1
|
Chen X, Zhang Y, Yan H, Niu M, Xiong Y, Zhang X, Li Y, Teixeira da Silva JA, Ma G. Cloning and functional analysis of 1-deoxy-d-xylulose-5-phosphate synthase (DXS) in Santalum album L. Gene 2023; 851:146762. [PMID: 35933050 DOI: 10.1016/j.gene.2022.146762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/10/2022] [Accepted: 07/24/2022] [Indexed: 11/24/2022]
Abstract
The commercial value of Santalum album L. lies in its aromatic heartwood and essential oil. Sesquiterpenes are the main components of sandal essential oil, and these are synthesized through the plant's mevalonate (MVA) and methylerythritol phosphate (MEP) pathways. In this study, the first key rate-limiting enzyme, 1-deoxy-d-xylulose-5-phosphate synthase (SaDXS), was investigated to provide a theoretical molecular basis for the sandalwood MEP sesquiterpene biosynthetic pathway. The biofunctions of SaDXS were also analyzed. SaDXS promoters were successfully cloned from a seven-year-old S. album tree. SaDXS1A/1B promoter activity was verified by a β-glucuronidase (GUS) assay and by analyzing cis-acting elements of the promoters, which carried light- and methyl jasmonate (MeJA)-responsive signals. In an experiment involving yellow S. album seedlings, exposure to light upregulated SaDXS1A/1B expression and increased chlorophyll and carotenoid contents when overexpressed in Arabidopsis thaliana. Analysis of the expression of SaDXS1A/1B and SaSSy, key genes of santalol biosynthesis, revealed SaDXS1A expression in all tissues whereas SaDXS1B was expressed in tissues that contained photosynthetic pigments, such as stems, leaves and flowers. Sandal seedlings exogenously treated with two hormones, MeJA and ethylene, revealed similar expression patterns for SaDXS1A/1B and SaSSy. Sandal seedlings were treated with an inhibitor of DXS, clomazone, but showed no significant changes in the contents of α-santalene, β-santalene and α-santalol between treatment and control groups. These results suggest that SaDXS1A/1B play a role in the synthesis of sandalwood sesquiterpenes, providing carbon for downstream secondary metabolites. SaDXS1A/1B also play a role in the biosynthesis of chlorophyll, carotenoids, and primary metabolites.
Collapse
Affiliation(s)
- Xiaohong Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yueya Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Haifeng Yan
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Meiyun Niu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yuping Xiong
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xinhua Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuan Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China
| | | | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
2
|
A Comparative Transcriptomic with UPLC-Q-Exactive MS Reveals Differences in Gene Expression and Components of Iridoid Biosynthesis in Various Parts of Gentiana macrophylla. Genes (Basel) 2022; 13:genes13122372. [PMID: 36553639 PMCID: PMC9778098 DOI: 10.3390/genes13122372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Gentiana macrophylla Pall. (G. macrophylla)-a member of the family Gentianaceae-is a well-known traditional Chinese medical herb. Iridoids are the main active components of G. macrophylla, which has a wide range of pharmacological activities such as dispelling wind, eliminating dampness, clearing heat and asthenic fever, hepatoprotective and choleretic actions, and other medicinal effects. In this study, a total of 67,048 unigenes were obtained by transcriptomic sequencing analysis of G. macrophylla. A BLAST analysis showed that 48.21%, 33.66%, 46.32%, and 32.62% of unigenes were identified in the NR, Swiss-Prot, eggNOG, and KEGG databases, respectively. Twenty-five key enzymes were identified in the iridoid biosynthesis pathway. Most of the upregulated unigenes were enriched in flowers and leaves. The trustworthiness of the transcriptomic data was validated by real-time quantitative PCR (qRT-PCR). A total of 22 chemical constituents were identified by ultra-high performance liquid chromatography-quadrupole-electrostatic field Orbitrap mass spectrometry (UPLC-Q-Exactive MS), including 10 iridoids. A correlation analysis showed that the expression of 7-DLH and SLS was closely related to iridoids. The expression of 7-DLH and SLS was higher in flowers, indicating that flowers are important for iridoid biosynthesis in G. macrophylla.
Collapse
|
3
|
Shailaja A, Srinath M, Bindu BVB, Giri CC. Isolation of 4-hydroxy 3-methyl 2-butenyl 4-diphosphate reductase ( ApHDR) gene of methyl erythritol diphosphate (MEP) pathway, in silico analysis and differential tissue specific ApHDR expression in Andrographis paniculata (Burm. f) Nees. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:223-235. [PMID: 33707865 PMCID: PMC7907293 DOI: 10.1007/s12298-021-00952-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/23/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED The full length Andrographis paniculate 4-hydroxy 3-methyl 2-butenyl 4-diphosphate reductase (ApHDR) gene of MEP pathway was isolated for the first time. The ApHDR ORF with 1404 bp flanked by 100 bp 5'UTR and 235 bp 3'UTR encoding 467 amino acids (NCBI accession number: MK503970) and cloned in pET 102, transformed and expressed in E. coli BL21. The ApHDR protein physico-chemical properties, secondary and tertiary structure were analyzed. The Ramachandran plot showed 93.8% amino acids in the allowed regions, suggesting high reliability. The cluster of 16 ligands for binding site in ApHDR involved six amino acid residues having 5-8 ligands. The Fe-S cluster binding site was formed with three conserved residues of cysteine at positions C123, C214, C251 of ApHDR. The substrate HMBPP and inhibitors clomazone, paraquat, benzyl viologen's interactions with ApHDR were also assessed using docking. The affinity of Fe-S cluster binding to the cleft was found similar to HMBPP. The HPLC analysis of different type of tissue (plant parts) revealed highest andrographolide content in young leaves followed by mature leaves, stems and roots. The differential expression profile of ApHDR suggested a significant variation in the expression pattern among different tissues such as mature leaves, young leaves, stem and roots. A 16-fold higher expression of ApHDR was observed in the mature leaves of A. paniculata as compared to roots. The young leaves and stem showed 5.5 fold and fourfold higher expression than roots of A. paniculata. Our result generated new genomic information on ApHDR which may open up prospects of manipulation for enhanced diterpene lactone andrographolide production in A. paniculata. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00952-0.
Collapse
Affiliation(s)
- Aayeti Shailaja
- Centre for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, Telangana 500007 India
| | - Mote Srinath
- Centre for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, Telangana 500007 India
| | | | - Charu Chandra Giri
- Centre for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, Telangana 500007 India
| |
Collapse
|
4
|
Zhu C, Zhang S, Fu H, Zhou C, Chen L, Li X, Lin Y, Lai Z, Guo Y. Transcriptome and Phytochemical Analyses Provide New Insights Into Long Non-Coding RNAs Modulating Characteristic Secondary Metabolites of Oolong Tea ( Camellia sinensis) in Solar-Withering. FRONTIERS IN PLANT SCIENCE 2019; 10:1638. [PMID: 31929782 PMCID: PMC6941427 DOI: 10.3389/fpls.2019.01638] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/20/2019] [Indexed: 05/08/2023]
Abstract
Oolong tea is a popular and semi-fermented beverage. During the processing of tea leaves, withering is the first indispensable process for improving flavor. However, the roles of long non-coding RNAs (lncRNAs) and the characteristic secondary metabolites during the withering of oolong tea leaves remain unknown. In this study, phytochemical analyses indicated that total polyphenols, flavonoids, catechins, epigallocatechin (EGC), catechin gallate (CG), gallocatechin gallate (GCG), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG) were all less abundant in the solar-withered leaves (SW) than in the fresh leaves (FL) and indoor-withered leaves (IW). In contrast, terpenoid, jasmonic acid (JA), and methyl jasmonate (MeJA) contents were higher in the SW than in the FL and IW. By analyzing the transcriptome data, we detected 32,036 lncRNAs. On the basis of the Kyoto Encyclopedia of Genes and Genomes analysis, the flavonoid metabolic pathway, the terpenoid metabolic pathway, and the JA/MeJA biosynthesis and signal transduction pathway were enriched pathways. Additionally, 63 differentially expressed lncRNAs (DE-lncRNAs) and 23 target genes were identified related to the three pathways. A comparison of the expression profiles of the DE-lncRNAs and their target genes between the SW and IW revealed four up-regulated genes (FLS, CCR, CAD, and HCT), seven up-regulated lncRNAs, four down-regulated genes (4CL, CHI, F3H, and F3'H), and three down-regulated lncRNAs related to flavonoid metabolism; nine up-regulated genes (DXS, CMK, HDS, HDR, AACT, MVK, PMK, GGPPS, and TPS), three up-regulated lncRNAs, and six down-regulated lncRNAs related to terpenoid metabolism; as well as six up-regulated genes (LOX, AOS, AOC, OPR, ACX, and MFP2), four up-regulated lncRNAs, and three down-regulated lncRNAs related to JA/MeJA biosynthesis and signal transduction. These results suggested that the expression of DE-lncRNAs and their targets involved in the three pathways may be related to the low abundance of the total polyphenols, flavonoids, and catechins (EGC, CG, GCG, ECG, and EGCG) and the high abundance of terpenoids in the SW. Moreover, solar irradiation, high JA and MeJA contents, and the endogenous target mimic (eTM)-related regulatory mechanism in the SW were also crucial for increasing the terpenoid levels. These findings provide new insights into the greater contribution of solar-withering to the high-quality flavor of oolong tea compared with the effects of indoor-withering.
Collapse
Affiliation(s)
- Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuting Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haifeng Fu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lan Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaozhen Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Majdi M, Abdollahi MR, Maroufi A. Parthenolide accumulation and expression of genes related to parthenolide biosynthesis affected by exogenous application of methyl jasmonate and salicylic acid in Tanacetum parthenium. PLANT CELL REPORTS 2015; 34:1909-1918. [PMID: 26183953 DOI: 10.1007/s00299-015-1837-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/22/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
Up-regulation of germacrene A synthase and down-regulation of parthenolide hydroxylase genes play key role in parthenolide accumulation of feverfew plants treated with methyl jasmonate and salicylic acid. Parthenolide is an important sesquiterpene lactone due to its anti-migraine and anti-cancer properties. Parthenolide amount was quantified by high-performance liquid chromatography after foliar application of methyl jasmonate (100 µM) or salicylic acid (1.0 mM) on feverfew leaves in time course experiment (3-96 h). Results indicate that exogenous application of methyl jasmonate or salicylic acid activated parthenolide biosynthesis. Parthenolide content reached its highest amount at 24 h after methyl jasmonate or salicylic acid treatments, which were 3.1- and 1.96-fold higher than control plants, respectively. Parthenolide transiently increased due to methyl jasmonate or salicylic acid treatments until 24 h, but did not show significant difference compared with control plants at 48 and 96 h time points in both treatments. Also, the transcript levels of early pathway (upstream) genes of terpene biosynthesis including 3-hydroxy-3-methylglutaryl-coenzyme A reductase, 1-deoxy-D-xylulose-5-phosphate reductoisomerase and hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase and the biosynthetic genes of parthenolide including germacrene A synthase, germacrene A oxidase, costunolide synthase and parthenolide synthase were increased by methyl jasmonate and salicylic acid treatments, but with different intensity. The transcriptional levels of these genes were higher in methyl jasmonate-treated plants than salicylic acid-treated plants. Parthenolide content measurements along with expression pattern analysis of the aforementioned genes and parthenolide hydroxylase as side branch gene of parthenolide suggest that the expression patterns of early pathway genes were not directly consistent with parthenolide accumulation pattern; hence, parthenolide accumulation is probably further modulated by the expression of its biosynthetic genes, especially germacrene A synthase and also its side branch gene, parthenolide hydroxylase.
Collapse
Affiliation(s)
- Mohammad Majdi
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
- Research Center for Medicinal Plant Breeding and Development, University of Kurdistan, Sanandaj, Iran.
| | - Mohammad Reza Abdollahi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Asad Maroufi
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
6
|
Hao G, Shi R, Tao R, Fang Q, Jiang X, Ji H, Feng L, Huang L. Cloning, molecular characterization and functional analysis of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase (HDR) gene for diterpenoid tanshinone biosynthesis in Salvia miltiorrhiza Bge. f. alba. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:21-32. [PMID: 23770591 DOI: 10.1016/j.plaphy.2013.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
The enzyme 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase (HDR) is a terminal-acting enzyme in the plastid MEP pathway, which produce isoprenoid precursors. The full-length cDNA of HDR, designated SmHDR1 (Genbank Accession No. JX516088), was isolated for the first time from Salvia miltiorrhiza Bge. f. alba. SmHDR1 contains a 1389-bp open reading frame encoding 463 amino acids. The deduced SmHDR1 protein, which shows high identity to HDRs of other plant species, is predicted to possess a chloroplast transit peptide at the N-terminus and four conserved cysteine residues. Transcription pattern analysis revealed that SmHDR1 has high levels of transcription in leaves and low levels of transcription in roots and stems. The expression of SmHDR1 was induced by 0.1 mM methyl-jasmonate (MeJA) and salicylic acid (SA), but not by 0.1 mM abscisic acid (ABA), in the hairy roots of S. miltiorrhiza Bge. f. alba. Complementation of SmHDR1 in the Escherichia coli HDR mutant MG1655 ara < > ispH demonstrated the function of this enzyme. A functional color assay in E. coli showed that SmHDR1 accelerates the biosynthesis of β-carotene, indicating that SmHDR1 encodes a functional protein. Overexpression of SmHDR1 enhanced the production of tanshinones in cultured hairy roots of S. miltiorrhiza Bge. f. alba. These results indicate that SmHDR1 is a novel and important enzyme involved in the biosynthesis of diterpenoid tanshinones in S. miltiorrhiza Bge. f. alba.
Collapse
Affiliation(s)
- Gangping Hao
- Department of Biochemistry, Taishan Medical University, Tai'an 271000, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang G, Zhao M, Song C, Luo A, Bai J, Guo S. Characterization of reference genes for quantitative real-time PCR analysis in various tissues of Anoectochilus roxburghii. Mol Biol Rep 2011; 39:5905-12. [PMID: 22201024 DOI: 10.1007/s11033-011-1402-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 12/17/2011] [Indexed: 11/24/2022]
Abstract
Accurate quantification of transcript profiling with quantitative real time polymerase chain reaction (qRT-PCR) relies on the reliable normalization of an appropriate reference gene. This study reported the identification and validation of nine reference genes, including β-tubulin (β-TUB), elongation factor 1 alpha (EF-1α), elongation factor 1 beta (EF-1β), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ubiquitin (UBQ), actin 1/2(ACT-1 and ACT-2), 18S rRNA, and 26S rRNA, from Anoectochilus roxburghii (Wall.) Lindl., a valuable herb remedy widely used for various diseases treatment in traditional Chinese medicine. Transcriptional levels of the candidate reference genes were examined using qRT-PCR analysis and revealed differential expression of the genes in the leaf, stem, root, flower, and peduncle tissues. The relative quantities data were subjected to geNorm software for ranking the expression stability of the reference genes and the results showed that EF-1β and ACT-2 were the two best stable genes whereas GAPDH and 26S rRNA did not favor normalization of qRT-PCR in these tissues. The expression pattern of a squalene synthase encoding gene (SS) was also determined in parallel. The analyses were in great consistency when the qRT-PCR data was normalized to the expression of each or both of EF-1β and ACT-2 as the internal control, further confirming the reliability of EF-1β and ACT-2 as the best internal control. The present study provided the first important clues for accurate data normalization in transcript profiling in A. roxburghii, which will be essential to further functional genomics study in the valuable medicinal plant.
Collapse
Affiliation(s)
- Gang Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
8
|
Hemmerlin A, Harwood JL, Bach TJ. A raison d'être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog Lipid Res 2011; 51:95-148. [PMID: 22197147 DOI: 10.1016/j.plipres.2011.12.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 12/12/2022]
Abstract
When compared to other organisms, plants are atypical with respect to isoprenoid biosynthesis: they utilize two distinct and separately compartmentalized pathways to build up isoprene units. The co-existence of these pathways in the cytosol and in plastids might permit the synthesis of many vital compounds, being essential for a sessile organism. While substrate exchange across membranes has been shown for a variety of plant species, lack of complementation of strong phenotypes, resulting from inactivation of either the cytosolic pathway (growth and development defects) or the plastidial pathway (pigment bleaching), seems to be surprising at first sight. Hundreds of isoprenoids have been analyzed to determine their biosynthetic origins. It can be concluded that in angiosperms, under standard growth conditions, C₂₀-phytyl moieties, C₃₀-triterpenes and C₄₀-carotenoids are made nearly exclusively within compartmentalized pathways, while mixed origins are widespread for other types of isoprenoid-derived molecules. It seems likely that this coexistence is essential for the interaction of plants with their environment. A major purpose of this review is to summarize such observations, especially within an ecological and functional context and with some emphasis on regulation. This latter aspect still requires more work and present conclusions are preliminary, although some general features seem to exist.
Collapse
Affiliation(s)
- Andréa Hemmerlin
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, IBMP-CNRS-UPR2357, Université de Strasbourg, 28 Rue Goethe, F-67083 Strasbourg Cedex, France.
| | | | | |
Collapse
|