase (GOR) and iridoid synthase (ISY) from C. roseus and tuning of the relative expression levels resulted in the first de novo nepetalactol production. The strategies developed in this work can facilitate future strain engineering for yeast production of later intermediates in the strictosidine biosynthetic pathway.
Collapse
Affiliation(s)
- Danielle A Yee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Anthony B DeNicola
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, United States
| | - John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Jenette G Creso
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Vidya Subrahmanyam
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, United States.
| |
Collapse
|
16
|
Mortensen S, Bernal-Franco D, Cole LF, Sathitloetsakun S, Cram EJ, Lee-Parsons CWT. EASI Transformation: An Efficient Transient Expression Method for Analyzing Gene Function in Catharanthus roseus Seedlings. FRONTIERS IN PLANT SCIENCE 2019; 10:755. [PMID: 31263474 PMCID: PMC6585625 DOI: 10.3389/fpls.2019.00755] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/24/2019] [Indexed: 05/07/2023]
Abstract
The Catharanthus roseus plant is the exclusive source of the valuable anticancer terpenoid indole alkaloids, vinblastine (VB) and vincristine (VC). The recent availability of transcriptome and genome resources for C. roseus necessitates a fast and reliable method for studying gene function. In this study, we developed an Agrobacterium-mediated transient expression method to enable the functional study of genes rapidly in planta, conserving the compartmentalization observed in the VB and VC pathway. We focused on (1) improving the transformation method (syringe versus vacuum agroinfiltration) and cultivation conditions (seedling age, Agrobacterium density, and time point of maximum transgene expression), (2) improving transformation efficiency through the constitutive expression of the virulence genes and suppressing RNA silencing mechanisms, and (3) improving the vector design by incorporating introns, quantitative and qualitative reporter genes (luciferase and GUS genes), and accounting for transformation heterogeneity across the tissue using an internal control. Of all the parameters tested, vacuum infiltration of young seedlings (10-day-old, harvested 3 days post-infection) resulted in the strongest increase in transgene expression, at 18 - 57 fold higher than either vacuum or syringe infiltration of other seedling ages. Endowing the A. tumefaciens strain with the mutated VirGN54D or silencing suppressors within the same plasmid as the reporter gene further increased expression by 2 - 10 fold. For accurate measurement of promoter transactivation or activity, we included an internal control to normalize the differences in plant mass and transformation efficiency. Including the normalization gene (Renilla luciferase) on the same plasmid as the reporter gene (firefly luciferase) consistently yielded a high signal and a high correlation between RLUC and FLUC. As proof of principle, we applied this approach to investigate the regulation of the CroSTR1 promoter with the well-known activator ORCA3 and repressor ZCT1. Our method demonstrated the quantitative assessment of both the activation and repression of promoter activity in C. roseus. Our efficient Agrobacterium-mediated seedling infiltration (EASI) protocol allows highly efficient, reproducible, and homogenous transformation of C. roseus cotyledons and provides a timely tool for the community to rapidly assess the function of genes in planta, particularly for investigating how transcription factors regulate terpenoid indole alkaloid biosynthesis.
Collapse
Affiliation(s)
- Samuel Mortensen
- Department of Biology, Northeastern University, Boston, MA, United States
| | - Diana Bernal-Franco
- Department of Biology, Northeastern University, Boston, MA, United States
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Lauren F. Cole
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Suphinya Sathitloetsakun
- Department of Biology, Northeastern University, Boston, MA, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States
| | - Erin J. Cram
- Department of Biology, Northeastern University, Boston, MA, United States
| | - Carolyn W. T. Lee-Parsons
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States
| |
Collapse
|
17
|
Chefdor F, Héricourt F, Koudounas K, Carqueijeiro I, Courdavault V, Mascagni F, Bertheau L, Larcher M, Depierreux C, Lamblin F, Racchi ML, Carpin S. Highlighting type A RRs as potential regulators of the dkHK1 multi-step phosphorelay pathway in Populus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:68-78. [PMID: 30466602 DOI: 10.1016/j.plantsci.2018.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 06/09/2023]
Abstract
In previous studies, we highlighted a multistep phosphorelay (MSP) system in poplars composed of two hybrid-type Histidine aspartate Kinases, dkHK1a and dkHK1b, which interact with three Histidine Phosphotransfer proteins, dkHPt2, 7, and 9, which in turn interact with six type B Response Regulators. These interactions correspond to the dkHK1a-b/dkHPts/dkRRBs MSP. This MSP is putatively involved in an osmosensing pathway, as dkHK1a-b are orthologous to the Arabidopsis osmosensor AHK1, and able to complement a mutant yeast deleted for its osmosensors. Since type A RRs have been characterized as negative regulators in cytokinin MSP signaling due to their interaction with HPt proteins, we decided in this study to characterize poplar type A RRs and their implication in the MSP. For a global view of this MSP, we isolated 10 poplar type A RR cDNAs, and determined their subcellular localization to check the in silico prediction experimentally. For most of them, the in planta subcellular localization was as predicted, except for three RRAs, for which this experimental approach gave a more precise localization. Interaction studies using yeast two-hybrid and in planta BiFC assays, together with transcript expression analysis in poplar organs led to eight dkRRAs being singled out as partners which could interfere the dkHK1a-b/dkHPts/dkRRBs MSP identified in previous studies. Consequently, the results obtained in this study now provide an exhaustive view of dkHK1a-b partners belonging to a poplar MSP.
Collapse
Affiliation(s)
- F Chefdor
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - F Héricourt
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - K Koudounas
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - I Carqueijeiro
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - V Courdavault
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - F Mascagni
- Università di Pisa, Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Via del Borghetto 80, 56124 Pisa, Italy
| | - L Bertheau
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - M Larcher
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - C Depierreux
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - F Lamblin
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France
| | - M L Racchi
- Scienze delle Produzioni Agroalimentari e dell'Ambiente, sezione di Genetica agraria, via Maragliano, 75 50144 Firenze, Italy
| | - S Carpin
- LBLGC, Université d'Orléans, INRA, USC1328, 45067, Orléans Cedex 2, France.
| |
Collapse
|
18
|
Sharma A, Verma P, Mathur A, Mathur AK. Overexpression of tryptophan decarboxylase and strictosidine synthase enhanced terpenoid indole alkaloid pathway activity and antineoplastic vinblastine biosynthesis in Catharanthus roseus. PROTOPLASMA 2018; 255:1281-1294. [PMID: 29508069 DOI: 10.1007/s00709-018-1233-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/26/2018] [Indexed: 05/26/2023]
Abstract
Terpenoid indole alkaloid (TIA) biosynthetic pathway of Catharanthus roseus possesses the major attention in current metabolic engineering efforts being the sole source of highly expensive antineoplastic molecules vinblastine and vincristine. The entire TIA pathway is fairly known at biochemical and genetic levels except the pathway steps leading to biosynthesis of catharanthine and tabersonine. To increase the in-planta yield of these antineoplastic metabolites for the pharmaceutical and drug industry, extensive plant tissue culture-based studies were performed to provide alternative production systems. However, the strict spatiotemporal developmental regulation of TIA biosynthesis has restricted the utility of these cultures for large-scale production. Therefore, the present study was performed to enhance the metabolic flux of TIA pathway towards the biosynthesis of vinblastine by overexpressing two upstream TIA pathway genes, tryptophan decarboxylase (CrTDC) and strictosidine synthase (CrSTR), at whole plant levels in C. roseus. Whole plant transgenic of C. roseus was developed using Agrobacterium tumefaciens LBA1119 strain having CrTDC and CrSTR gene cassette. Developed transgenic lines demonstrated up to twofold enhanced total alkaloid production with maximum ninefold increase in vindoline and catharanthine, and fivefold increased vinblastine production. These lines recorded a maximum of 38-fold and 65-fold enhanced transcript levels of CrTDC and CrSTR genes, respectively.
Collapse
Affiliation(s)
- Abhishek Sharma
- Department of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants (CIMAP), Council of Scientific and Industrial Research, PO CIMAP, Kukrail Picnic Spot Road, Lucknow, 226015, India
| | - Priyanka Verma
- Department of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants (CIMAP), Council of Scientific and Industrial Research, PO CIMAP, Kukrail Picnic Spot Road, Lucknow, 226015, India
- Division of Biochemical Sciences, National Chemical Laboratory (NCL), Council of Scientific and Industrial Research, Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Archana Mathur
- Department of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants (CIMAP), Council of Scientific and Industrial Research, PO CIMAP, Kukrail Picnic Spot Road, Lucknow, 226015, India
| | - Ajay Kumar Mathur
- Department of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants (CIMAP), Council of Scientific and Industrial Research, PO CIMAP, Kukrail Picnic Spot Road, Lucknow, 226015, India.
| |
Collapse
|
19
|
Sarpagan bridge enzyme has substrate-controlled cyclization and aromatization modes. Nat Chem Biol 2018; 14:760-763. [PMID: 29942076 PMCID: PMC6054303 DOI: 10.1038/s41589-018-0078-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/11/2018] [Indexed: 12/05/2022]
Abstract
Cyclization reactions that create complex polycyclic scaffolds are hallmarks of alkaloid biosynthetic pathways. We present the discovery of three homologous cytochromes P450 from three monoterpene indole alkaloid-producing plants (Rauwolfia serpentina, Gelsemium sempervirens and Catharanthus roseus) that provide entry into two distinct alkaloid classes, the sarpagans and the β-carbolines. Our results highlight how a common enzymatic mechanism, guided by related but structurally distinct substrates, leads to either cyclization or aromatization.
Collapse
|
20
|
Caputi L, Franke J, Farrow SC, Chung K, Payne RME, Nguyen TD, Dang TTT, Soares Teto Carqueijeiro I, Koudounas K, Dugé de Bernonville T, Ameyaw B, Jones DM, Vieira IJC, Courdavault V, O'Connor SE. Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science 2018; 360:1235-1239. [PMID: 29724909 DOI: 10.1126/science.aat4100] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/24/2018] [Indexed: 12/25/2022]
Abstract
Vinblastine, a potent anticancer drug, is produced by Catharanthus roseus (Madagascar periwinkle) in small quantities, and heterologous reconstitution of vinblastine biosynthesis could provide an additional source of this drug. However, the chemistry underlying vinblastine synthesis makes identification of the biosynthetic genes challenging. Here we identify the two missing enzymes necessary for vinblastine biosynthesis in this plant: an oxidase and a reductase that isomerize stemmadenine acetate into dihydroprecondylocarpine acetate, which is then deacetoxylated and cyclized to either catharanthine or tabersonine via two hydrolases characterized herein. The pathways show how plants create chemical diversity and also enable development of heterologous platforms for generation of stemmadenine-derived bioactive compounds.
Collapse
Affiliation(s)
- Lorenzo Caputi
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jakob Franke
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Scott C Farrow
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Khoa Chung
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard M E Payne
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Trinh-Don Nguyen
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Thu-Thuy T Dang
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Konstantinos Koudounas
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Parc de Grandmont 37200 Tours, France
| | - Thomas Dugé de Bernonville
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Parc de Grandmont 37200 Tours, France
| | - Belinda Ameyaw
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - D Marc Jones
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Vincent Courdavault
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Parc de Grandmont 37200 Tours, France.
| | - Sarah E O'Connor
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
21
|
Zhao Y, Zhang Y, Su P, Yang J, Huang L, Gao W. Genetic Transformation System for Woody Plant Tripterygium wilfordii and Its Application to Product Natural Celastrol. FRONTIERS IN PLANT SCIENCE 2018; 8:2221. [PMID: 29375599 PMCID: PMC5767223 DOI: 10.3389/fpls.2017.02221] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/18/2017] [Indexed: 05/22/2023]
Abstract
Tripterygium wilfordii is a perennial woody liana medicinal plant with several crucial biological activities. Although studies on tissue culture have previously been conducted, research on genetic transformation is much more challenging and therefore results in slower progress. In the present study, a highly efficient transformation system involving the particle bombardment of T. wilfordii with the reporter egfp gene using the PDS-1000/He system was established. A total of seven parameters affecting the genetic transformation were investigated using an L18 (6 × 36)-type orthogonal array. The result indicated that DNA delivery conditions of 3-cm target distance, 1100 psi helium pressure, 28 mmHg chamber vacuum pressure, three times number of bombardment, CaCl2 as precipitation agent, 2 μg plasmid DNA concentration and 48 h post-bombardment incubation time were optimal for T. wilfordii cell suspensions transformation. The average transformation efficiency was 19.17%. Based on this transformation system, the overexpression of two T. wilfordii farnesyl pyrophosphate synthase genes (TwFPSs) was performed in cell suspensions. Integration of the TwFPSs in the genome was verified by PCR analysis and also by Southern blotting using hygromycin gene as a probe. Real-time quantitative PCR analysis showed that the expression of TwFPS1&2 was highly up regulated in transgenic cell suspensions compared with control cells. The detection of metabolites showed that TwFPS1&2 could highly increase the celastrol content (973.60 μg/g) in transgenic cells. These results indicated that this transformation system is an effective protocol for characterizing the function of genes in the terpenoid biosynthetic pathway.
Collapse
Affiliation(s)
- Yujun Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifeng Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ping Su
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Sharma A, Verma P, Mathur A, Mathur AK. Genetic engineering approach using early Vinca alkaloid biosynthesis genes led to increased tryptamine and terpenoid indole alkaloids biosynthesis in differentiating cultures of Catharanthus roseus. PROTOPLASMA 2018; 255:425-435. [PMID: 28808798 DOI: 10.1007/s00709-017-1151-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Catharanthus roseus today occupies the central position in ongoing metabolic engineering efforts in medicinal plants. The entire multi-step biogenetic pathway of its very expensive anticancerous alkaloids vinblastine and vincristine is fairly very well dissected at biochemical and gene levels except the pathway steps leading to biosynthesis of monomeric alkaloid catharanthine and tabersonine. In order to enhance the plant-based productivity of these pharma molecules for the drug industry, cell and tissue cultures of C. roseus are being increasingly tested to provide their alternate production platforms. However, a rigid developmental regulation and involvement of different cell, tissues, and organelles in the synthesis of these alkaloids have restricted the utility of these cultures. Therefore, the present study was carried out with pushing the terpenoid indole alkaloid pathway metabolic flux towards dimeric alkaloids vinblastine and vincristine production by over-expressing the two upstream pathway genes tryptophan decarboxylase and strictosidine synthase at two different levels of cellular organization viz. callus and leaf tissues. The transformation experiments were carried out using Agrobacterium tumefaciens LBA1119 strain having tryptophan decarboxylase and strictosidine synthase gene cassette. The callus transformation reported a maximum of 0.027% dry wt vindoline and 0.053% dry wt catharanthine production, whereas, the transiently transformed leaves reported a maximum of 0.30% dry wt vindoline, 0.10% catharanthine, and 0.0027% dry wt vinblastine content.
Collapse
Affiliation(s)
- Abhishek Sharma
- Department of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants (CIMAP), Council of Scientific and Industrial Research, PO CIMAP, Kukrail Picnic Spot Road, Lucknow, 226015, India
| | - Priyanka Verma
- Division of Biochemical Science, National Chemical Laboratory (NCL), Council of Scientific and Industrial Research, Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Archana Mathur
- Department of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants (CIMAP), Council of Scientific and Industrial Research, PO CIMAP, Kukrail Picnic Spot Road, Lucknow, 226015, India
| | - Ajay Kumar Mathur
- Department of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants (CIMAP), Council of Scientific and Industrial Research, PO CIMAP, Kukrail Picnic Spot Road, Lucknow, 226015, India.
| |
Collapse
|
23
|
Kumar SR, Shilpashree HB, Nagegowda DA. Terpene Moiety Enhancement by Overexpression of Geranyl(geranyl) Diphosphate Synthase and Geraniol Synthase Elevates Monomeric and Dimeric Monoterpene Indole Alkaloids in Transgenic Catharanthus roseus. FRONTIERS IN PLANT SCIENCE 2018; 9:942. [PMID: 30034406 PMCID: PMC6043680 DOI: 10.3389/fpls.2018.00942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/12/2018] [Indexed: 05/07/2023]
Abstract
Catharanthus roseus is the sole source of two of the most important anticancer monoterpene indole alkaloids (MIAs), vinblastine and vincristine and their precursors, vindoline and catharanthine. The MIAs are produced from the condensation of precursors derived from indole and terpene secoiridoid pathways. It has been previously reported that the terpene moiety limits MIA biosynthesis in C. roseus. Here, to overcome this limitation and enhance MIAs levels in C. roseus, bifunctional geranyl(geranyl) diphosphate synthase [G(G)PPS] and geraniol synthase (GES) that provide precursors for early steps of terpene moiety (secologanin) formation, were overexpressed transiently by agroinfiltration and stably by Agrobacterium-mediated transformation. Both transient and stable overexpression of G(G)PPS and co-expression of G(G)PPS+GES significantly enhanced the accumulation of secologanin, which in turn elevated the levels of monomeric MIAs. In addition, transgenic C. roseus plants exhibited increased levels of root alkaloid ajmalicine. The dimeric alkaloid vinblastine was enhanced only in G(G)PPS but not in G(G)PPS+GES transgenic lines that correlated with transcript levels of peroxidase-1 (PRX1) involved in coupling of vindoline and catharanthine into 3',4'-anhydrovinblastine, the immediate precursor of vinblastine. Moreover, first generation (T1) lines exhibited comparable transcript and metabolite levels to that of T0 lines. In addition, transgenic lines displayed normal growth similar to wild-type plants indicating that the bifunctional G(G)PPS enhanced flux toward both primary and secondary metabolism. These results revealed that improved availability of early precursors for terpene moiety biosynthesis enhanced production of MIAs in C. roseus at the whole plant level. This is the first report demonstrating enhanced accumulation of monomeric and dimeric MIAs including root MIA ajmalicine in C. roseus through transgenic approaches.
Collapse
|
24
|
Carqueijeiro I, Sepúlveda LJ, Mosquera A, Payne R, Corbin C, Papon N, de Bernonville TD, Besseau S, Lanoue A, Glévarec G, Clastre M, St-Pierre B, Atehortùa L, Giglioli-Guivarc'h N, O'Connor SE, Oudin A, Courdavault V. Vacuole-Targeted Proteins: Ins and Outs of Subcellular Localization Studies. Methods Mol Biol 2018; 1789:33-54. [PMID: 29916070 DOI: 10.1007/978-1-4939-7856-4_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accurate and efficient demonstrations of protein localizations to the vacuole or tonoplast remain strict prerequisites to decipher the role of vacuoles in the whole plant cell biology and notably in defence processes. In this chapter, we describe a reliable procedure of protein subcellular localization study through transient transformations of Catharanthus roseus or onion cells and expression of fusions with fluorescent proteins allowing minimizing artefacts of targeting.
Collapse
Affiliation(s)
- Inês Carqueijeiro
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Liuda J Sepúlveda
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France.,Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellin, Colombia
| | - Angela Mosquera
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France.,Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellin, Colombia
| | - Richard Payne
- Department of Biological Chemistry, The John Innes Centre, Norwich Research Park, Norwich, UK
| | - Cyrielle Corbin
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Nicolas Papon
- EA3142 "Groupe d'Etude des Interactions Hôte-Pathogène", Université d'Angers, Angers, France
| | - Thomas Dugé de Bernonville
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Sébastien Besseau
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Arnaud Lanoue
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Gaëlle Glévarec
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Marc Clastre
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Benoit St-Pierre
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Lucia Atehortùa
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellin, Colombia
| | - Nathalie Giglioli-Guivarc'h
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Sarah E O'Connor
- Department of Biological Chemistry, The John Innes Centre, Norwich Research Park, Norwich, UK
| | - Audrey Oudin
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Vincent Courdavault
- EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, Tours, France.
| |
Collapse
|
25
|
Saiman MZ, Miettinen K, Mustafa NR, Choi YH, Verpoorte R, Schulte AE. Metabolic alteration of Catharanthus roseus cell suspension cultures overexpressing geraniol synthase in the plastids or cytosol. PLANT CELL, TISSUE AND ORGAN CULTURE 2018; 134:41-53. [PMID: 31007320 PMCID: PMC6445406 DOI: 10.1007/s11240-018-1398-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/19/2018] [Indexed: 05/09/2023]
Abstract
Previous studies showed that geraniol could be an upstream limiting factor in the monoterpenoid pathway towards the production of terpenoid indole alkaloid (TIA) in Catharanthus roseus cells and hairy root cultures. This shortage in precursor availability could be due to (1) limited expression of the plastidial geraniol synthase resulted in a low activity of the enzyme to catalyze the conversion of geranyl diphosphate to geraniol; or (2) the limitation of geraniol transport from plastids to cytosol. Therefore, in this study, C. roseus's geraniol synthase (CrGES) gene was overexpressed in either plastids or cytosol of a non-TIA producing C. roseus cell line. The expression of CrGES in the plastids or cytosol was confirmed and the constitutive transformation lines were successfully established. A targeted metabolite analysis using HPLC shows that the transformed cell lines did not produce TIA or iridoid precursors unless elicited with jasmonic acid, as their parent cell line. This indicates a requirement for expression of additional, inducible pathway genes to reach production of TIA in this cell line. Interestingly, further analysis using NMR-based metabolomics reveals that the overexpression of CrGES impacts primary metabolism differently if expressed in the plastids or cytosol. The levels of valine, leucine, and some metabolites derived from the shikimate pathway, i.e. phenylalanine and tyrosine were significantly higher in the plastidial- but lower in the cytosolic-CrGES overexpressing cell lines. This result shows that overexpression of CrGES in the plastids or cytosol caused alteration of primary metabolism that associated to the plant cell growth and development. A comprehensive omics analysis is necessary to reveal the full effect of metabolic engineering.
Collapse
Affiliation(s)
- Mohd Zuwairi Saiman
- Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Karel Miettinen
- Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands
| | - Natali Rianika Mustafa
- Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands
- ExPlant Technologies B.V., Galileiweg 8, 2333 BD Leiden, The Netherlands
| | - Young Hae Choi
- Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands
| | - Robert Verpoorte
- Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands
| | - Anna Elisabeth Schulte
- Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands
- ExPlant Technologies B.V., Galileiweg 8, 2333 BD Leiden, The Netherlands
| |
Collapse
|
26
|
Daudu D, Allion E, Liesecke F, Papon N, Courdavault V, Dugé de Bernonville T, Mélin C, Oudin A, Clastre M, Lanoue A, Courtois M, Pichon O, Giron D, Carpin S, Giglioli-Guivarc’h N, Crèche J, Besseau S, Glévarec G. CHASE-Containing Histidine Kinase Receptors in Apple Tree: From a Common Receptor Structure to Divergent Cytokinin Binding Properties and Specific Functions. FRONTIERS IN PLANT SCIENCE 2017; 8:1614. [PMID: 28979279 PMCID: PMC5611679 DOI: 10.3389/fpls.2017.01614] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/04/2017] [Indexed: 05/07/2023]
Abstract
Cytokinin signaling is a key regulatory pathway of many aspects in plant development and environmental stresses. Herein, we initiated the identification and functional characterization of the five CHASE-containing histidine kinases (CHK) in the economically important Malus domestica species. These cytokinin receptors named MdCHK2, MdCHK3a/MdCHK3b, and MdCHK4a/MdCHK4b by homology with Arabidopsis AHK clearly displayed three distinct profiles. The three groups exhibited architectural variations, especially in the N-terminal part including the cytokinin sensing domain. Using a yeast complementation assay, we showed that MdCHK2 perceives a broad spectrum of cytokinins with a substantial sensitivity whereas both MdCHK4 homologs exhibit a narrow spectrum. Both MdCHK3 homologs perceived some cytokinins but surprisingly they exhibited a basal constitutive activity. Interaction studies revealed that MdCHK2, MdCHK4a, and MdCHK4b homodimerized whereas MdCHK3a and MdCHK3b did not. Finally, qPCR analysis and bioinformatics approach pointed out contrasted expression patterns among the three MdCHK groups as well as distinct sets of co-expressed genes. Our study characterized for the first time the five cytokinin receptors in apple tree and provided a framework for their further functional studies.
Collapse
Affiliation(s)
- Dimitri Daudu
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Elsa Allion
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Franziska Liesecke
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Nicolas Papon
- EA 3142 Groupe d’Etude des Interactions Hôte-Pathogène, Université AngersAngers, France
| | - Vincent Courdavault
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | | | - Céline Mélin
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Audrey Oudin
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Marc Clastre
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Arnaud Lanoue
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Martine Courtois
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Olivier Pichon
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - David Giron
- UMR 7261 Institut de Recherche sur la Biologie de l’Insecte, Centre National de la Recherche Scientifique (CNRS), Université François-RabelaisTours, France
| | - Sabine Carpin
- EA 1207 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’OrléansOrléans, France
| | | | - Joël Crèche
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Sébastien Besseau
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Gaëlle Glévarec
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| |
Collapse
|
27
|
A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate. Nat Commun 2017; 8:316. [PMID: 28827772 PMCID: PMC5566405 DOI: 10.1038/s41467-017-00154-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/06/2017] [Indexed: 11/08/2022] Open
Abstract
Monoterpene indole alkaloids comprise a diverse family of over 2000 plant-produced natural products. This pathway provides an outstanding example of how nature creates chemical diversity from a single precursor, in this case from the intermediate strictosidine. The enzymes that elicit these seemingly disparate products from strictosidine have hitherto been elusive. Here we show that the concerted action of two enzymes commonly involved in natural product metabolism—an alcohol dehydrogenase and a cytochrome P450—produces unexpected rearrangements in strictosidine when assayed simultaneously. The tetrahydro-β-carboline of strictosidine aglycone is converted into akuammicine, a Strychnos alkaloid, an elusive biosynthetic transformation that has been investigated for decades. Importantly, akuammicine arises from deformylation of preakuammicine, which is the central biosynthetic precursor for the anti-cancer agents vinblastine and vincristine, as well as other biologically active compounds. This discovery of how these enzymes can function in combination opens a gateway into a rich family of natural products. The biosynthetic pathway of preakuammicine, a monoterpene precursor of the anti-cancer agent vinblastine, has remained largely unexplored. Here, the authors provide transcriptomic and biochemical data to identify two enzymes that, in tandem, convert strictosidine to akuammicine, the stable shunt product of preakuammicine.
Collapse
|
28
|
Corbin C, Lafontaine F, Sepúlveda LJ, Carqueijeiro I, Courtois M, Lanoue A, Dugé de Bernonville T, Besseau S, Glévarec G, Papon N, Atehortúa L, Giglioli-Guivarc'h N, Clastre M, St-Pierre B, Oudin A, Courdavault V. Virus-induced gene silencing in Rauwolfia species. PROTOPLASMA 2017; 254:1813-1818. [PMID: 28120101 DOI: 10.1007/s00709-017-1079-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Elucidation of the monoterpene indole alkaloid biosynthesis has recently progressed in Apocynaceae through the concomitant development of transcriptomic analyses and reverse genetic approaches performed by virus-induced gene silencing (VIGS). While most of these tools have been primarily adapted for the Madagascar periwinkle (Catharanthus roseus), the VIGS procedure has scarcely been used on other Apocynaceae species. For instance, Rauwolfia sp. constitutes a unique source of specific and valuable monoterpene indole alkaloids such as the hypertensive reserpine but are also well recognized models for studying alkaloid metabolism, and as such would benefit from an efficient VIGS procedure. By taking advantage of a recent modification in the inoculation method of the Tobacco rattle virus vectors via particle bombardment, we demonstrated that the biolistic-mediated VIGS approach can be readily used to silence genes in both Rauwolfia tetraphylla and Rauwolfia serpentina. After establishing the bombardment conditions minimizing injuries to the transformed plantlets, gene downregulation efficiency was evaluated at approximately a 70% expression decrease in both species by silencing the phytoene desaturase encoding gene. Such a gene silencing approach will thus constitute a critical tool to identify and characterize genes involved in alkaloid biosynthesis in both of these prominent Rauwolfia species.
Collapse
Affiliation(s)
- Cyrielle Corbin
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Florent Lafontaine
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Liuda Johana Sepúlveda
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Antioquia, Medellin, Colombia
| | - Ines Carqueijeiro
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Martine Courtois
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Arnaud Lanoue
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Thomas Dugé de Bernonville
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Sébastien Besseau
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Gaëlle Glévarec
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Nicolas Papon
- EA 3142 "Groupe d'Etude des Interactions Hôte-Pathogène", Université d'Angers, Angers, France
| | - Lucia Atehortúa
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Antioquia, Medellin, Colombia
| | - Nathalie Giglioli-Guivarc'h
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Marc Clastre
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Benoit St-Pierre
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Audrey Oudin
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France
| | - Vincent Courdavault
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, Université François-Rabelais de Tours, 37200, Tours, France.
| |
Collapse
|
29
|
Navarro Gallón SM, Elejalde-Palmett C, Daudu D, Liesecke F, Jullien F, Papon N, Dugé de Bernonville T, Courdavault V, Lanoue A, Oudin A, Glévarec G, Pichon O, Clastre M, St-Pierre B, Atehortùa L, Yoshikawa N, Giglioli-Guivarc'h N, Besseau S. Virus-induced gene silencing of the two squalene synthase isoforms of apple tree (Malus × domestica L.) negatively impacts phytosterol biosynthesis, plastid pigmentation and leaf growth. PLANTA 2017; 246:45-60. [PMID: 28349256 DOI: 10.1007/s00425-017-2681-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/17/2017] [Indexed: 05/24/2023]
Abstract
The use of a VIGS approach to silence the newly characterized apple tree SQS isoforms points out the biological function of phytosterols in plastid pigmentation and leaf development. Triterpenoids are beneficial health compounds highly accumulated in apple; however, their metabolic regulation is poorly understood. Squalene synthase (SQS) is a key branch point enzyme involved in both phytosterol and triterpene biosynthesis. In this study, two SQS isoforms were identified in apple tree genome. Both isoforms are located at the endoplasmic reticulum surface and were demonstrated to be functional SQS enzymes using an in vitro activity assay. MdSQS1 and MdSQS2 display specificities in their expression profiles with respect to plant organs and environmental constraints. This indicates a possible preferential involvement of each isoform in phytosterol and/or triterpene metabolic pathways as further argued using RNAseq meta-transcriptomic analyses. Finally, a virus-induced gene silencing (VIGS) approach was used to silence MdSQS1 and MdSQS2. The concomitant down-regulation of both MdSQS isoforms strongly affected phytosterol synthesis without alteration in triterpene accumulation, since triterpene-specific oxidosqualene synthases were found to be up-regulated to compensate metabolic flux reduction. Phytosterol deficiencies in silenced plants clearly disturbed chloroplast pigmentation and led to abnormal development impacting leaf division rather than elongation or differentiation. In conclusion, beyond the characterization of two SQS isoforms in apple tree, this work brings clues for a specific involvement of each isoform in phytosterol and triterpene pathways and emphasizes the biological function of phytosterols in development and chloroplast integrity. Our report also opens the door to metabolism studies in Malus domestica using the apple latent spherical virus-based VIGS method.
Collapse
Affiliation(s)
- Sandra M Navarro Gallón
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
- Laboratorio de Biotecnologıa, Sede de Investigacion Universitaria, Universidad de Antioquia, Medellin, Colombia
| | - Carolina Elejalde-Palmett
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Dimitri Daudu
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Franziska Liesecke
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Frédéric Jullien
- EA3061 Laboratoire de Biotechnologies Végétales appliquées aux plantes aromatiques et médicinales, Université Jean Monnet de Saint Etienne, Saint Etienne, France
| | - Nicolas Papon
- EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, Université d'Angers, Angers, France
| | | | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Arnaud Lanoue
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Audrey Oudin
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Gaëlle Glévarec
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Olivier Pichon
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Marc Clastre
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Benoit St-Pierre
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France
| | - Lucia Atehortùa
- Laboratorio de Biotecnologıa, Sede de Investigacion Universitaria, Universidad de Antioquia, Medellin, Colombia
| | | | | | - Sébastien Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais de Tours, Tours, France.
| |
Collapse
|
30
|
Remarkable Evolutionary Conservation of Antiobesity ADIPOSE/WDTC1 Homologs in Animals and Plants. Genetics 2017; 207:153-162. [PMID: 28663238 DOI: 10.1534/genetics.116.198382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 06/25/2017] [Indexed: 11/18/2022] Open
Abstract
ASG2 (Altered Seed Germination 2) is a prenylated protein in Arabidopsis thaliana that participates to abscisic acid signaling and is proposed to act as a substrate adaptor for the DDB1 (DNA damage-binding protein 1)-CUL4 (Cullin 4) E3 ubiquitin ligase complex. ASG2 harbors WD40 and TetratricoPeptide Repeat (TPR) domains, and resembles the well-conserved animal gene called ADP (antiobesity factor ADIPOSE) in fly and WDTC1 (WD40 and TPR 1) in humans. Loss of function of WDTC1 results in an increase in adipocytes, fat accumulation, and obesity. Antiadipogenic functions of WDTC1 involve regulation of fat-related gene transcription, notably through its binding to histone deacetylases (HDACs). Our sequence and phylogenetic analysis reveals that ASG2 belongs to the ADP/WDTC1 cluster. ASG2 and WDTC1 share a highly conserved organization that encompasses structural and functional motifs: seven WD40 domains and WD40 hotspot-related residues, three TPR protein-protein interaction domains, DDB1-binding elements [H-box and DWD (DDB1-binding WD40 protein)-box], and a prenylatable C-terminus. Furthermore, ASG2 involvement in fat metabolism was confirmed by reverse genetic approaches using asg2 knockout Arabidopsis plants. Under limited irradiance, asg2 mutants produce "obese" seeds characterized by increased weight, oil body density, and higher fatty acid contents. In addition, considering some ASG2- and WDTC1-peculiar properties, we show that the WDTC1 C-terminus is prenylated in vitro and HDAC-binding capability is conserved in ASG2, suggesting that the regulation mechanism and targets of ADP/WDTC1-like proteins may be conserved features. Our findings reveal the remarkable evolutionary conservation of the structure and the physiological role of ADIPOSE homologs in animals and plants.
Collapse
|
31
|
Payne RME, Xu D, Foureau E, Teto Carqueijeiro MIS, Oudin A, de Bernonville TD, Novak V, Burow M, Olsen CE, Jones DM, Tatsis EC, Pendle A, Halkier BA, Geu-Flores F, Courdavault V, Nour-Eldin HH, O’Connor SE. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. NATURE PLANTS 2017; 3:16208. [PMID: 28085153 PMCID: PMC5238941 DOI: 10.1038/nplants.2016.208] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/29/2016] [Indexed: 05/17/2023]
Abstract
Plants sequester intermediates of metabolic pathways into different cellular compartments, but the mechanisms by which these molecules are transported remain poorly understood. Monoterpene indole alkaloids, a class of specialized metabolites that includes the anticancer agent vincristine, antimalarial quinine and neurotoxin strychnine, are synthesized in several different cellular locations. However, the transporters that control the movement of these biosynthetic intermediates within cellular compartments have not been discovered. Here we present the discovery of a tonoplast localized nitrate/peptide family (NPF) transporter from Catharanthus roseus, CrNPF2.9, that exports strictosidine, the central intermediate of this pathway, into the cytosol from the vacuole. This discovery highlights the role that intracellular localization plays in specialized metabolism, and sets the stage for understanding and controlling the central branch point of this pharmacologically important group of compounds.
Collapse
Affiliation(s)
- Richard M. E. Payne
- The John Innes Centre, Department of Biological Chemistry, Norwich Research Park, Norwich NR4 7UK, UK
| | - Deyang Xu
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Emilien Foureau
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Parc de Grandmont 37200 Tours, France
| | - Marta Ines Soares Teto Carqueijeiro
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Parc de Grandmont 37200 Tours, France
| | - Audrey Oudin
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Parc de Grandmont 37200 Tours, France
| | - Thomas Dugé de Bernonville
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Parc de Grandmont 37200 Tours, France
| | - Vlastimil Novak
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Meike Burow
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Carl-Erik Olsen
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - D. Marc Jones
- The John Innes Centre, Department of Computational and Systems Biology, Norwich Research Park, Norwich NR4 7UK, UK
| | - Evangelos C. Tatsis
- The John Innes Centre, Department of Biological Chemistry, Norwich Research Park, Norwich NR4 7UK, UK
| | - Ali Pendle
- The John Innes Centre, Department of Cell and Developmental Biology, Norwich Research Park, Norwich NR4 7UK, UK
| | - Barbara Ann Halkier
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Fernando Geu-Flores
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Vincent Courdavault
- Université François-Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Département de Biologie et Physiologie Végétales, UFR Sciences et Techniques, Parc de Grandmont 37200 Tours, France
| | - Hussam Hassan Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Sarah E. O’Connor
- The John Innes Centre, Department of Biological Chemistry, Norwich Research Park, Norwich NR4 7UK, UK
- To whom correspondence should be addressed: Sarah E. O’Connor ()
| |
Collapse
|
32
|
Liu J, Cai J, Wang R, Yang S. Transcriptional Regulation and Transport of Terpenoid Indole Alkaloid in Catharanthus roseus: Exploration of New Research Directions. Int J Mol Sci 2016; 18:ijms18010053. [PMID: 28036025 PMCID: PMC5297688 DOI: 10.3390/ijms18010053] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 02/05/2023] Open
Abstract
As one of the model medicinal plants for exploration of biochemical pathways and molecular biological questions on complex metabolic pathways, Catharanthus roseus synthesizes more than 100 terpenoid indole alkaloids (TIAs) used for clinical treatment of various diseases and for new drug discovery. Given that extensive studies have revealed the major metabolic pathways and the spatial-temporal biosynthesis of TIA in C. roseus plant, little is known about subcellular and inter-cellular trafficking or long-distance transport of TIA end products or intermediates, as well as their regulation. While these transport processes are indispensable for multi-organelle, -tissue and -cell biosynthesis, storage and their functions, great efforts have been made to explore these dynamic cellular processes. Progress has been made in past decades on transcriptional regulation of TIA biosynthesis by transcription factors as either activators or repressors; recent studies also revealed several transporters involved in subcellular and inter-cellular TIA trafficking. However, many details and the regulatory network for controlling the tissue-or cell-specific biosynthesis, transport and storage of serpentine and ajmalicine in root, catharanthine in leaf and root, vindoline specifically in leaf and vinblastine and vincristine only in green leaf and their biosynthetic intermediates remain to be determined. This review is to summarize the progress made in biosynthesis, transcriptional regulation and transport of TIAs. Based on analysis of organelle, tissue and cell-type specific biosynthesis and progresses in transport and trafficking of similar natural products, the transporters that might be involved in transport of TIAs and their synthetic intermediates are discussed; according to transcriptome analysis and bioinformatic approaches, the transcription factors that might be involved in TIA biosynthesis are analyzed. Further discussion is made on a broad context of transcriptional and transport regulation in order to guide our future research.
Collapse
Affiliation(s)
- Jiaqi Liu
- College of Chinese Herbal Medicine, Jilin Agricultural University, Changchun 130047, China.
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Junjun Cai
- West China Hospital, Sichuan University, Chengdu 610066, China.
| | - Rui Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Shihai Yang
- College of Chinese Herbal Medicine, Jilin Agricultural University, Changchun 130047, China.
| |
Collapse
|
33
|
Functional Divergence of Poplar Histidine-Aspartate Kinase HK1 Paralogs in Response to Osmotic Stress. Int J Mol Sci 2016; 17:ijms17122061. [PMID: 27941652 PMCID: PMC5187861 DOI: 10.3390/ijms17122061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/01/2016] [Accepted: 12/03/2016] [Indexed: 11/29/2022] Open
Abstract
Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP) in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt) proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress.
Collapse
|
34
|
Sun P, Schuurink RC, Caissard JC, Hugueney P, Baudino S. My Way: Noncanonical Biosynthesis Pathways for Plant Volatiles. TRENDS IN PLANT SCIENCE 2016; 21:884-894. [PMID: 27475252 DOI: 10.1016/j.tplants.2016.07.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 05/24/2023]
Abstract
Plant volatiles are crucial for various interactions with other organisms and their surrounding environment. A large number of these volatiles belong to the terpenoid and benzenoid/phenylpropanoid classes, which have long been considered to be exclusively synthesized from a few canonical pathways. However, several alternative pathways producing these plant volatiles have been discovered recently. This review summarizes the current knowledge about new pathways for these two major groups of plant volatiles, which open new perspectives for applications in metabolic engineering.
Collapse
Affiliation(s)
- Pulu Sun
- Université de Lyon, UJM-Saint-Étienne, CNRS, BVpam FRE 3727, F-42023 Saint-Étienne, France; Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jean-Claude Caissard
- Université de Lyon, UJM-Saint-Étienne, CNRS, BVpam FRE 3727, F-42023 Saint-Étienne, France
| | | | - Sylvie Baudino
- Université de Lyon, UJM-Saint-Étienne, CNRS, BVpam FRE 3727, F-42023 Saint-Étienne, France.
| |
Collapse
|
35
|
Stavrinides A, Tatsis EC, Caputi L, Foureau E, Stevenson CEM, Lawson DM, Courdavault V, O'Connor SE. Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity. Nat Commun 2016; 7:12116. [PMID: 27418042 PMCID: PMC4947188 DOI: 10.1038/ncomms12116] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/31/2016] [Indexed: 02/07/2023] Open
Abstract
Plants produce an enormous array of biologically active metabolites, often with stereochemical variations on the same molecular scaffold. These changes in stereochemistry dramatically impact biological activity. Notably, the stereoisomers of the heteroyohimbine alkaloids show diverse pharmacological activities. We reported a medium chain dehydrogenase/reductase (MDR) from Catharanthus roseus that catalyses formation of a heteroyohimbine isomer. Here we report the discovery of additional heteroyohimbine synthases (HYSs), one of which produces a mixture of diastereomers. The crystal structures for three HYSs have been solved, providing insight into the mechanism of reactivity and stereoselectivity, with mutation of one loop transforming product specificity. Localization and gene silencing experiments provide a basis for understanding the function of these enzymes in vivo. This work sets the stage to explore how MDRs evolved to generate structural and biological diversity in specialized plant metabolism and opens the possibility for metabolic engineering of new compounds based on this scaffold. The stereochemistry of the plant heteroyohimbine alkaloids is a key factor determining their diverse biological activities. Here, the authors carry out structural, localization and genetic experiments to understand the mechanism of stereoselectivity for three heteroyohimbine synthases and to identify their function in vivo.
Collapse
Affiliation(s)
- Anna Stavrinides
- The John Innes Centre, Department of Biological Chemistry, Norwich NR4 7UH, UK
| | - Evangelos C Tatsis
- The John Innes Centre, Department of Biological Chemistry, Norwich NR4 7UH, UK
| | - Lorenzo Caputi
- The John Innes Centre, Department of Biological Chemistry, Norwich NR4 7UH, UK
| | - Emilien Foureau
- Université François-Rabelais de Tours, EA2106 'Biomolécules et Biotechnologies Végétales', Tours 37200, France
| | - Clare E M Stevenson
- The John Innes Centre, Department of Biological Chemistry, Norwich NR4 7UH, UK
| | - David M Lawson
- The John Innes Centre, Department of Biological Chemistry, Norwich NR4 7UH, UK
| | - Vincent Courdavault
- Université François-Rabelais de Tours, EA2106 'Biomolécules et Biotechnologies Végétales', Tours 37200, France
| | - Sarah E O'Connor
- The John Innes Centre, Department of Biological Chemistry, Norwich NR4 7UH, UK
| |
Collapse
|
36
|
Munakata R, Olry A, Karamat F, Courdavault V, Sugiyama A, Date Y, Krieger C, Silie P, Foureau E, Papon N, Grosjean J, Yazaki K, Bourgaud F, Hehn A. Molecular evolution of parsnip (Pastinaca sativa) membrane-bound prenyltransferases for linear and/or angular furanocoumarin biosynthesis. THE NEW PHYTOLOGIST 2016; 211:332-44. [PMID: 26918393 DOI: 10.1111/nph.13899] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/13/2016] [Indexed: 05/06/2023]
Abstract
In Apiaceae, furanocoumarins (FCs) are plant defence compounds that are present as linear or angular isomers. Angular isomers appeared during plant evolution as a protective response to herbivores that are resistant to linear molecules. Isomeric biosynthesis occurs through prenylation at the C6 or C8 position of umbelliferone. Here, we report cloning and functional characterization of two different prenyltransferases, Pastinaca sativa prenyltransferase 1 and 2 (PsPT1 and PsPT2), that are involved in these crucial reactions. Both enzymes are targeted to plastids and synthesize osthenol and demethylsuberosin (DMS) using exclusively umbelliferone and dimethylallylpyrophosphate (DMAPP) as substrates. Enzymatic characterization using heterologously expressed proteins demonstrated that PsPT1 is specialized for the synthesis of the linear form, demethylsuberosin, whereas PsPT2 more efficiently catalyses the synthesis of its angular counterpart, osthenol. These results are the first example of a complementary prenyltransferase pair from a single plant species that is involved in synthesizing defensive compounds. This study also provides a better understanding of the molecular mechanisms governing the angular FC biosynthetic pathway in apiaceous plants, which involves two paralogous enzymes that share the same phylogenetic origin.
Collapse
Affiliation(s)
- Ryosuke Munakata
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Alexandre Olry
- Laboratoire Agronomie et Environnement, INRA UMR 1121, 2 avenue de la forêt de Haye TSA 40602 54518, Vandœuvre-lès-Nancy, France
- Laboratoire Agronomie et Environnement, Université de Lorraine UMR 1121, 2 avenue de la forêt de Haye TSA 40602 54518, Vandœuvre-lès-Nancy, France
| | - Fazeelat Karamat
- Laboratoire Agronomie et Environnement, INRA UMR 1121, 2 avenue de la forêt de Haye TSA 40602 54518, Vandœuvre-lès-Nancy, France
- Laboratoire Agronomie et Environnement, Université de Lorraine UMR 1121, 2 avenue de la forêt de Haye TSA 40602 54518, Vandœuvre-lès-Nancy, France
| | - Vincent Courdavault
- EA2106 'Biomolécules et Biotechnologies Végétales', Université François-Rabelais de Tours, Tours, France
| | - Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshiaki Date
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Célia Krieger
- Laboratoire Agronomie et Environnement, INRA UMR 1121, 2 avenue de la forêt de Haye TSA 40602 54518, Vandœuvre-lès-Nancy, France
- Laboratoire Agronomie et Environnement, Université de Lorraine UMR 1121, 2 avenue de la forêt de Haye TSA 40602 54518, Vandœuvre-lès-Nancy, France
| | - Prisca Silie
- Laboratoire Agronomie et Environnement, INRA UMR 1121, 2 avenue de la forêt de Haye TSA 40602 54518, Vandœuvre-lès-Nancy, France
- Laboratoire Agronomie et Environnement, Université de Lorraine UMR 1121, 2 avenue de la forêt de Haye TSA 40602 54518, Vandœuvre-lès-Nancy, France
| | - Emilien Foureau
- EA2106 'Biomolécules et Biotechnologies Végétales', Université François-Rabelais de Tours, Tours, France
| | - Nicolas Papon
- EA2106 'Biomolécules et Biotechnologies Végétales', Université François-Rabelais de Tours, Tours, France
| | - Jérémy Grosjean
- Laboratoire Agronomie et Environnement, INRA UMR 1121, 2 avenue de la forêt de Haye TSA 40602 54518, Vandœuvre-lès-Nancy, France
- Laboratoire Agronomie et Environnement, Université de Lorraine UMR 1121, 2 avenue de la forêt de Haye TSA 40602 54518, Vandœuvre-lès-Nancy, France
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Frédéric Bourgaud
- Laboratoire Agronomie et Environnement, INRA UMR 1121, 2 avenue de la forêt de Haye TSA 40602 54518, Vandœuvre-lès-Nancy, France
- Laboratoire Agronomie et Environnement, Université de Lorraine UMR 1121, 2 avenue de la forêt de Haye TSA 40602 54518, Vandœuvre-lès-Nancy, France
| | - Alain Hehn
- Laboratoire Agronomie et Environnement, INRA UMR 1121, 2 avenue de la forêt de Haye TSA 40602 54518, Vandœuvre-lès-Nancy, France
- Laboratoire Agronomie et Environnement, Université de Lorraine UMR 1121, 2 avenue de la forêt de Haye TSA 40602 54518, Vandœuvre-lès-Nancy, France
| |
Collapse
|
37
|
Hou W, Shakya P, Franklin G. A Perspective on Hypericum perforatum Genetic Transformation. FRONTIERS IN PLANT SCIENCE 2016; 7:879. [PMID: 27446112 PMCID: PMC4919345 DOI: 10.3389/fpls.2016.00879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/03/2016] [Indexed: 05/22/2023]
Abstract
Hypericum perforatum (St John's wort) is a reservoir of diverse classes of biologically active and high value secondary metabolites, which captured the interest of both researchers and the pharmaceutical industry alike. Several studies and clinical trials have shown that H. perforatum extracts possess an astounding array of pharmacological properties. These properties include antidepressant, anti-inflammatory, antiviral, anti-cancer, and antibacterial activities; and are largely attributed to the naphtodianthrones and xanthones found in the genus. Hence, improving their production via genetic manipulation is an important strategy. In spite of the presence of contemporary genome editing tools, genetic improvement of this genus remains challenging without robust transformation methods in place. In the recent past, we found that H. perforatum remains recalcitrant to Agrobacterium tumefaciens mediated transformation partly due to the induction of plant defense responses coming into play. However, H. perforatum transformation is possible via a non-biological method, biolistic bombardment. Some research groups have observed the induction of hairy roots in H. perforatum after Agrobacterium rhizogenes co-cultivation. In this review, we aim at updating the available methods for regeneration and transformation of H. perforatum. In addition, we also propose a brief perspective on certain novel strategies to improve transformation efficiency in order to meet the demands of the pharmaceutical industry via metabolic engineering.
Collapse
Affiliation(s)
- Weina Hou
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of MinhoBraga, Portugal
| | - Preeti Shakya
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of SciencesPoznan, Poland
| | - Gregory Franklin
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of MinhoBraga, Portugal
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of SciencesPoznan, Poland
| |
Collapse
|
38
|
Foureau E, Carqueijeiro I, Dugé de Bernonville T, Melin C, Lafontaine F, Besseau S, Lanoue A, Papon N, Oudin A, Glévarec G, Clastre M, St-Pierre B, Giglioli-Guivarc'h N, Courdavault V. Prequels to Synthetic Biology: From Candidate Gene Identification and Validation to Enzyme Subcellular Localization in Plant and Yeast Cells. Methods Enzymol 2016; 576:167-206. [PMID: 27480687 DOI: 10.1016/bs.mie.2016.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Natural compounds extracted from microorganisms or plants constitute an inexhaustible source of valuable molecules whose supply can be potentially challenged by limitations in biological sourcing. The recent progress in synthetic biology combined to the increasing access to extensive transcriptomics and genomics data now provide new alternatives to produce these molecules by transferring their whole biosynthetic pathway in heterologous production platforms such as yeasts or bacteria. While the generation of high titer producing strains remains per se an arduous field of investigation, elucidation of the biosynthetic pathways as well as characterization of their complex subcellular organization are essential prequels to the efficient development of such bioengineering approaches. Using examples from plants and yeasts as a framework, we describe potent methods to rationalize the study of partially characterized pathways, including the basics of computational applications to identify candidate genes in transcriptomics data and the validation of their function by an improved procedure of virus-induced gene silencing mediated by direct DNA transfer to get around possible resistance to Agrobacterium-delivery of viral vectors. To identify potential alterations of biosynthetic fluxes resulting from enzyme mislocalizations in reconstituted pathways, we also detail protocols aiming at characterizing subcellular localizations of protein in plant cells by expression of fluorescent protein fusions through biolistic-mediated transient transformation, and localization of transferred enzymes in yeast using similar fluorescence procedures. Albeit initially developed for the Madagascar periwinkle, these methods may be applied to other plant species or organisms in order to establish synthetic biology platform.
Collapse
Affiliation(s)
- E Foureau
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - I Carqueijeiro
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - T Dugé de Bernonville
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - C Melin
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - F Lafontaine
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - S Besseau
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - A Lanoue
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - N Papon
- Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, UPRES EA 3142, Angers, France
| | - A Oudin
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - G Glévarec
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - M Clastre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - B St-Pierre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - N Giglioli-Guivarc'h
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - V Courdavault
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France.
| |
Collapse
|
39
|
Dutilleul C, Ribeiro I, Blanc N, Nezames CD, Deng XW, Zglobicki P, Palacio Barrera AM, Atehortùa L, Courtois M, Labas V, Giglioli-Guivarc'h N, Ducos E. ASG2 is a farnesylated DWD protein that acts as ABA negative regulator in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:185-98. [PMID: 26147561 DOI: 10.1111/pce.12605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 05/12/2023]
Abstract
The tagging-via-substrate approach designed for the capture of mammal prenylated proteins was adapted to Arabidopsis cell culture. In this way, proteins are in vivo tagged with an azide-modified farnesyl moiety and captured thanks to biotin alkyne Click-iT® chemistry with further streptavidin-affinity chromatography. Mass spectrometry analyses identified four small GTPases and ASG2 (ALTERED SEED GERMINATION 2), a protein previously associated to the seed germination gene network. ASG2 is a conserved protein in plants and displays a unique feature that associates WD40 domains and tetratricopeptide repeats. Additionally, we show that ASG2 has a C-terminal CaaX-box that is farnesylated in vitro. Protoplast transfections using CaaX prenyltransferase mutants show that farnesylation provokes ASG2 nucleus exclusion. Moreover, ASG2 interacts with DDB1 (DAMAGE DNA BINDING protein 1), and the subcellular localization of this complex depends on ASG2 farnesylation status. Finally, germination and root elongation experiments reveal that asg2 and the farnesyltransferase mutant era1 (ENHANCED RESPONSE TO ABSCISIC ACID (ABA) 1) behave in similar manners when exposed to ABA or salt stress. To our knowledge, ASG2 is the first farnesylated DWD (DDB1 binding WD40) protein related to ABA response in Arabidopsis that may be linked to era1 phenotypes.
Collapse
Affiliation(s)
- Christelle Dutilleul
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Iliana Ribeiro
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Nathalie Blanc
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Cynthia D Nezames
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520-8104, USA
| | - Xing Wang Deng
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520-8104, USA
| | - Piotr Zglobicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Ana María Palacio Barrera
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellín, Colombia
| | - Lucia Atehortùa
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellín, Colombia
| | - Martine Courtois
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Valérie Labas
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, UMR CNRS 7247, UFR, IFC, Plate-forme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, Nouzilly, F-37380, France
| | - Nathalie Giglioli-Guivarc'h
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Eric Ducos
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| |
Collapse
|
40
|
Carqueijeiro I, Masini E, Foureau E, Sepúlveda LJ, Marais E, Lanoue A, Besseau S, Papon N, Clastre M, Dugé de Bernonville T, Glévarec G, Atehortùa L, Oudin A, Courdavault V. Virus-induced gene silencing in Catharanthus roseus by biolistic inoculation of tobacco rattle virus vectors. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1242-6. [PMID: 26284695 DOI: 10.1111/plb.12380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/11/2015] [Indexed: 05/15/2023]
Abstract
Catharanthus roseus constitutes the unique source of several valuable monoterpenoid indole alkaloids, including the antineoplastics vinblastine and vincristine. These alkaloids result from a complex biosynthetic pathway encompassing between 30 and 50 enzymatic steps whose characterisation is still underway. The most recent identifications of genes from this pathway relied on a tobacco rattle virus-based virus-induced gene silencing (VIGS) approach, involving an Agrobacterium-mediated inoculation of plasmids encoding the two genomic components of the virus. As an alternative, we developed a biolistic-mediated approach of inoculation of virus-encoding plasmids that can be easily performed by a simple bombardment of young C. roseus plants. After optimisation of the transformation conditions, we showed that this approach efficiently silenced the phytoene desaturase gene, leading to strong and reproducible photobleaching of leaves. This biolistic transformation was also used to silence a previously characterised gene from the alkaloid biosynthetic pathway, encoding iridoid oxidase. Plant bombardment caused down-regulation of the targeted gene (70%), accompanied by a correlated decreased in MIA biosynthesis (45-90%), similar to results obtained via agro-transformation. Thus, the biolistic-based VIGS approach developed for C. roseus appears suitable for gene function elucidation and can readily be used instead of the Agrobacterium-based approach, e.g. when difficulties arise with agro-inoculations or when Agrobacterium-free procedures are required to avoid plant defence responses.
Collapse
Affiliation(s)
- I Carqueijeiro
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - E Masini
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - E Foureau
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - L J Sepúlveda
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - E Marais
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - A Lanoue
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - S Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - N Papon
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - M Clastre
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - T Dugé de Bernonville
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - G Glévarec
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - L Atehortùa
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - A Oudin
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| | - V Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, Tours, France
| |
Collapse
|
41
|
Bertheau L, Djeghdir I, Foureau E, Chefdor F, Glevarec G, Oudin A, Depierreux C, Morabito D, Brignolas F, Courdavault V, Héricourt F, Auguin D, Carpin S. Insights into B-type RR members as signaling partners acting downstream of HPt partners of HK1 in the osmotic stress response in Populus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 94:244-252. [PMID: 26126081 DOI: 10.1016/j.plaphy.2015.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/12/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
The B-type response regulators (B-type RRs), final elements of a signaling pathway called "histidine/aspartate phosphorelay system" in plants, are devoted to the regulation of response genes through a transcription factor activity. Signal transduction consists in the transfer of a phosphoryl group from a transmembrane histidine kinase (HK) which recognizes a given stimulus to nuclear RRs via cytosolic shuttle phosphotransfer proteins (HPts). In Arabidopsis, the receptors HK are to date the major characterized candidates to be responsible for initiation of osmotic stress responses. However, little information is available concerning the signaling partners acting downstream of HKs. In Populus, three HPts and five B-type RRs were previously identified as interacting partners of HK1, the Arabidopsis AHK1 homolog. Here, we report the isolation of RR18, a member of the B-type RR family, which shares high sequence similarities with ARR18 characterized to act in the osmosensing signaling pathway in Arabidopsis, from poplar cuttings subjected to osmotic stress conditions. By using yeast and in planta interaction assays, RR18 was further identified as acting downstream of HK1 and its three preferential HPt partners. Besides, our results are in favor of a possible involvement of both RR18 and RR13, the main expressed poplar B-type RR, in the osmotic signaling pathway. Nonetheless, different behaviors of these two B-type RRs in this pathway need to be noted, with one RR, RR13, acting in an early phase, mainly in roots of poplar cuttings, and the other one, RR18, acting in a late phase, mainly in leaves to supply an adequate response.
Collapse
Affiliation(s)
- Lucie Bertheau
- Université d'Orléans, UPRES EA 1207, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), 45067 Orléans Cedex 2, France; INRA, USC1328, Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067 Orléans Cedex 2, France; Université de Toulon, EA 3819, Laboratoire Processus de Transferts et d'Echanges dans l'Environnement (PROTEE), 83957 La Garde Cedex, France
| | - Inès Djeghdir
- Université d'Orléans, UPRES EA 1207, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), 45067 Orléans Cedex 2, France; INRA, USC1328, Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067 Orléans Cedex 2, France
| | - Emilien Foureau
- Université François Rabelais de Tours, EA 2106, Biomolécules et Biotechnologies Végétales (BBV), 37200 Tours, France
| | - Françoise Chefdor
- Université d'Orléans, UPRES EA 1207, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), 45067 Orléans Cedex 2, France; INRA, USC1328, Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067 Orléans Cedex 2, France
| | - Gaëlle Glevarec
- Université François Rabelais de Tours, EA 2106, Biomolécules et Biotechnologies Végétales (BBV), 37200 Tours, France
| | - Audrey Oudin
- Université François Rabelais de Tours, EA 2106, Biomolécules et Biotechnologies Végétales (BBV), 37200 Tours, France
| | - Christiane Depierreux
- Université d'Orléans, UPRES EA 1207, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), 45067 Orléans Cedex 2, France; INRA, USC1328, Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067 Orléans Cedex 2, France
| | - Domenico Morabito
- Université d'Orléans, UPRES EA 1207, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), 45067 Orléans Cedex 2, France; INRA, USC1328, Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067 Orléans Cedex 2, France
| | - Franck Brignolas
- Université d'Orléans, UPRES EA 1207, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), 45067 Orléans Cedex 2, France; INRA, USC1328, Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067 Orléans Cedex 2, France
| | - Vincent Courdavault
- Université François Rabelais de Tours, EA 2106, Biomolécules et Biotechnologies Végétales (BBV), 37200 Tours, France
| | - François Héricourt
- Université d'Orléans, UPRES EA 1207, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), 45067 Orléans Cedex 2, France; INRA, USC1328, Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067 Orléans Cedex 2, France
| | - Daniel Auguin
- Université d'Orléans, UPRES EA 1207, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), 45067 Orléans Cedex 2, France; INRA, USC1328, Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067 Orléans Cedex 2, France
| | - Sabine Carpin
- Université d'Orléans, UPRES EA 1207, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), 45067 Orléans Cedex 2, France; INRA, USC1328, Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067 Orléans Cedex 2, France.
| |
Collapse
|
42
|
Dugé de Bernonville T, Foureau E, Parage C, Lanoue A, Clastre M, Londono MA, Oudin A, Houillé B, Papon N, Besseau S, Glévarec G, Atehortùa L, Giglioli-Guivarc'h N, St-Pierre B, De Luca V, O'Connor SE, Courdavault V. Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome. BMC Genomics 2015; 16:619. [PMID: 26285573 PMCID: PMC4541752 DOI: 10.1186/s12864-015-1678-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 06/01/2015] [Indexed: 01/14/2023] Open
Abstract
Background Transcriptome sequencing offers a great resource for the study of non-model plants such as Catharanthus roseus, which produces valuable monoterpenoid indole alkaloids (MIAs) via a complex biosynthetic pathway whose characterization is still undergoing. Transcriptome databases dedicated to this plant were recently developed by several consortia to uncover new biosynthetic genes. However, the identification of missing steps in MIA biosynthesis based on these large datasets may be limited by the erroneous assembly of close transcripts and isoforms, even with the multiple available transcriptomes. Results Secologanin synthases (SLS) are P450 enzymes that catalyze an unusual ring-opening reaction of loganin in the biosynthesis of the MIA precursor secologanin. We report here the identification and characterization in C. roseus of a new isoform of SLS, SLS2, sharing 97 % nucleotide sequence identity with the previously characterized SLS1. We also discovered that both isoforms further oxidize secologanin into secoxyloganin. SLS2 had however a different expression profile, being the major isoform in aerial organs that constitute the main site of MIA accumulation. Unfortunately, we were unable to find a current C. roseus transcriptome database containing simultaneously well reconstructed sequences of SLS isoforms and accurate expression levels. After a pair of close mRNA encoding tabersonine 16-hydroxylase (T16H1 and T16H2), this is the second example of improperly assembled transcripts from the MIA pathway in the public transcriptome databases. To construct a more complete transcriptome resource for C. roseus, we re-processed previously published transcriptome data by combining new single assemblies. Care was particularly taken during clustering and filtering steps to remove redundant contigs but not transcripts encoding potential isoforms by monitoring quality reconstruction of MIA genes and specific SLS and T16H isoforms. The new consensus transcriptome allowed a precise estimation of abundance of SLS and T16H isoforms, similar to qPCR measurements. Conclusions The C. roseus consensus transcriptome can now be used for characterization of new genes of the MIA pathway. Furthermore, additional isoforms of genes encoding distinct MIA biosynthetic enzymes isoforms could be predicted suggesting the existence of a higher level of complexity in the synthesis of MIA, raising the question of the evolutionary events behind what seems like redundancy. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1678-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Dugé de Bernonville
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Emilien Foureau
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Claire Parage
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Arnaud Lanoue
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Marc Clastre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Monica Arias Londono
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France. .,Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellín, Colombia.
| | - Audrey Oudin
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Benjamin Houillé
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Nicolas Papon
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Sébastien Besseau
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Gaëlle Glévarec
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Lucia Atehortùa
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellín, Colombia.
| | - Nathalie Giglioli-Guivarc'h
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Benoit St-Pierre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| | - Vincenzo De Luca
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St Catharines, Ontario, L2S 3A1, Canada.
| | - Sarah E O'Connor
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK.
| | - Vincent Courdavault
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", UFR Sciences et Techniques, 37200, Tours, France.
| |
Collapse
|
43
|
Dugé de Bernonville T, Clastre M, Besseau S, Oudin A, Burlat V, Glévarec G, Lanoue A, Papon N, Giglioli-Guivarc'h N, St-Pierre B, Courdavault V. Phytochemical genomics of the Madagascar periwinkle: Unravelling the last twists of the alkaloid engine. PHYTOCHEMISTRY 2015; 113:9-23. [PMID: 25146650 DOI: 10.1016/j.phytochem.2014.07.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 05/12/2023]
Abstract
The Madagascar periwinkle produces a large palette of Monoterpenoid Indole Alkaloids (MIAs), a class of complex alkaloids including some of the most valuable plant natural products with precious therapeutical values. Evolutionary pressure on one of the hotspots of biodiversity has obviously turned this endemic Malagasy plant into an innovative alkaloid engine. Catharanthus is a unique taxon producing vinblastine and vincristine, heterodimeric MIAs with complex stereochemistry, and also manufactures more than 100 different MIAs, some shared with the Apocynaceae, Loganiaceae and Rubiaceae members. For over 60 years, the quest for these powerful anticancer drugs has inspired biologists, chemists, and pharmacists to unravel the chemistry, biochemistry, therapeutic activity, cell and molecular biology of Catharanthus roseus. Recently, the "omics" technologies have fuelled rapid progress in deciphering the last secret of strictosidine biosynthesis, the central precursor opening biosynthetic routes to several thousand MIA compounds. Dedicated C. roseus transcriptome, proteome and metabolome databases, comprising organ-, tissue- and cell-specific libraries, and other phytogenomic resources, were developed for instance by PhytoMetaSyn, Medicinal Plant Genomic Resources and SmartCell consortium. Tissue specific library screening, orthology comparison in species with or without MIA-biochemical engines, clustering of gene expression profiles together with various functional validation strategies, largely contributed to enrich the toolbox for plant synthetic biology and metabolic engineering of MIA biosynthesis.
Collapse
Affiliation(s)
- Thomas Dugé de Bernonville
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Marc Clastre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Sébastien Besseau
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Audrey Oudin
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Vincent Burlat
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France
| | - Gaëlle Glévarec
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Arnaud Lanoue
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Nicolas Papon
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | | | - Benoit St-Pierre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Vincent Courdavault
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France.
| |
Collapse
|
44
|
Stavrinides A, Tatsis EC, Foureau E, Caputi L, Kellner F, Courdavault V, O'Connor SE. Unlocking the diversity of alkaloids in Catharanthus roseus: nuclear localization suggests metabolic channeling in secondary metabolism. ACTA ACUST UNITED AC 2015; 22:336-41. [PMID: 25772467 PMCID: PMC4372254 DOI: 10.1016/j.chembiol.2015.02.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/24/2015] [Accepted: 02/17/2015] [Indexed: 01/10/2023]
Abstract
The extraordinary chemical diversity of the plant-derived monoterpene indole alkaloids, which include vinblastine, quinine, and strychnine, originates from a single biosynthetic intermediate, strictosidine aglycone. Here we report for the first time the cloning of a biosynthetic gene and characterization of the corresponding enzyme that acts at this crucial branchpoint. This enzyme, an alcohol dehydrogenase homolog, converts strictosidine aglycone to the heteroyohimbine-type alkaloid tetrahydroalstonine. We also demonstrate how this enzyme, which uses a highly reactive substrate, may interact with the upstream enzyme of the pathway. Tetrahydroalstonine synthase catalyzes the formation of a plant-derived alkaloid Tetrahydroalstonine synthase is localized to the nucleus Tetrahydroalstonine synthase and the preceding pathway enzyme interact Discovery of a gene controlling structural diversity of monoterpene indole alkaloids
Collapse
Affiliation(s)
- Anna Stavrinides
- Department of Biological Chemistry, The John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - Evangelos C Tatsis
- Department of Biological Chemistry, The John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - Emilien Foureau
- Université François Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", 37200 Tours, France
| | - Lorenzo Caputi
- Department of Biological Chemistry, The John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - Franziska Kellner
- Department of Biological Chemistry, The John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - Vincent Courdavault
- Université François Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", 37200 Tours, France.
| | - Sarah E O'Connor
- Department of Biological Chemistry, The John Innes Centre, Colney, Norwich NR4 7UH, UK.
| |
Collapse
|
45
|
Chebbi M, Ginis O, Courdavault V, Glévarec G, Lanoue A, Clastre M, Papon N, Gaillard C, Atanassova R, St-Pierre B, Giglioli-Guivarc'h N, Courtois M, Oudin A. ZCT1 and ZCT2 transcription factors repress the activity of a gene promoter from the methyl erythritol phosphate pathway in Madagascar periwinkle cells. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1510-3. [PMID: 25108262 DOI: 10.1016/j.jplph.2014.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 05/07/2023]
Abstract
In Catharanthus roseus, accumulating data highlighted the existence of a coordinated transcriptional regulation of structural genes that takes place within the secoiridoid biosynthetic branch, including the methyl erythritol phosphate (MEP) pathway and the following steps leading to secologanin. To identify transcription factors acting in these pathways, we performed a yeast one-hybrid screening using as bait a promoter region of the hydroxymethylbutenyl 4-diphosphate synthase (HDS) gene involved in the responsiveness of C. roseus cells to hormonal signals inducing monoterpene indole alkaloid (MIA) production. We identified that ZCT2, one of the three members of the zinc finger Catharanthus protein (ZCT) family, can bind to a HDS promoter region involved in hormonal responsiveness. By trans-activation assays, we demonstrated that ZCT1 and ZCT2 but not ZCT3 repress the HDS promoter activity. Gene expression analyses in C. roseus cells exposed to methyljasmonate revealed a persistence of induction of ZCT2 gene expression suggesting the existence of feed-back regulatory events acting on HDS gene expression in correlation with the MIA production.
Collapse
Affiliation(s)
- Mouadh Chebbi
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Olivia Ginis
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Vincent Courdavault
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Gaëlle Glévarec
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Arnaud Lanoue
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Marc Clastre
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Nicolas Papon
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Cécile Gaillard
- UMR CNRS 7267 EBI, Ecologie et Biologie des Interactions, Equipe, "Sucres & Echanges Végétaux-Environnement", Université de Poitiers, Bâtiment Botanique B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Rossitza Atanassova
- UMR CNRS 7267 EBI, Ecologie et Biologie des Interactions, Equipe, "Sucres & Echanges Végétaux-Environnement", Université de Poitiers, Bâtiment Botanique B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Benoit St-Pierre
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Nathalie Giglioli-Guivarc'h
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Martine Courtois
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France
| | - Audrey Oudin
- EA 2106 "Biomolécules et Biotechnologies Végétales"-Université François Rabelais de Tours, 31 avenue Monge, 37200 Tours, France.
| |
Collapse
|
46
|
Courdavault V, Papon N, Clastre M, Giglioli-Guivarc'h N, St-Pierre B, Burlat V. A look inside an alkaloid multisite plant: the Catharanthus logistics. CURRENT OPINION IN PLANT BIOLOGY 2014; 19:43-50. [PMID: 24727073 DOI: 10.1016/j.pbi.2014.03.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 05/12/2023]
Abstract
Environmental pressures forced plants to diversify specialized metabolisms to accumulate noxious molecules such as alkaloids constituting one of the largest classes of defense metabolites. Catharanthus roseus produces monoterpene indole alkaloids via a highly elaborated biosynthetic pathway whose characterization greatly progressed with the recent expansion of transcriptomic resources. The complex architecture of this pathway, sequentially distributed in at least four cell types and further compartmentalized into several organelles, involves partially identified inter-cellular and intra-cellular translocation events acting as potential key-regulators of metabolic fluxes. The description of this spatial organization and the inherent secretion and sequestration of metabolites not only provide new insight into alkaloid cell biology and its involvement in plant defense processes but also present new biotechnological challenges for synthetic biology.
Collapse
Affiliation(s)
- Vincent Courdavault
- Université François-Rabelais de Tours, EA2106 'Biomolécules et Biotechnologies Végétales', Tours, France.
| | - Nicolas Papon
- Université François-Rabelais de Tours, EA2106 'Biomolécules et Biotechnologies Végétales', Tours, France
| | - Marc Clastre
- Université François-Rabelais de Tours, EA2106 'Biomolécules et Biotechnologies Végétales', Tours, France
| | | | - Benoit St-Pierre
- Université François-Rabelais de Tours, EA2106 'Biomolécules et Biotechnologies Végétales', Tours, France
| | - Vincent Burlat
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, Auzeville, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, Auzeville, F-31326 Castanet-Tolosan, France
| |
Collapse
|
47
|
GUIZANI TAISSIREL, GUIBERT CLOTILDE, TRIKI SAÏDA, ST-PIERRE BENOIT, DUCOS ERIC. Identification of a human ABCC10 orthologue in Catharanthus roseus reveals a U12-type intron determinant for the N-terminal domain feature. J Genet 2014; 93:21-33. [DOI: 10.1007/s12041-014-0327-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Besseau S, Kellner F, Lanoue A, Thamm AM, Salim V, Schneider B, Geu-Flores F, Höfer R, Guirimand G, Guihur A, Oudin A, Glevarec G, Foureau E, Papon N, Clastre M, Giglioli-Guivarc’h N, St-Pierre B, Werck-Reichhart D, Burlat V, De Luca V, O’Connor SE, Courdavault V. A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus. PLANT PHYSIOLOGY 2013; 163:1792-803. [PMID: 24108213 PMCID: PMC3850188 DOI: 10.1104/pp.113.222828] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/07/2013] [Indexed: 05/18/2023]
Abstract
Hydroxylation of tabersonine at the C-16 position, catalyzed by tabersonine 16-hydroxylase (T16H), initiates the synthesis of vindoline that constitutes the main alkaloid accumulated in leaves of Catharanthus roseus. Over the last decade, this reaction has been associated with CYP71D12 cloned from undifferentiated C. roseus cells. In this study, we isolated a second cytochrome P450 (CYP71D351) displaying T16H activity. Biochemical characterization demonstrated that CYP71D12 and CYP71D351 both exhibit high affinity for tabersonine and narrow substrate specificity, making of T16H, to our knowledge, the first alkaloid biosynthetic enzyme displaying two isoforms encoded by distinct genes characterized to date in C. roseus. However, both genes dramatically diverge in transcript distribution in planta. While CYP71D12 (T16H1) expression is restricted to flowers and undifferentiated cells, the CYP71D351 (T16H2) expression profile is similar to the other vindoline biosynthetic genes reaching a maximum in young leaves. Moreover, transcript localization by carborundum abrasion and RNA in situ hybridization demonstrated that CYP71D351 messenger RNAs are specifically located to leaf epidermis, which also hosts the next step of vindoline biosynthesis. Comparison of high- and low-vindoline-accumulating C. roseus cultivars also highlights the direct correlation between CYP71D351 transcript and vindoline levels. In addition, CYP71D351 down-regulation mediated by virus-induced gene silencing reduces vindoline accumulation in leaves and redirects the biosynthetic flux toward the production of unmodified alkaloids at the C-16 position. All these data demonstrate that tabersonine 16-hydroxylation is orchestrated in an organ-dependent manner by two genes including CYP71D351, which encodes the specific T16H isoform acting in the foliar vindoline biosynthesis.
Collapse
|
49
|
Héricourt F, Chefdor F, Bertheau L, Tanigawa M, Maeda T, Guirimand G, Courdavault V, Larcher M, Depierreux C, Bénédetti H, Morabito D, Brignolas F, Carpin S. Characterization of histidine-aspartate kinase HK1 and identification of histidine phosphotransfer proteins as potential partners in a Populus multistep phosphorelay. PHYSIOLOGIA PLANTARUM 2013; 149:188-199. [PMID: 23330606 DOI: 10.1111/ppl.12024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 05/29/2023]
Abstract
In poplar, we identified proteins homologous to yeast proteins involved in osmosensing multistep phosphorelay Sln1p-Ypd1p-Ssk1p. This finding led us to speculate that Populus cells could sense osmotic stress by a similar mechanism. This study focuses on first and second protagonists of this possible pathway: a histidine-aspartate kinase (HK1), putative osmosensor and histidine phosphotransfer proteins (HPt1 to 10), potential partners of this HK. Characterization of HK1 showed its ability to homodimerize in two-hybrid tests and to act as an osmosensor with a kinase activity in yeast, by functional complementation of sln1Δ sho1Δ strain. Moreover, in plant cells, plasma membrane localization of HK1 is shown. Further analysis on HPts allowed us to isolate seven new cDNAs, leading to a total of 10 different HPts identified in poplar. Interaction tests showed that almost all HPts can interact with HK1, but two of them exhibit stronger interactions, suggesting a preferential partnership in poplar. The importance of the phosphorylation status in these interactions has been investigated with two-hybrid tests carried out with mutated HK1 forms. Finally, in planta co-expression analysis of genes encoding these potential partners revealed that only three HPts are co-expressed with HK1 in different poplar organs. This result reinforces the hypothesis of a partnership between HK1 and these three preferential HPts in planta. Taken together, these results shed some light on proteins partnerships that could be involved in the osmosensing pathway in Populus.
Collapse
Affiliation(s)
- François Héricourt
- Université d'Orléans, UPRES EA 1207, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), 45067, Orléans Cedex 2, France; INRA, USC1328, Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067, Orléans Cedex 2, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Simkin AJ, Miettinen K, Claudel P, Burlat V, Guirimand G, Courdavault V, Papon N, Meyer S, Godet S, St-Pierre B, Giglioli-Guivarc'h N, Fischer MJC, Memelink J, Clastre M. Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. PHYTOCHEMISTRY 2013; 85:36-43. [PMID: 23102596 DOI: 10.1016/j.phytochem.2012.09.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/21/2012] [Accepted: 09/26/2012] [Indexed: 05/21/2023]
Abstract
Madagascar periwinkle (Catharanthus roseus [L.] G. Don, Apocynaceae) produces monoterpene indole alkaloids (MIAs), secondary metabolites of high interest due to their therapeutic value. A key step in the biosynthesis is the generation of geraniol from geranyl diphosphate (GPP) in the monoterpenoid branch of the MIA pathway. Here we report on the cloning and functional characterization of C. roseus geraniol synthase (CrGES). The full-length CrGES was over-expressed in Escherichia coli and the purified recombinant protein catalyzed the conversion of GPP into geraniol with a K(m) value of 58.5 μM for GPP. In vivo CrGES activity was evaluated by heterologous expression in a Saccharomyces cerevisiae strain mutated in the farnesyl diphosphate synthase gene. Analysis of culture extracts by gas chromatography-mass spectrometry confirmed the excretion of geraniol into the growth medium. Transient transformation of C. roseus cells with a Yellow Fluorescent Protein-fusion construct revealed that CrGES is localized in plastid stroma and stromules. In aerial plant organs, RNA in situ hybridization showed specific labeling of CrGES transcripts in the internal phloem associated parenchyma as observed for other characterized genes involved in the early steps of MIA biosynthesis. Finally, when cultures of Catharanthus cells were treated with the alkaloid-inducing hormone methyl jasmonate, an increase in CrGES transcript levels was observed. This observation coupled with the tissue-specific expression and the subcellular compartmentalization support the idea that CrGES initiates the monoterpenoid branch of the MIA biosynthetic pathway.
Collapse
Affiliation(s)
- Andrew J Simkin
- Université François-Rabelais, EA2106, Biomolécules et Biotechnologies Végétales, 31 Avenue Monge, 37200 Tours, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|