1
|
Liu S, Li X, Zhu J, Jin Y, Xia C, Zheng B, Silvestri C, Cui F. Modern Technologies Provide New Opportunities for Somatic Hybridization in the Breeding of Woody Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2539. [PMID: 39339514 PMCID: PMC11434877 DOI: 10.3390/plants13182539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Advances in cell fusion technology have propelled breeding into the realm of somatic hybridization, enabling the transfer of genetic material independent of sexual reproduction. This has facilitated genome recombination both within and between species. Despite its use in plant breeding for over fifty years, somatic hybridization has been limited by cumbersome procedures, such as protoplast isolation, hybridized-cell selection and cultivation, and regeneration, particularly in woody perennial species that are difficult to regenerate. This review summarizes the development of somatic hybridization, explores the challenges and solutions associated with cell fusion technology in woody perennials, and outlines the process of protoplast regeneration. Recent advancements in genome editing and plant cell regeneration present new opportunities for applying somatic hybridization in breeding. We offer a perspective on integrating these emerging technologies to enhance somatic hybridization in woody perennial plants.
Collapse
Affiliation(s)
- Shuping Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaojie Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiani Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yihong Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Chuizheng Xia
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Cristian Silvestri
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo De Lellis, s.n.c., 01100 Viterbo, Italy
| | - Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Aleza P, Garavello MF, Rouiss H, Benedict AC, Garcia-Lor A, Hernández M, Navarro L, Ollitrault P. Inheritance pattern of tetraploids pummelo, mandarin, and their interspecific hybrid sour orange is highly influenced by their phylogenomic structure. FRONTIERS IN PLANT SCIENCE 2023; 14:1327872. [PMID: 38143579 PMCID: PMC10739408 DOI: 10.3389/fpls.2023.1327872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Citrus polyploidy is associated with a wide range of morphological, genetic, and physiological changes that are often advantageous for breeding. Citrus triploid hybrids are very interesting as new seedless varieties. However, tetraploid rootstocks promote adaptation to different abiotic stresses and promote resilience. Triploid and tetraploid hybrids can be obtained through sexual hybridizations using tetraploid parents (2x × 4x, 4x × 2x, or 4x × 4x), but more knowledge is needed about the inheritance pattern of tetraploid parents to optimize the efficiency of triploid varieties and tetraploid rootstock breeding strategies. In this work, we have analyzed the inheritance pattern of three tetraploid genotypes: 'Chandler' pummelo (Citrus maxima) and 'Cleopatra' mandarin (Citrus reticulata), which represent two clear examples of autotetraploid plants constituted by the genome of a single species, and the 'Sevillano' sour orange, which is an allotetraploid interspecific hybrid between C. maxima and C. reticulata. Polymorphic simple sequence repeat (SSR) and single-nucleotide polymorphism (SNP) markers were used to estimate parental heterozygosity restitution, and allele frequencies for centromeric loci were used to calculate the preferential pairing rate related to the proportion of disomic and tetrasomic segregation. The tetraploid pummelo and mandarin displayed tetrasomic segregation. Sour orange evidenced a clear intermediate inheritance for five of the nine chromosomes (1, 2, 5, 7, and 8), a slight tendency toward tetrasomic inheritance on chromosome 3, and intermediate inheritance with a tendency toward disomy for chromosomes 4, 6, and 9. These results indicate that the interspecific versus intraspecific phylogenomic origin affects preferential pairing and, therefore, the inheritance patterns. Despite its high level of heterozygosity, the important preferential chromosome pairing observed in sour orange results in a limited diversity of the genotypic variability of its diploid gametes, and consequently, a large part of the genetic value of the original diploid sour orange is transferred to the tetraploid progenies.
Collapse
Affiliation(s)
- Pablo Aleza
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Miguel Fernando Garavello
- Concordia Agricultural Experimental Station, National Agricultural Technology Institute, Concordia, Entre Ríos, Argentina
| | - Houssem Rouiss
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Ana Cristina Benedict
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Andres Garcia-Lor
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Maria Hernández
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Luis Navarro
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Patrick Ollitrault
- Centre de coopération internationale en recherche agronomique pour le développement Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (UMR AGAP) Institut, Montpellier, France
- AGAP Institut, Univ Montpellier, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
3
|
Calvez L, Dereeper A, Perdereau A, Mournet P, Miranda M, Bruyère S, Hufnagel B, Froelicher Y, Lemainque A, Morillon R, Ollitrault P. Meiotic Behaviors of Allotetraploid Citrus Drive the Interspecific Recombination Landscape, the Genetic Structures, and Traits Inheritance in Tetrazyg Progenies Aiming to Select New Rootstocks. PLANTS (BASEL, SWITZERLAND) 2023; 12:1630. [PMID: 37111854 PMCID: PMC10146282 DOI: 10.3390/plants12081630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Sexual breeding at the tetraploid level is a promising strategy for rootstock breeding in citrus. Due to the interspecific origin of most of the conventional diploid citrus rootstocks that produced the tetraploid germplasm, the optimization of this strategy requires better knowledge of the meiotic behavior of the tetraploid parents. This work used Genotyping By Sequencing (GBS) data from 103 tetraploid hybrids to study the meiotic behavior and generate a high-density recombination landscape for their tetraploid intergenic Swingle citrumelo and interspecific Volkamer lemon progenitors. A genetic association study was performed with root architecture traits. For citrumelo, high preferential chromosome pairing was revealed and led to an intermediate inheritance with a disomic tendency. Meiosis in Volkamer lemon was more complex than that of citrumelo, with mixed segregation patterns from disomy to tetrasomy. The preferential pairing resulted in low interspecific recombination levels and high interspecific heterozygosity transmission by the diploid gametes. This meiotic behavior affected the efficiency of Quantitative Trait Loci (QTL) detection. Nevertheless, it enabled a high transmission of disease and pest resistance candidate genes from P. trifoliata that are heterozygous in the citrumelo progenitor. The tetrazyg strategy, using doubled diploids of interspecific origin as parents, appears to be efficient in transferring the dominant traits selected at the parental level to the tetraploid progenies.
Collapse
Affiliation(s)
- Lény Calvez
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Alexis Dereeper
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Aude Perdereau
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, F-91000 Evry, France; (A.P.)
| | - Pierre Mournet
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| | - Maëva Miranda
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| | - Saturnin Bruyère
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Barbara Hufnagel
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Yann Froelicher
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-20230 San Giuliano, France
| | - Arnaud Lemainque
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, F-91000 Evry, France; (A.P.)
| | - Raphaël Morillon
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| | - Patrick Ollitrault
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| |
Collapse
|
4
|
Bowman KD, McCollum G, Seymour DK. Genetic modulation of Valencia sweet orange field performance by 50 rootstocks under huanglongbing-endemic conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1061663. [PMID: 36844073 PMCID: PMC9945190 DOI: 10.3389/fpls.2023.1061663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Although the citrus scion cultivar primarily determines the characteristics of the fruit, the rootstock cultivar of the graft combination has a major role in determining the horticultural performance of the tree. The disease huanglongbing (HLB) is particularly devastating to citrus, and the rootstock has been demonstrated to modulate tree tolerance. However, no existing rootstock is entirely suitable in the HLB-endemic environment, and citrus rootstocks are particularly challenging to breed because of a long life cycle and several biological characteristics that interfere with breeding and commercial use. This study with Valencia sweet orange scion documents the multi-season performance of 50 new hybrid rootstocks and commercial standards in one trial that forms the first wave of a new breeding strategy, with the aim of identifying superior rootstocks for commercial use now, and mapping important traits to be used in selection for the next generation of outstanding rootstocks. A large assortment of traits were quantified for all trees in the study, including traits associated with tree size, health, cropping, and fruit quality. Among the quantitative traits compared between rootstock clones, all except one were observed to have significant rootstock influence. Multiple progeny from eight different parental combinations were included in the trial study, and significant differences between parental combinations of the rootstocks were observed for 27 of the 32 traits compared. Pedigree information was integrated with quantitative trait measurements to dissect the genetic components of rootstock-mediated tree performance. Results suggest there is a significant genetic component underlying rootstock-mediated tolerance to HLB and other critical traits, and that integration of pedigree-based genetic information with quantitative phenotypic data from trials should enable marker-based breeding approaches for the rapid selection of next-generation rootstocks with superior combinations of traits that are needed for commercial success. The current generation of new rootstocks included in this trial is a step toward this goal. Based on results from this trial, the new hybrids US-1649, US-1688, US-1709, and US-2338 were considered the four most promising new rootstocks. Release of these rootstocks for commercial use is being considered, pending the evaluation of continuing performance in this trial and the results from other trials.
Collapse
Affiliation(s)
- Kim D. Bowman
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Ft. Pierce, FL, United States
| | - Greg McCollum
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Ft. Pierce, FL, United States
| | - Danelle K. Seymour
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
5
|
Guarino S, Mercati F, Fatta Del Bosco S, Motisi A, Abbate L. Rootstocks with Different Tolerance Grade to Citrus Tristeza Virus Induce Dissimilar Volatile Profile in Citrus sinensis and Avoidance Response in the Vector Aphis gossypii Glover. PLANTS (BASEL, SWITZERLAND) 2022; 11:3426. [PMID: 36559538 PMCID: PMC9788239 DOI: 10.3390/plants11243426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The citrus tristeza virus (CTV) is an agent of devastating epidemics of the citrus plant grafted on Citrus aurantium, one of the main rootstocks still used in the Mediterranean area. Consequently, CTV-tolerant alternative citrus rootstocks are considered necessary to manage this disease and/or its vector; that in Mediterranean countries is the aphid Aphis gossypii. In this study, we analyzed the VOCs emitted from Citrus sinensis plants grafted on the CTV-susceptible C. aurantium and on the CTV-tolerant Volkamer lemon, Forner-Alcaide no. 5, and Carrizo citrange. Furthermore, the aphid preference/avoidance response toward these combinations was evaluated in a semi-field experiment. The VOC profiles recorded on the leaves of C. sinensis grafted on the four rootstocks listed above showed significant differences in the abundances and ratios of the compounds emitted. The behavioral experiments indicated that A. gossypii prefers to orient and establish on the C. sinensis plants grafted on C. aurantium rather than on that grafted on the three CTV-tolerant varieties. The possibility that this avoidance mechanism is triggered by the different profile of the VOC emitted by the different combinations and the consequent susceptibility/tolerance shown toward CTV is discussed.
Collapse
|
6
|
Jin Y, Zhao Y, Ai S, Chen X, Liu X, Wang H, Han Y, Ma F, Li C. Induction of polyploid Malus prunifolia and analysis of its salt tolerance. TREE PHYSIOLOGY 2022; 42:2100-2115. [PMID: 35532080 DOI: 10.1093/treephys/tpac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/19/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The apple rootstock Malus prunifolia (Willd.) Borkh. is widely used for apple production. Because polyploid plants are often more tolerant to abiotic stress than diploids, we wondered whether polyploidy induction in M. prunifolia might improve its stress tolerance, particularly to high salinity. We used a combination of colchicine and dimethyl sulfoxide (DMSO) to induce chromosome doubling in M. prunifolia and identified the resulting polyploids by stomatal observations and flow cytometry. We found the best way to induce polyploidy in M. prunifolia was to use 2% DMSO and 0.05% colchicine for 2 days for leaves or 0.02% colchicine for stem segments. The results of hydroponic salt treatment showed that polyploid plants were more salt tolerant and had greater photosynthetic efficiency, thicker leaf epidermis and palisade tissues, and shorter but denser root systems than diploids. During salt stress, the polyploid leaves and roots accumulated less Na+, showed upregulated expression of three salt overly sensitive (SOS) pathway genes, and produced fewer reactive oxygen species. The polyploid plants also had considerably higher ABA and jasmonic acid levels than diploid plants under salt stress. Under normal growth conditions, gibberellins (GAs) levels were much lower in polyploid leaves than in diploid leaves; however, after salt treatment, polyploid leaves showed upregulation of essential GAs synthesis genes. In summary, we developed a system for the induction of polyploidy in M. prunifolia and response to salt stress of the resulting polyploids, as reflected in leaf and root morphology, changes in Na+ accumulation, antioxidant capacity and plant hormone levels.
Collapse
Affiliation(s)
- Yibo Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, P.R. China
| | - Yongjuan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, P.R. China
| | - Shukang Ai
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, P.R. China
| | - Xiujiao Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, P.R. China
| | - Xiaomin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, P.R. China
| | - Hongying Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, P.R. China
| | - Yunqi Han
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, P.R. China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, P.R. China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, P.R. China
| |
Collapse
|
7
|
Wang H, Dang J, Wu D, Xie Z, Yan S, Luo J, Guo Q, Liang G. Genotyping of polyploid plants using quantitative PCR: application in the breeding of white-fleshed triploid loquats (Eriobotrya japonica). PLANT METHODS 2021; 17:93. [PMID: 34479588 PMCID: PMC8418031 DOI: 10.1186/s13007-021-00792-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/24/2021] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ploidy manipulation is effective in seedless loquat breeding, in which flesh color is a key agronomic and economic trait. Few techniques are currently available for detecting the genotypes of polyploids in plants, but this ability is essential for most genetic research and molecular breeding. RESULTS We developed a system for genotyping by quantitative PCR (qPCR) that allowed flesh color genotyping in multiple tetraploid and triploid loquat varieties (lines). The analysis of 13 different ratios of DNA mixtures between two homozygous diploids (AA and aa) showed that the proportion of allele A has a high correlation (R2 = 0.9992) with parameter b [b = a1/(a1 + a2)], which is derived from the two normalized allele signals (a1 and a2) provided by qPCR. Cluster analysis and variance analysis from simulating triploid and tetraploid hybrids provided completely correct allelic configurations. Four genotypes (AAA, AAa, Aaa, aaa) were found in triploid loquats, and four (AAAA, AAAa, AAaa, Aaaa; absence of aaaa homozygotes) were found in tetraploid loquats. DNA markers analysis showed that the segregation of flesh color in all F1 hybrids conformed to Mendel's law. When tetraploid B431 was the female parent, more white-fleshed triploids occurred among the progeny. CONCLUSIONS qPCR can detect the flesh color genotypes of loquat polyploids and provides an alternative method for analyzing polyploid genotype and breeding, dose effects and allele-specific expression.
Collapse
Affiliation(s)
- Haiyan Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Jiangbo Dang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Di Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Zhongyi Xie
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Shuang Yan
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Jingnan Luo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China.
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
8
|
Bowman KD, McCollum G, Albrecht U. SuperSour: A New Strategy for Breeding Superior Citrus Rootstocks. FRONTIERS IN PLANT SCIENCE 2021; 12:741009. [PMID: 34804088 PMCID: PMC8600239 DOI: 10.3389/fpls.2021.741009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/14/2021] [Indexed: 05/02/2023]
Abstract
Citrus crops have a long history of cultivation as grafted trees on selected rootstock cultivars, but all current rootstocks have significant limitations and traditional methods of rootstock breeding take at least 2-3 decades to develop and field test new rootstocks. Citrus production in the United States, and other parts of the world, is impaired by a wide range of biotic and abiotic problems, with especially severe damage caused by the disease huanglongbing (HLB) associated with Candidatus Liberibacter asiaticus. All major commercial citrus scion cultivars are damaged by HLB, but tree tolerance is significantly improved by some rootstocks. To overcome these challenges, the USDA citrus breeding program has implemented a multi-pronged strategy for rootstock breeding that expands the diversity of germplasm utilized in rootstock breeding, significantly increases the number of new hybrids evaluated concurrently, and greatly reduces the time from cross to potential cultivar release. We describe the key components and methodologies of this new strategy, termed "SuperSour," along with reference to the historical favorite rootstock sour orange (Citrus aurantium), and previous methods employed in citrus rootstock breeding. Rootstock propagation by cuttings and tissue culture is one key to the new strategy, and by avoiding the need for nucellar seeds, eliminates the 6- to 15-year delay in testing while waiting for new hybrids to fruit. In addition, avoiding selection of parents and progeny based on nucellar polyembryony vastly expands the potential genepool for use in rootstock improvement. Fifteen new field trials with more than 350 new hybrid rootstocks have been established under the SuperSour strategy in the last 8 years. Detailed multi-year performance data from the trials will be used to identify superior rootstocks for commercial release, and to map important traits and develop molecular markers for the next generation of rootstock development. Results from two of these multi-year replicated field trials with sweet orange scion are presented to illustrate performance of 97 new hybrid rootstocks relative to four commercial rootstocks. Through the first 7 years in the field with endemic HLB, many of the new SuperSour hybrid rootstocks exhibit greatly superior fruit yield, yield efficiency, canopy health, and fruit quality, as compared with the standard rootstocks included in the trials.
Collapse
Affiliation(s)
- Kim D. Bowman
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Ft. Pierce, FL, United States
- *Correspondence: Kim D. Bowman,
| | - Greg McCollum
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Ft. Pierce, FL, United States
| | - Ute Albrecht
- Southwest Florida Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Immokalee, FL, United States
| |
Collapse
|
9
|
Wei T, Wang Y, Liu JH. Comparative transcriptome analysis reveals synergistic and disparate defense pathways in the leaves and roots of trifoliate orange ( Poncirus trifoliata) autotetraploids with enhanced salt tolerance. HORTICULTURE RESEARCH 2020; 7:88. [PMID: 32528700 PMCID: PMC7261775 DOI: 10.1038/s41438-020-0311-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 05/06/2023]
Abstract
Polyploid plants often exhibit enhanced stress tolerance relative to their diploid counterparts, but the physiological and molecular mechanisms of this enhanced stress tolerance remain largely unknown. In this study, we showed that autotetraploid trifoliate orange (Poncirus trifoliata (L.) Raf.) exhibited enhanced salt tolerance in comparison with diploid progenitors. Global transcriptome profiling of diploid and tetraploid plants with or without salt stress by RNA-seq revealed that the autotetraploids displayed specific enrichment of differentially expressed genes. Interestingly, the leaves and roots of tetraploids exhibited different expression patterns of a variety of upregulated genes. Genes related to plant hormone signal transduction were enriched in tetraploid leaves, whereas those associated with starch and sucrose metabolism and proline biosynthesis were enriched in roots. In addition, genes encoding different antioxidant enzymes were upregulated in the leaves (POD) and roots (APX) of tetraploids under salt stress. Consistently, the tetraploids accumulated higher levels of soluble sugars and proline but less ROS under salt stress compared to the diploids. Moreover, several genes encoding transcription factors were induced specifically or to higher levels in the tetraploids under salt stress. Collectively, this study demonstrates that the activation of various multifaceted defense systems in leaves and roots contributes to the enhanced salt tolerance of autotetraploids.
Collapse
Affiliation(s)
- Tonglu Wei
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
10
|
Ruiz M, Oustric J, Santini J, Morillon R. Synthetic Polyploidy in Grafted Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:540894. [PMID: 33224156 PMCID: PMC7674608 DOI: 10.3389/fpls.2020.540894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/28/2020] [Indexed: 05/05/2023]
Abstract
Synthetic polyploids have been extensively studied for breeding in the last decade. However, the use of such genotypes at the agronomical level is still limited. Polyploidization is known to modify certain plant phenotypes, while leaving most of the fundamental characteristics apparently untouched. For this reason, polyploid breeding can be very useful for improving specific traits of crop varieties, such as quality, yield, or environmental adaptation. Nevertheless, the mechanisms that underlie polyploidy-induced novelty remain poorly understood. Ploidy-induced phenotypes might also include some undesired effects that need to be considered. In the case of grafted or composite crops, benefits can be provided both by the rootstock's adaptation to the soil conditions and by the scion's excellent yield and quality. Thus, grafted crops provide an extraordinary opportunity to exploit artificial polyploidy, as the effects can be independently applied and explored at the root and/or scion level, increasing the chances of finding successful combinations. The use of synthetic tetraploid (4x) rootstocks may enhance adaptation to biotic and abiotic stresses in perennial crops such as apple or citrus. However, their use in commercial production is still very limited. Here, we will review the current and prospective use of artificial polyploidy for rootstock and scion improvement and the implications of their combination. The aim is to provide insight into the methods used to generate and select artificial polyploids and their limitations, the effects of polyploidy on crop phenotype (anatomy, function, quality, yield, and adaptation to stresses) and their potential agronomic relevance as scions or rootstocks in the context of climate change.
Collapse
Affiliation(s)
- Marta Ruiz
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Julie Oustric
- Laboratoire Biochimie et Biologie Moléculaire du Végétal, CNRS, UMR 6134 SPE, Université de Corse, Corte, France
| | - Jérémie Santini
- Laboratoire Biochimie et Biologie Moléculaire du Végétal, CNRS, UMR 6134 SPE, Université de Corse, Corte, France
| | - Raphaël Morillon
- CIRAD, UMR AGAP, Equipe SEAPAG, F-97170 Petit-Bourg, Guadeloupe, France - AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- *Correspondence: Raphaël Morillon,
| |
Collapse
|
11
|
Wei T, Wang Y, Xie Z, Guo D, Chen C, Fan Q, Deng X, Liu J. Enhanced ROS scavenging and sugar accumulation contribute to drought tolerance of naturally occurring autotetraploids in Poncirus trifoliata. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1394-1407. [PMID: 30578709 PMCID: PMC6576089 DOI: 10.1111/pbi.13064] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 05/20/2023]
Abstract
Tetraploids have been reported to exhibit increased stress tolerance, but the underlying molecular and physiological mechanisms remain poorly understood. In this study, autotetraploid plants were identified by screening natural seedlings of trifoliate orange (Poncirus trifoliata). The tetraploids exhibited different morphology and displayed significantly enhanced drought and dehydration tolerance in comparison with the diploid progenitor. Transcriptome analysis indicated that a number of stress-responsive genes and pathways were differentially influenced and enriched in the tetraploids, in particular those coding for enzymes related to antioxidant process and sugar metabolism. Transcript levels and activities of antioxidant enzymes (peroxidase and superoxide dismutase) and sucrose-hydrolysing enzyme (vacuolar invertase) were increased in the tetraploids upon exposure to the drought, concomitant with greater levels of glucose but lower level of reactive oxygen species (ROS). These data indicate that the tetraploids might undergo extensive transcriptome reprogramming of genes involved in ROS scavenging and sugar metabolism, which contributes, synergistically or independently, to the enhanced stress tolerance of the tetraploid. Our results reveal that the tetraploids take priority over the diploid for stress tolerance by maintaining a more robust system of ROS detoxification and osmotic adjustment via elevating antioxidant capacity and sugar accumulation in comparison with the diploid counterpart.
Collapse
Affiliation(s)
- Tonglu Wei
- Key Laboratory of Horticultural Plant Biology (MOE)College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE)College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (MOE)College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Dayong Guo
- Key Laboratory of Horticultural Plant Biology (MOE)College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Chuanwu Chen
- Guangxi Key Laboratory of Citrus BiologyGuangxi Academy of Specialty CropsGuilinChina
| | - Qijun Fan
- Guangxi Key Laboratory of Citrus BiologyGuangxi Academy of Specialty CropsGuilinChina
| | - Xiaodong Deng
- Key Laboratory of Horticultural Plant Biology (MOE)College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Ji‐Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE)College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
12
|
De Ollas C, Morillón R, Fotopoulos V, Puértolas J, Ollitrault P, Gómez-Cadenas A, Arbona V. Facing Climate Change: Biotechnology of Iconic Mediterranean Woody Crops. FRONTIERS IN PLANT SCIENCE 2019; 10:427. [PMID: 31057569 PMCID: PMC6477659 DOI: 10.3389/fpls.2019.00427] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
The Mediterranean basin is especially sensitive to the adverse outcomes of climate change and especially to variations in rainfall patterns and the incidence of extremely high temperatures. These two concurring adverse environmental conditions will surely have a detrimental effect on crop performance and productivity that will be particularly severe on woody crops such as citrus, olive and grapevine that define the backbone of traditional Mediterranean agriculture. These woody species have been traditionally selected for traits such as improved fruit yield and quality or alteration in harvesting periods, leaving out traits related to plant field performance. This is currently a crucial aspect due to the progressive and imminent effects of global climate change. Although complete genome sequence exists for sweet orange (Citrus sinensis) and clementine (Citrus clementina), olive tree (Olea europaea) and grapevine (Vitis vinifera), the development of biotechnological tools to improve stress tolerance still relies on the study of the available genetic resources including interspecific hybrids, naturally occurring (or induced) polyploids and wild relatives under field conditions. To this respect, post-genomic era studies including transcriptomics, metabolomics and proteomics provide a wide and unbiased view of plant physiology and biochemistry under adverse environmental conditions that, along with high-throughput phenotyping, could contribute to the characterization of plant genotypes exhibiting physiological and/or genetic traits that are correlated to abiotic stress tolerance. The ultimate goal of precision agriculture is to improve crop productivity, in terms of yield and quality, making a sustainable use of land and water resources under adverse environmental conditions using all available biotechnological tools and high-throughput phenotyping. This review focuses on the current state-of-the-art of biotechnological tools such as high throughput -omics and phenotyping on grapevine, citrus and olive and their contribution to plant breeding programs.
Collapse
Affiliation(s)
- Carlos De Ollas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Raphaël Morillón
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Petit-Bourg, France
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Jaime Puértolas
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Patrick Ollitrault
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), San-Giuliano, France
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
13
|
Oustric J, Morillon R, Luro F, Herbette S, Martin P, Giannettini J, Berti L, Santini J. Nutrient Deficiency Tolerance in Citrus Is Dependent on Genotype or Ploidy Level. FRONTIERS IN PLANT SCIENCE 2019; 10:127. [PMID: 30853962 PMCID: PMC6396732 DOI: 10.3389/fpls.2019.00127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/24/2019] [Indexed: 05/17/2023]
Abstract
Plants require essential minerals for their growth and development that are mainly acquired from soil by their roots. Nutrient deficiency is an environmental stress that can seriously affect fruit production and quality. In citrus crops, rootstock/scion combinations are frequently employed to enhance tolerance to various abiotic stresses. These tolerances can be improved in doubled diploid genotypes. The aim of this work was to compare the impact of nutrient deficiency on the physiological and biochemical response of diploid (2x) and doubled diploid (4x) citrus seedlings: Volkamer lemon, Trifoliate orange × Cleopatra mandarin hybrid, Carrizo citrange, Citrumelo 4475. Flhorag1 (Poncirus trifoliata + and willow leaf mandarin), an allotetraploid somatic hybrid, was also included in this study. Our results showed that depending on the genotype, macronutrient and micronutrient deficiency affected certain physiological traits and oxidative metabolism differently. Tetraploid genotypes, mainly Flhorag1 and Citrumelo 4475, appeared resistant compared to the other genotypes as indicated by the lesser decrease in photosynthetic parameters (P net, F v/F m, and G s) and the lower accumulation of oxidative markers (MDA and H2O2) in roots and leaves, especially after long-term nutrient deficiency. Their higher tolerance to nutrient deficiency could be explained by better activation of their antioxidant system. For the other genotypes, tetraploidization did not induce greater tolerance to nutrient deficiency.
Collapse
Affiliation(s)
- Julie Oustric
- CNRS, Laboratoire Biochimie and Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Raphaël Morillon
- Equipe “Amélioration des Plantes à Multiplication Végétative”, UMR AGAP, Département BIOS, CIRAD, Petit-Bourg, Guadeloupe
| | - François Luro
- UMR AGAP Corse, Station INRA/CIRAD, San-Giuliano, France
| | | | | | - Jean Giannettini
- CNRS, Laboratoire Biochimie and Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Liliane Berti
- CNRS, Laboratoire Biochimie and Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Jérémie Santini
- CNRS, Laboratoire Biochimie and Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| |
Collapse
|
14
|
Kamiri M, Stift M, Costantino G, Dambier D, Kabbage T, Ollitrault P, Froelicher Y. Preferential Homologous Chromosome Pairing in a Tetraploid Intergeneric Somatic Hybrid ( Citrus reticulata + Poncirus trifoliata) Revealed by Molecular Marker Inheritance. FRONTIERS IN PLANT SCIENCE 2018; 9:1557. [PMID: 30450106 PMCID: PMC6224360 DOI: 10.3389/fpls.2018.01557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/04/2018] [Indexed: 05/23/2023]
Abstract
The creation of intergeneric somatic hybrids between Citrus and Poncirus is an efficient approach for citrus rootstock breeding, offering the possibility of combining beneficial traits from both genera into novel rootstock lineages. These somatic hybrids are also used as parents for further tetraploid sexual breeding. In order to optimize these latter breeding schemes, it is essential to develop knowledge on the mode of inheritance in the intergeneric tetraploid hybrids. We assessed the meiotic behavior of an intergeneric tetraploid somatic hybrid resulting from symmetric protoplast fusion of diploid Citrus reticulata and diploid Poncirus trifoliata. The analysis was based on the segregation patterns of 16 SSR markers and 9 newly developed centromeric/pericentromeric SNP markers, representing all nine linkage groups of the Citrus genetic map. We found strong but incomplete preferential pairing between homologues of the same ancestral genome. The proportion of gametes that can be explained by random meiotic chromosome associations (τ) varied significantly between chromosomes, from 0.09 ± 0.02 to 0.47 ± 0.09, respectively, in chromosome 2 and 1. This intermediate inheritance between strict disomy and tetrasomy, with global preferential disomic tendency, resulted in a high level of intergeneric heterozygosity of the diploid gametes. Although limited, intergeneric recombinations occurred, whose observed rates, ranging from 0.09 to 0.29, respectively, in chromosome 2 and 1, were significantly correlated with τ. Such inheritance is of particular interest for rootstock breeding because a large part of the multi-trait value selected at the teraploid parent level is transmitted to the progeny, while the potential for some intergeneric recombination offers opportunities for generating plants with novel allelic combinations that can be targeted by selection.
Collapse
Affiliation(s)
| | - Marc Stift
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Faddetta T, Abbate L, Renzone G, Palumbo Piccionello A, Maggio A, Oddo E, Scaloni A, Puglia AM, Gallo G, Carimi F, Fatta Del Bosco S, Mercati F. An integrated proteomic and metabolomic study to evaluate the effect of nucleus-cytoplasm interaction in a diploid citrus cybrid between sweet orange and lemon. PLANT MOLECULAR BIOLOGY 2018; 98:407-425. [PMID: 30341661 DOI: 10.1007/s11103-018-0787-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Our results provide a comprehensive overview how the alloplasmic condition might lead to a significant improvement in citrus plant breeding, developing varieties more adaptable to a wide range of conditions. Citrus cybrids resulting from somatic hybridization hold great potential in plant improvement. They represent effective products resulting from the transfer of organelle-encoded traits into cultivated varieties. In these cases, the plant coordinated array of physiological, biochemical, and molecular functions remains the result of integration among different signals, which derive from the compartmentalized genomes of nucleus, plastids and mitochondria. To dissect the effects of genome rearrangement into cybrids, a multidisciplinary study was conducted on a diploid cybrid (C2N), resulting from a breeding program aimed to improve interesting agronomical traits for lemon, the parental cultivars 'Valencia' sweet orange (V) and 'femminello' lemon (F), and the corresponding somatic allotetraploid hybrid (V + F). In particular, a differential proteomic analysis, based on 2D-DIGE and MS procedures, was carried out on leaf proteomes of C2N, V, F and V + F, using the C2N proteome as pivotal condition. This investigation revealed differentially represented protein patterns that can be associated with genome rearrangement and cell compartment interplay. Interestingly, most of the up-regulated proteins in the cybrid are involved in crucial biological processes such as photosynthesis, energy production and stress tolerance response. The cybrid differential proteome pattern was concomitant with a general increase of leaf gas exchange and content of volatile organic compounds, highlighting a stimulation of specific pathways that can be related to observed plant performances. Our results contribute to a better understanding how the alloplasmic condition might lead to a substantial improvement in plant breeding, opening new opportunities to develop varieties more adaptable to a wide range of conditions.
Collapse
Affiliation(s)
- Teresa Faddetta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- Advanced Technologies Network (ATeN) Center, University of Palermo, Palermo, Italy
| | - Loredana Abbate
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Palermo, Italy
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Elisabetta Oddo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Anna Maria Puglia
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Giuseppe Gallo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- Advanced Technologies Network (ATeN) Center, University of Palermo, Palermo, Italy
| | - Francesco Carimi
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Palermo, Italy
| | - Sergio Fatta Del Bosco
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Palermo, Italy
| | - Francesco Mercati
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Palermo, Italy.
| |
Collapse
|
16
|
Ruiz M, Pensabene-Bellavia G, Quiñones A, García-Lor A, Morillon R, Ollitrault P, Primo-Millo E, Navarro L, Aleza P. Molecular Characterization and Stress Tolerance Evaluation of New Allotetraploid Somatic Hybrids Between Carrizo Citrange and Citrus macrophylla W. rootstocks. FRONTIERS IN PLANT SCIENCE 2018; 9:901. [PMID: 30123223 PMCID: PMC6085489 DOI: 10.3389/fpls.2018.00901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/07/2018] [Indexed: 05/18/2023]
Abstract
Polyploidy is one of the main forces that drives the evolution of plants and provides great advantages for breeding. Somatic hybridization by protoplast fusion is used in citrus breeding programs. This method allows combining the whole parental genomes in a single genotype, adding complementary dominant characters, regardless of parental heterozygosity. It also contributes to surpass limitations imposed by reproductive biology and quickly generates progenies that combine the required traits. Two allotetraploid somatic hybrids recovered from the citrus rootstocks-Citrus macrophylla (CM) and Carrizo citrange (CC)-were characterized for morphology, genome composition using molecular markers (SNP, SSR, and InDel), and their tolerance to iron chlorosis, salinity, and Citrus tristeza virus (CTV). Both hybrids combine the whole parental genomes even though the loss of parental alleles was detected in most linkage groups. Mitochondrial genome was inherited from CM in both the hybrids, whereas recombination was observed for chloroplastic genome. Thus, somatic hybrids differ from each other in their genome composition, indicating that losses and rearrangements occurred during the fusion process. Both inherited the tolerance to stem pitting caused by CTV from CC, are tolerant to iron chlorosis such as CM, and have a higher tolerance to salinity than the sensitive CC. These hybrids have potential as improved rootstocks to grow citrus in areas with calcareous and saline soils where CTV is present, such as the Mediterranean region. The provided knowledge on the effects of somatic hybridization on the genome composition, anatomy, and physiology of citrus rootstocks will be key for breeding programs that aim to address current and future needs of the citrus industry.
Collapse
Affiliation(s)
- Marta Ruiz
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Giovanni Pensabene-Bellavia
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Ana Quiñones
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Andrés García-Lor
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Raphaël Morillon
- UMR AGAP, Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, Montpellier, France
| | - Patrick Ollitrault
- UMR AGAP, Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, Montpellier, France
| | - Eduardo Primo-Millo
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Luis Navarro
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| |
Collapse
|
17
|
Ayadi M, Hanana M, Kharrat N, Merchaoui H, Marzoug RB, Lauvergeat V, Rebaï A, Mzid R. The WRKY Transcription Factor Family in Citrus: Valuable and Useful Candidate Genes for Citrus Breeding. Appl Biochem Biotechnol 2016; 180:516-543. [PMID: 27193354 DOI: 10.1007/s12010-016-2114-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/05/2016] [Indexed: 11/28/2022]
Abstract
WRKY transcription factors belong to a large family of plant transcriptional regulators whose members have been reported to be involved in a wide range of biological roles including plant development, adaptation to environmental constraints and response to several diseases. However, little or poor information is available about WRKY's in Citrus. The recent release of completely assembled genomes sequences of Citrus sinensis and Citrus clementina and the availability of ESTs sequences from other citrus species allowed us to perform a genome survey for Citrus WRKY proteins. In the present study, we identified 100 WRKY members from C. sinensis (51), C. clementina (48) and Citrus unshiu (1), and analyzed their chromosomal distribution, gene structure, gene duplication, syntenic relation and phylogenetic analysis. A phylogenetic tree of 100 Citrus WRKY sequences with their orthologs from Arabidopsis has distinguished seven groups. The CsWRKY genes were distributed across all ten sweet orange chromosomes. A comprehensive approach and an integrative analysis of Citrus WRKY gene expression revealed variable profiles of expression within tissues and stress conditions indicating functional diversification. Thus, candidate Citrus WRKY genes have been proposed as potentially involved in fruit acidification, essential oil biosynthesis and abiotic/biotic stress tolerance. Our results provided essential prerequisites for further WRKY genes cloning and functional analysis with an aim of citrus crop improvement.
Collapse
Affiliation(s)
- M Ayadi
- Laboratory of Extremophile Plants. Center of Biotechnology of Borj-Cédria (CBBC), BP 901, Hammam-lif, 2050, Tunisia. .,Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Road, P.O. Box 1177, 3018, Sfax, Tunisia.
| | - M Hanana
- Laboratory of Extremophile Plants. Center of Biotechnology of Borj-Cédria (CBBC), BP 901, Hammam-lif, 2050, Tunisia
| | - N Kharrat
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Road, P.O. Box 1177, 3018, Sfax, Tunisia
| | - H Merchaoui
- Laboratory of Extremophile Plants. Center of Biotechnology of Borj-Cédria (CBBC), BP 901, Hammam-lif, 2050, Tunisia
| | - R Ben Marzoug
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Road, P.O. Box 1177, 3018, Sfax, Tunisia
| | - V Lauvergeat
- Unit 'Ecophysiology and Grape Functional Genomics' Institute of Vine and Wine Sciences, INRA Bordeaux-Aquitaine, 210 Chemin de Leysotte - CS 50008, 33882, Villenave d'Ornon Cedex, France
| | - A Rebaï
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Road, P.O. Box 1177, 3018, Sfax, Tunisia
| | - R Mzid
- Laboratory of Extremophile Plants. Center of Biotechnology of Borj-Cédria (CBBC), BP 901, Hammam-lif, 2050, Tunisia
| |
Collapse
|
18
|
Eeckhaut T, Lakshmanan PS, Deryckere D, Van Bockstaele E, Van Huylenbroeck J. Progress in plant protoplast research. PLANTA 2013; 238:991-1003. [PMID: 23955146 DOI: 10.1007/s00425-013-1936-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
In this review we focus on recent progress in protoplast regeneration, symmetric and asymmetric hybridization and novel technology developments. Regeneration of new species and improved culture techniques opened new horizons for practical breeding in a number of crops. The importance of protoplast sources and embedding systems is discussed. The study of reactive oxygen species effects and DNA (de)condensation, along with thorough phytohormone monitoring, are in our opinion the most promising research topics in the further strive for rationalization of protoplast regeneration. Following, fusion and fragmentation progress is summarized. Genomic, transcriptomic and proteomic studies have led to better insights in fundamental processes such as cell wall formation, cell development and chromosome rearrangements in fusion products, whether or not obtained after irradiation. Advanced molecular screening methods of both genome and cytoplasmome facilitate efficient screening of both symmetric and asymmetric fusion products. We expect that emerging technologies as GISH, high resolution melting and next generation sequencing will pay major contributions to our insights of genome creation and stabilization, mainly after asymmetric hybridization. Finally, we demonstrate agricultural valorization of somatic hybridization through enumerating recent introgression of diverse traits in a number of commercial crops.
Collapse
Affiliation(s)
- Tom Eeckhaut
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090, Melle, Belgium.
| | - Prabhu Shankar Lakshmanan
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090, Melle, Belgium
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Dieter Deryckere
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090, Melle, Belgium
| | - Erik Van Bockstaele
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090, Melle, Belgium
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Johan Van Huylenbroeck
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090, Melle, Belgium
| |
Collapse
|
19
|
Allario T, Brumos J, Colmenero-Flores JM, Iglesias DJ, Pina JA, Navarro L, Talon M, Ollitrault P, Morillon R. Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production. PLANT, CELL & ENVIRONMENT 2013; 36:856-68. [PMID: 23050986 DOI: 10.1111/pce.12021] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Whole-genome duplication, or polyploidy, is common in many plant species and often leads to better adaptation to adverse environmental condition. However, little is known about the physiological and molecular determinants underlying adaptation. We examined the drought tolerance in diploid (2x) and autotetraploid (4x) clones of Rangpur lime (Citrus limonia) rootstocks grafted with 2x Valencia Delta sweet orange (Citrus sinensis) scions, named V/2xRL and V/4xRL, respectively. Physiological experiments to study root-shoot communication associated with gene expression studies in roots and leaves were performed. V/4xRL was much more tolerant to water deficit than V/2xRL. Gene expression analysis in leaves and roots showed that more genes related to the response to water stress were differentially expressed in V/2xRL than in V/4xRL. Prior to the stress, when comparing V/4xRL to V/2xRL, V/4xRL leaves had lower stomatal conductance and greater abscisic acid (ABA) content. In roots, ABA content was higher in V/4xRL and was associated to a greater expression of drought responsive genes, including CsNCED1, a pivotal regulatory gene of ABA biosynthesis. We conclude that tetraploidy modifies the expression of genes in Rangpur lime citrus roots to regulate long-distance ABA signalling and adaptation to stress.
Collapse
Affiliation(s)
- Thierry Allario
- Centre de Coopération Internationale en Recherche Agronomique pour Développement, UMR Amélioration Génétique et Adaptation des Plantes
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cuenca J, Aleza P, Navarro L, Ollitrault P. Assignment of SNP allelic configuration in polyploids using competitive allele-specific PCR: application to citrus triploid progeny. ANNALS OF BOTANY 2013; 111:731-42. [PMID: 23422023 PMCID: PMC3605964 DOI: 10.1093/aob/mct032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/04/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Polyploidy is a major component of eukaryote evolution. Estimation of allele copy numbers for molecular markers has long been considered a challenge for polyploid species, while this process is essential for most genetic research. With the increasing availability and whole-genome coverage of single nucleotide polymorphism (SNP) markers, it is essential to implement a versatile SNP genotyping method to assign allelic configuration efficiently in polyploids. SCOPE This work evaluates the usefulness of the KASPar method, based on competitive allele-specific PCR, for the assignment of SNP allelic configuration. Citrus was chosen as a model because of its economic importance, the ongoing worldwide polyploidy manipulation projects for cultivar and rootstock breeding, and the increasing availability of SNP markers. CONCLUSIONS Fifteen SNP markers were successfully designed that produced clear allele signals that were in agreement with previous genotyping results at the diploid level. The analysis of DNA mixes between two haploid lines (Clementine and pummelo) at 13 different ratios revealed a very high correlation (average = 0·9796; s.d. = 0·0094) between the allele ratio and two parameters [θ angle = tan(-1) (y/x) and y' = y/(x + y)] derived from the two normalized allele signals (x and y) provided by KASPar. Separated cluster analysis and analysis of variance (ANOVA) from mixed DNA simulating triploid and tetraploid hybrids provided 99·71 % correct allelic configuration. Moreover, triploid populations arising from 2n gametes and interploid crosses were easily genotyped and provided useful genetic information. This work demonstrates that the KASPar SNP genotyping technique is an efficient way to assign heterozygous allelic configurations within polyploid populations. This method is accurate, simple and cost-effective. Moreover, it may be useful for quantitative studies, such as relative allele-specific expression analysis and bulk segregant analysis.
Collapse
Affiliation(s)
- José Cuenca
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
| | - Pablo Aleza
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
| | - Luis Navarro
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
- For correspondence. E-mail or
| | - Patrick Ollitrault
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada (Valencia), Spain
- UMR AGAP, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), TA A-108/02, 34398 Montpellier, Cedex 5, France
- For correspondence. E-mail or
| |
Collapse
|
21
|
Comparative transcript profiling of a male sterile cybrid pummelo and its fertile type revealed altered gene expression related to flower development. PLoS One 2012; 7:e43758. [PMID: 22952758 PMCID: PMC3429507 DOI: 10.1371/journal.pone.0043758] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/25/2012] [Indexed: 11/19/2022] Open
Abstract
Male sterile and seedless characters are highly desired for citrus cultivar improvement. In our breeding program, a male sterile cybrid pummelo, which could be considered as a variant of male fertile pummelo, was produced by protoplast fusion. Herein, ecotopic stamen primordia initiation and development were detected in this male sterile cybrid pummelo. Histological studies revealed that the cybrid showed reduced petal development in size and width, and retarded stamen primordia development. Additionally, disorganized cell proliferation was also detected in stamen-like structures (fused to petals and/or carpel). To gain new insight into the underlying mechanism, we compared, by RNA-Seq analysis, the nuclear gene expression profiles of floral buds of the cybrid with that of fertile pummelo. Gene expression profiles which identified a large number of differentially expressed genes (DEGs) between the two lines were captured at both petal primordia and stamen primordia distinguishable stages. For example, nuclear genes involved in nucleic acid binding and response to hormone synthesis and metabolism, genes required for floral bud identification and expressed in particular floral whorls. Furthermore, in accordance with flower morphology of the cybrid, expression of PISTILLATA (PI) was reduced in stamen-like structures, even though it was restricted to correct floral whorls. Down-regulated expression of APETALA3 (AP3) coincided with that of PI. These finding indicated that, due to their whorl specific effects in flower development, citrus class-B MADS-box genes likely constituted ‘perfect targets’ for CMS retrograde signaling, and that dysfunctional mitochondria seemed to cause male sterile phenotype in the cybrid pummelo.
Collapse
|
22
|
Prange ANS, Bartsch M, Meiners J, Serek M, Winkelmann T. Interspecific somatic hybrids between Cyclamen persicum and C. coum, two sexually incompatible species. PLANT CELL REPORTS 2012; 31:723-35. [PMID: 22108718 DOI: 10.1007/s00299-011-1190-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/19/2011] [Accepted: 11/08/2011] [Indexed: 05/21/2023]
Abstract
By applying polyethylene glycol (PEG)-mediated protoplast fusion, the first somatic hybrids were obtained between Cyclamen persicum (2n = 2x = 48) and C. coum (2n = 2x = 30)-two species that cannot be combined by cross breeding. Heterofusion was detected by double fluorescent staining with fluorescein diacetate and scopoletin. The highest heterofusion frequencies (of about 5%) resulted from a protocol using a protoplast density of 1 × 10(6)/mL and 40% PEG. The DNA content of C. coum was estimated for the first time by propidium iodide staining to be 14.7 pg/2C and was 4.6 times higher than that of C. persicum. Among 200 in vitro plantlets regenerated from fusion experiments, most resembled the C. coum parent, whereas only 5 plants showed typical C. persicum phenotypes and 46 had a deviating morphology. By flow cytometry, six putative somatic hybrids were identified. A species-specific DNA marker was developed based on the sequence of the 5.8S gene in the ribosomal nuclear DNA and its flanking internal transcribed spacers ITS1 and ITS2. The hybrid status of only one plant could be verified by the species-specific DNA marker as well as sequencing of the amplification product. RAPD markers turned out to be less informative and applicable for hybrid identification, as no clear additivity of the parental marker bands was observed. Chromosome counting in root tips of four hybrids revealed the presence of the 30 C. coum chromosomes and 2-41 additional ones indicating elimination of C. persicum chromosomes.
Collapse
Affiliation(s)
- Anika Nadja Sabine Prange
- Institute of Floriculture and Woody Plant Science, Gottfried Wilhelm Leibniz Universitaet Hannover, Herrenhaeuser Str. 2, 30419 Hannover, Germany
| | | | | | | | | |
Collapse
|
23
|
Snoussi H, Duval MF, Garcia-Lor A, Belfalah Z, Froelicher Y, Risterucci AM, Perrier X, Jacquemoud-Collet JP, Navarro L, Harrabi M, Ollitrault P. Assessment of the genetic diversity of the Tunisian citrus rootstock germplasm. BMC Genet 2012; 13:16. [PMID: 22429788 PMCID: PMC3323426 DOI: 10.1186/1471-2156-13-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 03/19/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Citrus represents a substantial income for farmers in the Mediterranean Basin. However, the Mediterranean citrus industry faces increasing biotic and abiotic constraints. Therefore the breeding and selection of new rootstocks are now of the utmost importance. In Tunisia, in addition to sour orange, the most widespread traditional rootstock of the Mediterranean area, other citrus rootstocks and well adapted to local environmental conditions, are traditionally used and should be important genetic resources for breeding. To characterize the diversity of Tunisian citrus rootstocks, two hundred and one local accessions belonging to four facultative apomictic species (C. aurantium, sour orange; C. sinensis, orange; C. limon, lemon; and C. aurantifolia, lime) were collected and genotyped using 20 nuclear SSR markers and four indel mitochondrial markers. Multi-locus genotypes (MLGs) were compared to references from French and Spanish collections. RESULTS The differentiation of the four varietal groups was well-marked. The groups displayed a relatively high allelic diversity, primarily due to very high heterozygosity. Sixteen distinct MLGs were identified. Ten of these were noted in sour oranges. However, the majority of the analysed sour orange accessions corresponded with only two MLGs, differentiated by a single allele, likely due to a mutation. The most frequent MLG is shared with the reference sour oranges. No polymorphism was found within the sweet orange group. Two MLGs, differentiated by a single locus, were noted in lemon. The predominant MLG was shared with the reference lemons. Limes were represented by three genotypes. Two corresponded to the 'Mexican lime' and 'limonette de Marrakech' references. The MLG of 'Chiiri' lime was unique. CONCLUSIONS The Tunisian citrus rootstock genetic diversity is predominantly due to high heterozygosity and differentiation between the four varietal groups. The phenotypic diversity within the varietal groups has resulted from multiple introductions, somatic mutations and rare sexual recombination events. Finally, this diversity study enabled the identification of a core sample of accessions for further physiological and agronomical evaluations. These core accessions will be integrated into citrus rootstock breeding programs for the Mediterranean Basin.
Collapse
Affiliation(s)
- Hager Snoussi
- Horticultural Laboratory, Tunisian National Agronomic Research Institute (INRAT), Rue Hedi Karray, 2049 Ariana, Tunisia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Horn ME, Hahne G, Reski R. Plant biotechnology in support of the Millennium Goals II. PLANT CELL REPORTS 2011; 30:677-679. [PMID: 21442401 DOI: 10.1007/s00299-011-1063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|