1
|
Chen Q, Lei J, Li X, Zhang J, Liu D, Cui X, Ge F. Heterologous synthesis of ginsenoside F1 and its precursors in Nicotiana benthamiana. JOURNAL OF PLANT PHYSIOLOGY 2024; 299:154276. [PMID: 38801806 DOI: 10.1016/j.jplph.2024.154276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Ginsenoside F1 has high medicinal values, which is a kind of rare triterpene saponin isolated from Panax plants. The extremely low content of ginsenoside F1 in herbs has limited its research and application in medical field. In this work, we constructed a pathway in tobacco for the biosynthesis of ginsenoside F1 by metabolic engineering. Four enzyme genes (PnDDS, CYP716A47, CYP716S1 and UGT71A56) isolated from Panax notoginseng were introduced into tobacco. Thus, a biosynthetic pathway for ginsenoside F1 synthesis was artificially constructed in tobacco cells; moreover, the four exogenous genes could be expressed in the roots, stems and leaves of transgenic plants. Consequently, ginsenoside F1 and its precursors were successfully synthesized in the transgenic tobacco, compared with Panax plants, the content of ginsenoside F1 in transgenic tobacco was doubled. In addition, accumulation of ginsenoside F1 and its precursors in transgenic tobacco shows organ specificity. Based on these results, a new approach was established to produce rare ginsenoside F1; meanwhile, such strategy could also be employed in plant hosts for the heterologous synthesis of other important or rare natural products.
Collapse
Affiliation(s)
- Qin Chen
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jun Lei
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaolei Li
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Analytical & Testing Research Center, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jinyu Zhang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Diqiu Liu
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China.
| | - Feng Ge
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China.
| |
Collapse
|
2
|
Carreño-Campos C, Villegas E, Villarreal ML, Morales-Aguilar M, Govea-Alonso D, Romero-Maldonado A, Jimenez-Capdeville ME, Rosales-Mendoza S, Ortiz-Caltempa A. Statistical Experimental Designs for cLTB-Syn Vaccine Production Using Daucus carota Cell Suspension Cultures. PLANTA MEDICA 2024; 90:744-756. [PMID: 38698590 DOI: 10.1055/a-2307-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The carrot-made LTB-Syn antigen (cLTB-Syn) is a vaccine candidate against synucleinopathies based on carrot cells expressing the target antigen LTB and syn epitopes. Therefore, the development of an efficient production process is required with media culture optimization to increase the production yields as the main goal. In this study, the effect of two nitrogen sources (urea and glutamate) on callus cultures producing cLTB-Syn was studied, observing that the addition of 17 mM urea to MS medium favored the biomass yield. To optimize the MS media composition, the influence of seven medium components on biomass and cLTB-Syn production was first evaluated by a Plackett-Burman design (PBD). Then, three factors were further analyzed using a central composite design (CCD) and response surface methodology (RSM). The results showed a 1.2-fold improvement in biomass, and a 4.5-fold improvement in cLTB-Syn production was achieved at the shake-flask scale. At the bioreactor scale, there was a 1.5-fold increase in biomass and a 2.8-fold increase in cLTB-Syn yield compared with the standard MS medium. Moreover, the cLTB-Syn vaccine induced humoral responses in BALB/c mice subjected to either oral or subcutaneous immunization. Therefore, cLTB-Syn is a promising vaccine candidate that will aid in developing immunotherapeutic strategies to combat PD and other neurodegenerative diseases without the need for cold storage, making it a financially viable option for massive immunization.
Collapse
Affiliation(s)
- Christian Carreño-Campos
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Elba Villegas
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - María Luisa Villarreal
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Mónica Morales-Aguilar
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Dania Govea-Alonso
- Laboratorio de Biofarmacéuticos Recombinantes, Universidad Autónoma de San Luis Potosí, SLP, México
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, SLP, México
| | - Andrea Romero-Maldonado
- Laboratorio de Biofarmacéuticos Recombinantes, Universidad Autónoma de San Luis Potosí, SLP, México
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, SLP, México
| | | | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Universidad Autónoma de San Luis Potosí, SLP, México
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, SLP, México
| | - Anabel Ortiz-Caltempa
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
3
|
Guo W, Zhao Y, Xu H, Xia Y, Tao L, You X. PgDDS Changes the Plant Growth of Transgenic Aralia elata and Improves the Production of Re and Rg 3 in Its Leaves. Int J Mol Sci 2024; 25:1945. [PMID: 38339223 PMCID: PMC10856007 DOI: 10.3390/ijms25031945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Aralia elata (Miq.) Seem is a medicinal plant that shares a common pathway for the biosynthesis of triterpenoid saponins with Panax ginseng. Here, we transferred the dammarenediol-II synthase gene from P. ginseng (PgDDS; GenBank: AB122080.1) to A. elata. The growth of 2-year-old transgenic plants (L27; 9.63 cm) was significantly decreased compared with wild-type plants (WT; 74.97 cm), and the leaflet shapes and sizes of the transgenic plants differed from those of the WT plants. Based on a terpene metabolome analysis of leaf extracts from WT, L13, and L27 plants, a new structural skeleton for ursane-type triterpenoid saponins was identified. Six upregulated differentially accumulated metabolites (DAMs) were detected, and the average levels of Rg3 and Re in the leaves of the L27 plants were 42.64 and 386.81 μg/g, respectively, increased significantly compared with the WT plants (15.48 and 316.96 μg/g, respectively). Thus, the expression of PgDDS in A. elata improved its medicinal value.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangling You
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (W.G.); (Y.Z.); (H.X.); (Y.X.); (L.T.)
| |
Collapse
|
4
|
Sim JE, Oh SD, Kang K, Shin YM, Yun DW, Baek SH, Choi YE, Park SU, Kim JK. Metabolite Profiling to Evaluate Metabolic Changes in Genetically Modified Protopanaxadiol-Enriched Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:758. [PMID: 36840106 PMCID: PMC9967978 DOI: 10.3390/plants12040758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Event DS rice producing protopanaxadiol (PPD) has been previously developed by inserting Panax ginseng dammarenediol-II synthase gene (PgDDS) and PPD synthase gene (CYP716A47). We performed a gas chromatography-mass spectrometry (GC-MS)-based metabolomics of the DS rice to identify metabolic alterations as the effects of genetic engineering by measuring the contents of 65 metabolites in seeds and 63 metabolites in leaves. Multivariate analysis and one-way analysis of variance between DS and non-genetically modified (GM) rice showed that DS rice accumulated fewer tocotrienols, tocopherols, and phytosterols than non-GM rice. These results may be due to competition for the same precursors because PPDs in DS rice are synthesized from the same precursors as those of phytosterols. In addition, multivariate analysis of metabolic data from rice leaves revealed that composition differed by growth stage rather than genetic modifications. Our results demonstrate the potential of metabolomics for identifying metabolic alterations in response to genetic modifications.
Collapse
Affiliation(s)
- Ji-Eun Sim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Sung-Dug Oh
- National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju-gun 55365, Republic of Korea
| | - Kiyoon Kang
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Yu-Mi Shin
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Doh-Won Yun
- National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju-gun 55365, Republic of Korea
| | - So-Hyeon Baek
- Department of Agricultural Life Science, Sunchon National University, 255, Jeonnam 57922, Republic of Korea
| | - Yong-Eui Choi
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang-Un Park
- Department of Crop Science and Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
| | - Jae-Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
5
|
Sharma T, Sharma U, Kumar S. Iridoid glycosides from Picrorhiza genus endemic to the Himalayan region: phytochemistry, biosynthesis, pharmacological potential and biotechnological intercessions to boost production. Crit Rev Biotechnol 2022; 44:1-16. [PMID: 36184806 DOI: 10.1080/07388551.2022.2117681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Iridoid glycosides are monoterpenoids synthesized in several plant species known to exhibit a diverse range of pharmacological activities. They are used as important bioactive ingredients in many commercially available drug formulations and as lead compounds in pharmaceutical research. The genus Picrorhiza comprises two medicinally important herbs endemic to the Himalayan region viz. Picrorhiza kurrooa Royle and Picrorhiza scrophulariiflora Hong. The medicinal properties of these two species are mainly due to iridoid glycosides present in their root, rhizome, and leaves. Unregulated harvesting from the wild, habitat specificity, narrow distribution range, small population size and lack of organized cultivation led to the enrolling of these species in the endangered category by the International Union for Conservation of Nature and Natural Resources (IUCN). Therefore, there is a need for immediate biotechnological and molecular interventions. Such intercessions will open up new vistas for large-scale propagation, development of genomic/transcriptomic resources for understanding the biosynthetic pathway, the possibility of genetic/metabolic manipulations, and possible commercialization of iridoid glycosides. The current review article elucidates the phytochemistry and pharmacological importance of iridoid glycosides from the genus Picrorhiza. In addition, the role of biotechnological approaches and opportunities offered by next-generation sequencing technologies in overcoming challenges associated with the genetic engineering of these species are also discussed.
Collapse
Affiliation(s)
- Tanvi Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Upendra Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Genetic Manipulation and Bioreactor Culture of Plants as a Tool for Industry and Its Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030795. [PMID: 35164060 PMCID: PMC8840042 DOI: 10.3390/molecules27030795] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/31/2022]
Abstract
In recent years, there has been a considerable increase in interest in the use of transgenic plants as sources of valuable secondary metabolites or recombinant proteins. This has been facilitated by the advent of genetic engineering technology with the possibility for direct modification of the expression of genes related to the biosynthesis of biologically active compounds. A wide range of research projects have yielded a number of efficient plant systems that produce specific secondary metabolites or recombinant proteins. Furthermore, the use of bioreactors allows production to be increased to industrial scales, which can quickly and cheaply deliver large amounts of material in a short time. The resulting plant production systems can function as small factories, and many of them that are targeted at a specific operation have been patented. This review paper summarizes the key research in the last ten years regarding the use of transgenic plants as small, green biofactories for the bioreactor-based production of secondary metabolites and recombinant proteins; it simultaneously examines the production of metabolites and recombinant proteins on an industrial scale and presents the current state of available patents in the field.
Collapse
|
7
|
Huang D, Ming R, Xu S, Wang J, Yao S, Li L, Huang R, Tan Y. Chromosome-level genome assembly of Gynostemma pentaphyllum provides insights into gypenoside biosynthesis. DNA Res 2021; 28:6367775. [PMID: 34499150 PMCID: PMC8476931 DOI: 10.1093/dnares/dsab018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 01/16/2023] Open
Abstract
Gynostemma pentaphyllum (Thunb.) Makino is an economically valuable medicinal plant belonging to the Cucurbitaceae family that produces the bioactive compound gypenoside. Despite several transcriptomes having been generated for G. pentaphyllum, a reference genome is still unavailable, which has limited the understanding of the gypenoside biosynthesis and regulatory mechanism. Here, we report a high-quality G. pentaphyllum genome with a total length of 582 Mb comprising 1,232 contigs and a scaffold N50 of 50.78 Mb. The G. pentaphyllum genome comprised 59.14% repetitive sequences and 25,285 protein-coding genes. Comparative genome analysis revealed that G. pentaphyllum was related to Siraitia grosvenorii, with an estimated divergence time dating to the Paleogene (∼48 million years ago). By combining transcriptome data from seven tissues, we reconstructed the gypenoside biosynthetic pathway and potential regulatory network using tissue-specific gene co-expression network analysis. Four UDP-glucuronosyltransferases (UGTs), belonging to the UGT85 subfamily and forming a gene cluster, were involved in catalyzing glycosylation in leaf-specific gypenoside biosynthesis. Furthermore, candidate biosynthetic genes and transcription factors involved in the gypenoside regulatory network were identified. The genetic information obtained in this study provides insights into gypenoside biosynthesis and lays the foundation for further exploration of the gypenoside regulatory mechanism.
Collapse
Affiliation(s)
- Ding Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China.,Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ruhong Ming
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Shiqiang Xu
- Guangdong Provincial Key Laboratory of Crops Genetics & Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics & Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shaochang Yao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China.,Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Liangbo Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yong Tan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China.,Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
8
|
Zhu X, Liu X, Liu T, Wang Y, Ahmed N, Li Z, Jiang H. Synthetic biology of plant natural products: From pathway elucidation to engineered biosynthesis in plant cells. PLANT COMMUNICATIONS 2021; 2:100229. [PMID: 34746761 PMCID: PMC8553972 DOI: 10.1016/j.xplc.2021.100229] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/11/2021] [Accepted: 08/06/2021] [Indexed: 05/10/2023]
Abstract
Plant natural products (PNPs) are the main sources of drugs, food additives, and new biofuels and have become a hotspot in synthetic biology. In the past two decades, the engineered biosynthesis of many PNPs has been achieved through the construction of microbial cell factories. Alongside the rapid development of plant physiology, genetics, and plant genetic modification techniques, hosts have now expanded from single-celled microbes to complex plant systems. Plant synthetic biology is an emerging field that combines engineering principles with plant biology. In this review, we introduce recent advances in the biosynthetic pathway elucidation of PNPs and summarize the progress of engineered PNP biosynthesis in plant cells. Furthermore, a future vision of plant synthetic biology is proposed. Although we are still a long way from overcoming all the bottlenecks in plant synthetic biology, the ascent of this field is expected to provide a huge opportunity for future agriculture and industry.
Collapse
Affiliation(s)
- Xiaoxi Zhu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Tian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Life Science and Technology College, Guangxi University, Nanning, Guangxi 530004, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yina Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Nida Ahmed
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Zhichao Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
9
|
Li D, Pan C, Lu J, Zaman W, Zhao H, Zhang J, Lü S. Lupeol Accumulation Correlates with Auxin in the Epidermis of Castor. Molecules 2021; 26:molecules26102978. [PMID: 34067825 PMCID: PMC8156332 DOI: 10.3390/molecules26102978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
Lupeol, a natural lupane-type pentacyclic triterpene, possesses various pharmacological properties, and its production attracts attention. Significant quantities of lupeol are deposited on the castor aerial organ surface and are easily extractable as a predominant wax constituent. Thus, castor might be considered as a potential bioreactor for the production of lupeol. The lupeol biosynthesis pathway is well known, but how it is regulated remains largely unknown. Among large numbers of castor cultivars, we targeted one accession line (337) with high levels of lupeol on its stem surface and low levels thereof on its hypocotyl surface, implicating that lupeol synthesis is differentially regulated in the two organs. To explore the underlying mechanisms, we did comparative transcriptome analysis of the first internode of 337 stem and the upper hypocotyl. Our results show that large amounts of auxin-related genes are differentially expressed in both parts, implying some possible interactions between auxin and lupeol production. We also found that several auxin-responsive cis-elements are present in promoter regions of HMGR and LUS genes encoding two key enzymes involved in lupeol production. Furthermore, auxin treatments apparently induced the expression levels of RcHMGR and RcLUS. Furthermore, we observed that auxin treatment significantly increased lupeol contents, whereas inhibiting auxin transport led to an opposite phenotype. Our study reveals some relationships between hormone activity and lupeol synthesis and might provide a promising way for improving lupeol yields in castor.
Collapse
Affiliation(s)
- Donghai Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.L.); (C.P.); (J.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Cheng Pan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.L.); (C.P.); (J.L.)
| | - Jianjun Lu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.L.); (C.P.); (J.L.)
| | - Wajid Zaman
- University of Chinese Academy of Sciences, Beijing 100049, China;
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Jixing Zhang
- College of Life Sciences and Food Engineering, Inner Mongolia University for Nationalities, Tongliao 028000, China;
| | - Shiyou Lü
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.L.); (C.P.); (J.L.)
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
- Correspondence: ; Tel.: +86-27-88663882
| |
Collapse
|
10
|
Nagegowda DA, Gupta P. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110457. [PMID: 32234216 DOI: 10.1016/j.plantsci.2020.110457] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 05/28/2023]
Abstract
Plant specialized terpenoids are natural products that have no obvious role in growth and development, but play many important functional roles to improve the plant's overall fitness. Besides, plant specialized terpenoids have immense value to humans due to their applications in fragrance, flavor, cosmetic, and biofuel industries. Understanding the fundamental aspects involved in the biosynthesis and regulation of these high-value molecules in plants not only paves the path to enhance plant traits, but also facilitates homologous or heterologous engineering for overproduction of target molecules of importance. Recent developments in functional genomics and high-throughput analytical techniques have led to unraveling of several novel aspects involved in the biosynthesis and regulation of plant specialized terpenoids. The knowledge thus derived has been successfully utilized to produce target specialized terpenoids of plant origin in homologous or heterologous host systems by metabolic engineering and synthetic biology approaches. Here, we provide an overview and highlights on advances related to the biosynthetic steps, regulation, and metabolic engineering of plant specialized terpenoids.
Collapse
Affiliation(s)
- Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - Priyanka Gupta
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
11
|
Gwak YS, Han JY, Choi YE. Production of ginsenoside aglycone (protopanaxatriol) and male sterility of transgenic tobacco co-overexpressing three Panax ginseng genes: PgDDS, CYP716A47, and CYP716A53v2. J Ginseng Res 2019; 43:261-271. [PMID: 30976164 PMCID: PMC6437448 DOI: 10.1016/j.jgr.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/05/2018] [Accepted: 02/08/2018] [Indexed: 11/30/2022] Open
Abstract
Background Protopanaxatriol (PPT) is an aglycone of ginsenosides, which has high medicinal values. Production of PPT from natural ginseng plants requires artificial deglycosylation procedures of ginsenosides via enzymatic or physicochemical treatments. Metabolic engineering could be an efficient technology for production of ginsenoside sapogenin. For PPT biosynthesis in Panax ginseng, damarenediol-II synthase (PgDDS) and two cytochrome P450 enzymes (CYP716A47 and CYP716A53v2) are essentially required. Methods Transgenic tobacco co-overexpressing P. ginseng PgDDS, CYP716A47, and CYP716A53v2 was constructed via Agrobacterium-mediated transformation. Results Expression of the three introduced genes in transgenic tobacco lines was confirmed by Reverse transcription-polymerase chain reaction (RT-PCR). Analysis of liquid chromatography showed three new peaks, dammarenediol-II (DD), protopanaxadiol (PPD), and PPT, in leaves of transgenic tobacco. Transgenic tobacco (line 6) contained 2.8 μg/g dry weight (DW), 7.3 μg/g DW, and 11.6 μg/g DW of PPT, PPD, and DD in leaves, respectively. Production of PPT was achieved via cell suspension culture and was highly affected by auxin treatment. The content of PPT in cell suspension was increased 37.25-fold compared with that of leaves of the transgenic tobacco. Transgenic tobacco was not able to set seeds because of microspore degeneration in anthers. Transmission electron microscopy analysis revealed that cells of phloem tissue situated in the center of the anther showed an abnormally condensed nuclei and degenerated mitochondria. Conclusion We successfully achieved the production of PPT in transgenic tobacco. The possible factors deriving male sterility in transgenic tobacco are discussed.
Collapse
Affiliation(s)
- Yu Shin Gwak
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Jung Yeon Han
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Yong Eui Choi
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
12
|
Li J, Ma L, Zhang S, Zuo C, Song N, Zhu S, Wu J. Transcriptome analysis of 1- and 3-year-old Panax notoginseng roots and functional characterization of saponin biosynthetic genes DS and CYP716A47-like. PLANTA 2019; 249:1229-1237. [PMID: 30607503 DOI: 10.1007/s00425-018-03083-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION Transcriptome analysis revealed high expression of saponin biosynthetic genes may account for highly accumulated saponins in 3-year-old Panax notoginseng roots and DS and CYP716A47 - like were functionally verified by transgenic tobacco. Panax notoginseng is a well-known traditional medical herb that contains bioactive compounds known as saponins. Three major dammarene-type triterpene saponins including R1, Rb1, and Rg1 were found to be highly accumulated in the roots of 3-year-old plants when compared to those of 1-year-old plants. However, the underlying cellular mechanism is poorly understood. In this study, transcriptome analysis revealed that most genes involved in saponin biosynthesis in P. notoginseng roots augmented during their growth periods. The analysis of the KEGG pathway indicated that the primary metabolism, cell growth, and differentiation were less active in the roots of 3-year-old plant; however, secondary metabolisms were enhanced, thus providing molecular evidence for the harvesting of P. notoginseng roots in the 3rd year of growth. Furthermore, the functional role of DS and CYP716A47-like, two of the candidate genes involved in saponin biosynthesis isolated from P. notoginseng, were verified via overexpression in cultivated tobacco. Approximately, 0.325 µg g-1 of dammarenediol-II and 0.320 µg g-1 of protopanaxadiol were recorded in the dry leaves of transgenic tobacco overexpressed with DS and both DS and CYP716A47-like, respectively. This study provides insights into the molecular mechanisms for saponin accumulation in P. notoginseng roots during its growth period and paves a promising way to produce dammarenediol-II and protopanaxadiol via transgenic techniques.
Collapse
Affiliation(s)
- Jian Li
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Kunming, 650201, China
| | - Lan Ma
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Kunming, 650201, China
| | - Shuting Zhang
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Cailian Zuo
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Kunming, 650201, China
| | - Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Kunming, 650201, China
| | - Shusheng Zhu
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Kunming, 650201, China.
| |
Collapse
|
13
|
Fu R, Martin C, Zhang Y. Next-Generation Plant Metabolic Engineering, Inspired by an Ancient Chinese Irrigation System. MOLECULAR PLANT 2018; 11:47-57. [PMID: 28893713 DOI: 10.1016/j.molp.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/06/2017] [Accepted: 09/01/2017] [Indexed: 05/03/2023]
Abstract
Specialized secondary metabolites serve not only to protect plants against abiotic and biotic challenges, but have also been used extensively by humans to combat diseases. Due to the great importance of medicinal plants for health, we need to find new and sustainable ways to improve the production of the specialized metabolites. In addition to direct extraction, recent progress in metabolic engineering of plants offers an alternative supply option. We argue that metabolic engineering for producing the secondary metabolites in plants may have distinct advantages over microbial production platforms, and thus propose new approaches of plant metabolic engineering, which are inspired by an ancient Chinese irrigation system. Metabolic engineering strategies work at three levels: introducing biosynthetic genes, using transcription factors, and improving metabolic flux including increasing the supply of precursors, energy, and reducing power. In addition, recent progress in biotechnology contributes markedly to better engineering, such as the use of specific promoters and the deletion of competing branch pathways. We propose that next-generation plant metabolic engineering will improve current engineering strategies, for the purpose of producing valuable metabolites in plants on industrial scales.
Collapse
Affiliation(s)
- Rao Fu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Cathie Martin
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
14
|
Gwak YS, Han JY, Adhikari PB, Ahn CH, Choi YE. Heterologous production of a ginsenoside saponin (compound K) and its precursors in transgenic tobacco impairs the vegetative and reproductive growth. PLANTA 2017; 245:1105-1119. [PMID: 28243734 DOI: 10.1007/s00425-017-2668-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/21/2017] [Indexed: 05/22/2023]
Abstract
MAIN CONCLUSION Production of compound K (a ginsenoside saponin) and its precursors in transgenic tobacco resulted in stunted growth and seed set failure, which may be caused by strong autotoxicity of heterologously produced phytochemicals against the tobacco itself. Panax ginseng roots contain various saponins (ginsenosides), which are major bioactive compounds. A monoglucosylated saponin, compound K (20-O-(β-D-glucopyranosyl)-20(S)-protopanaxadiol), has high medicinal and cosmetic values but is present in undetectable amounts in naturally grown ginseng roots. The production of compound K (CK) requires complicated deglycosylation of ginsenosides using physicochemical and/or enzymatic degradation. In this work, we report the production of CK in transgenic tobacco by co-overexpressing three genes (PgDDS, CYP716A47 and UGT71A28) isolated from P. ginseng. Introduction and expression of the transgenes in tobacco lines were confirmed by genomic PCR and RT-PCR. All the lines of transgenic tobacco produced CK including its precursors, protopanaxadiol and dammarenediol-II (DD). The concentrations of CK in the leaves ranged from 1.55 to 2.64 µg/g dry weight, depending on the transgenic line. Interestingly, production of CK in tobacco brought stunted plant growth and gave rise to seed set failure. This seed set failure was caused by both long-styled flowers and abnormal pollen development in transgenic tobacco. Both CK and DD treatments highly suppressed in vitro germination and tube growth in wild-type pollens. Based on these results, metabolic engineering for CK production in transgenic tobacco was successfully achieved, but the production of CK and its precursors in tobacco severely affects vegetative and reproductive growth due to the cytotoxicity of phytochemicals that are heterologously produced in transgenic tobacco.
Collapse
Affiliation(s)
- Yu Shin Gwak
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Jung Yeon Han
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Prakash Babu Adhikari
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Chang Ho Ahn
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Yong Eui Choi
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| |
Collapse
|
15
|
Biswas T, Mathur AK, Mathur A. A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations. Appl Microbiol Biotechnol 2017; 101:4009-4032. [PMID: 28411325 DOI: 10.1007/s00253-017-8279-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Ginseng, an oriental gift to the world of healthcare and preventive medicine, is among the top ten medicinal herbs globally. The constitutive triterpene saponins, ginsenosides, or panaxosides are attributed to ginseng's miraculous efficacy towards anti-aging, rejuvenating, and immune-potentiating benefits. The major ginsenosides such as Rb1, Rb2, Rc, Rd., Re, and Rg1, formed after extensive glycosylations of the aglycone "dammaranediol," dominate the chemical profile of this genus in vivo and in vitro. Elicitations have successfully led to appreciable enhancements in the production of these major ginsenosides. However, current research on ginseng biotechnology has been focusing on the enrichment or production of the minor ginsenosides (the less glycosylated precursors of the major ginsenosides) in ginseng preparations, which are either absent or are produced in very low amounts in nature or via cell cultures. The minor ginsenosides under current scientific scrutiny include diol ginsenosides such as Rg3, Rh2, compound K, and triol ginsenosides Rg2 and Rh1, which are being touted as the next "anti-neoplastic pharmacophores," with better bioavailability and potency as compared to the major ginsenosides. This review aims at describing the strategies for ginsenoside production with special attention towards production of the minor ginsenosides from the major ginsenosides via microbial biotransformation, elicitations, and from heterologous expression systems.
Collapse
Affiliation(s)
- Tanya Biswas
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India
| | - A K Mathur
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India
| | - Archana Mathur
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants; Council of Scientific & Industrial Research, PO- CIMAP, Lucknow, 226015, India.
| |
Collapse
|
16
|
Yin J, Wang L, Huang Y, Mu Y, Lv S. Authentication of Panax ginseng from different regions. RSC Adv 2017. [DOI: 10.1039/c7ra09537f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The correlation of gene expressions of HMGR and DS with total ginsenoside content was significant.
Collapse
Affiliation(s)
- Juxin Yin
- College of Life Science
- Key Laboratory for Molecular Enzymology
- Engineering of the Ministry of Education
- Jilin University
- Changchun 130000
| | - Liwu Wang
- College of Life Science
- Key Laboratory for Molecular Enzymology
- Engineering of the Ministry of Education
- Jilin University
- Changchun 130000
| | - Yi Huang
- College of Life Science
- Key Laboratory for Molecular Enzymology
- Engineering of the Ministry of Education
- Jilin University
- Changchun 130000
| | - Ying Mu
- Research Center for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- Zhejiang University
- Hangzhou 310000
| | - Shaowu Lv
- College of Life Science
- Key Laboratory for Molecular Enzymology
- Engineering of the Ministry of Education
- Jilin University
- Changchun 130000
| |
Collapse
|
17
|
Lu X, Tang K, Li P. Plant Metabolic Engineering Strategies for the Production of Pharmaceutical Terpenoids. FRONTIERS IN PLANT SCIENCE 2016; 7:1647. [PMID: 27877181 PMCID: PMC5099148 DOI: 10.3389/fpls.2016.01647] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/19/2016] [Indexed: 05/18/2023]
Abstract
Pharmaceutical terpenoids belong to the most diverse class of natural products. They have significant curative effects on a variety of diseases, such as cancer, cardiovascular diseases, malaria and Alzheimer's disease. Nowadays, elicitors, including biotic and abiotic elicitors, are often used to activate the pathway of secondary metabolism and enhance the production of target terpenoids. Based on Agrobacterium-mediated genetic transformation, several plant metabolic engineering strategies hold great promise to regulate the biosynthesis of pharmaceutical terpenoids. Overexpressing terpenoids biosynthesis pathway genes in homologous and ectopic plants is an effective strategy to enhance the yield of pharmaceutical terpenoids. Another strategy is to suppress the expression of competitive metabolic pathways. In addition, global regulation which includes regulating the relative transcription factors, endogenous phytohormones and primary metabolism could also markedly increase their yield. All these strategies offer great opportunities to enhance the supply of scarce terpenoids drugs, reduce the price of expensive drugs and improve people's standards of living.
Collapse
Affiliation(s)
- Xu Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing, China
| | - Kexuan Tang
- Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing, China
| |
Collapse
|
18
|
Rusanov K, Atanassov A, Atanassov I. Engineering Cell and Organ Cultures from Medicinal and Aromatic Plants Toward Commercial Production of Bioactive Metabolites. REFERENCE SERIES IN PHYTOCHEMISTRY 2016. [DOI: 10.1007/978-3-319-32004-5_8-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|