1
|
Fallahi-Pashaki T, Shirzadian-Khoramabad R, Sohani MM. Artemin molecular chaperone from Artemia urmiana improves tolerance of Arabidopsis thaliana to abiotic stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24208. [PMID: 39612235 DOI: 10.1071/fp24208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/10/2024] [Indexed: 12/01/2024]
Abstract
Artemia is a genus of aquatic microcrustaceans that belong to the class Branchiopoda. Encysted Artemia urmiana embryos are resistant to harsh environmental stressors, including repeated desiccation, prolonged anoxia, extreme temperatures, and high levels of UV radiation. The protein artemin has a chaperone activity and is believed to play a crucial role in protecting the organism against such stresses. To elucidate the potential functional roles of artemin in plants, the cDNA sequence of artemin was cloned into the pZPY122 binary plant expression vector. Agrobacterium -mediated transformation and the floral-dip technique were used to introduce this construct into Arabidopsis thaliana . Three independent transgenic lines (art1 , art2 , art3 ) were generated and subjected to heat stress at 45°C. Results showed a significant interaction between heat stress and genotype for germination rate, germination speed, vigor index, and seedling and root length. The transgenic lines with the artemin transgene (ART ) exhibited remarkable heat stress tolerance compared with wild-type plants. They also had markedly lower levels of electrolyte leakage, hydrogen peroxide content, higher activities of catalase, superoxide dismutase and peroxidase, greater total protien content, and increased accumulation of proline. Under heat stress conditions, the expression of two key abiotic stress-responsive genes, DREB2A and HSFA3 , was significantly upregulated in the ART lines compared to the wild-type . These findings suggest that the ART gene from A. urmiana may act as molecular chaperone when expressed in Arabidopsis , thereby enhancing the plant's tolerance to heat stress.
Collapse
Affiliation(s)
- Tayebe Fallahi-Pashaki
- Department of Plant Biotechnology, College of Agricultural Sciences, University of Guilan, Khalij Fars Highway, Rasht 4199613769, Iran
| | - Reza Shirzadian-Khoramabad
- Department of Plant Biotechnology, College of Agricultural Sciences, University of Guilan, Khalij Fars Highway, Rasht 4199613769, Iran
| | - M Mehdi Sohani
- Department of Plant Biotechnology, College of Agricultural Sciences, University of Guilan, Khalij Fars Highway, Rasht 4199613769, Iran
| |
Collapse
|
2
|
Hou X, Lu Z, Yu T, Zhang Y, Yao Q, Zhang C, Niu Y, Liang Q. Two maize homologs of mammalian proton-coupled folate transporter, ZmMFS_1-62 and ZmMFS_1-73, are essential to salt and drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108623. [PMID: 38626656 DOI: 10.1016/j.plaphy.2024.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
Folates are essential to the maintenance of normal life activities in almost all organisms. Proton-coupled folate transporter (PCFT), belonging to the major facilitator superfamily, is one of the three major folate transporter types widely studied in mammals. However, information about plant PCFTs is limited. Here, a genome-wide identification of maize PCFTs was performed, and two PCFTs, ZmMFS_1-62 and ZmMFS_1-73, were functionally investigated. Both proteins contained the typical 12 transmembrane helixes with N- and C-termini located in the cytoplasm, and were localized in the plasma membrane. Molecular docking analysis indicated their binding activity with folates via hydrogen bonding. Interference with ZmMFS_1-62 and ZmMFS_1-73 in maize seedlings through virus-induced gene silencing disrupted folate homeostasis, mainly in the roots, and reduced tolerance to drought and salt stresses. Moreover, a molecular chaperone protein, ZmHSP20, was found to interact with ZmMFS_1-62 and ZmMFS_1-73, and interference with ZmHSP20 in maize seedlings also led to folate disruption and increased sensitivity to drought and salt stresses. Overall, this is the first report of functional identification of maize PCFTs, which play essential roles in salt and drought stress tolerance, thereby linking folate metabolism with abiotic stress responses in maize.
Collapse
Affiliation(s)
- Xiaowan Hou
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China; Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Zhiwei Lu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
| | - Taifei Yu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China.
| | - Yuanyuan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
| | - Quansheng Yao
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China.
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China.
| |
Collapse
|
3
|
Zhang FJ, Li ZY, Zhang DE, Ma N, Wang YX, Zhang TT, Zhao Q, Zhang Z, You CX, Lu XY. Identification of Hsp20 gene family in Malus domestica and functional characterization of Hsp20 class I gene MdHsp18.2b. PHYSIOLOGIA PLANTARUM 2024; 176:e14288. [PMID: 38644531 DOI: 10.1111/ppl.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/23/2024] [Indexed: 04/23/2024]
Abstract
Heat shock protein 20 (Hsp20) is a small molecule heat shock protein that plays an important role in plant growth, development, and stress resistance. Little is known about the function of Hsp20 family genes in apple (Malus domestica). Here, we performed a genome-wide analysis of the apple Hsp20 gene family, and a total of 49 Hsp20s genes were identified from the apple genome. Phylogenetic analysis revealed that the 49 genes were divided into 11 subfamilies, and MdHsp18.2b, a member located in the CI branch, was selected as a representative member for functional characterization. Treatment with NaCl and Botryosphaeria dothidea (B. dothidea), the causal agent of apple ring rot disease, significantly induced MdHsp18.2b transcription level. Further analysis revealed that overexpressing MdHsp18.2b reduced the resistance to salt stress but enhanced the resistance to B. dothidea infection in apple calli. Moreover, MdHsp18.2b positively regulated anthocyanin accumulation in apple calli. Physiology assays revealed that MdHsp18.2b promoted H2O2 production, even in the absence of stress factors, which might contribute to its functions in response to NaCl and B. dothidea infection. Hsps usually function as homo- or heterooligomers, and we found that MdHsp18.2b could form a heterodimer with MdHsp17.9a and MdHsp17.5, two members from the same branch with MdHsp18.2b in the phylogenetic tree. Therefore, we identified 49 Hsp20s genes from the apple genome and found that MdHsp18.2b was involved in regulating plant resistance to salt stress and B. dothidea infection, as well as in regulating anthocyanin accumulation in apple calli.
Collapse
Affiliation(s)
- Fu-Jun Zhang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhao-Yang Li
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - De-En Zhang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
| | - Ning Ma
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yong-Xu Wang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ting-Ting Zhang
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qiang Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhenlu Zhang
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chun-Xiang You
- College of Horticultural Science and Engineering, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiao-Yan Lu
- Department of Horticulture, College of Agriculture, Key Laboratory of Special Fruits & Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
4
|
Barratt LJ, Franco Ortega S, Harper AL. Identification of candidate regulators of the response to early heat stress in climate-adapted wheat landraces via transcriptomic and co-expression network analyses. FRONTIERS IN PLANT SCIENCE 2024; 14:1252885. [PMID: 38235195 PMCID: PMC10791870 DOI: 10.3389/fpls.2023.1252885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
Introduction Climate change is likely to lead to not only increased global temperatures but also a more variable climate where unseasonal periods of heat stress are more prevalent. This has been evidenced by the observation of spring-time temperatures approaching 40°C in some of the main spring-wheat producing countries, such as the USA, in recent years. With an optimum growth temperature of around 20°C, wheat is particularly prone to damage by heat stress. A warming climate with increasingly common fluctuations in temperature therefore threatens wheat crops and subsequently the lives and livelihoods of billions of people who depend on the crop for food. To futureproof wheat against a variable climate, a better understanding of the response to early heat stress is required. Methods Here, we utilised DESeq2 to identify 7,827 genes which were differentially expressed in wheat landraces after early heat stress exposure. Candidate hub genes, which may regulate the transcriptional response to early heat stress, were identified via weighted gene co-expression network analysis (WGCNA), and validated by qRT-PCR. Results Two of the most promising candidate hub genes (TraesCS3B02G409300 and TraesCS1B02G384900) may downregulate the expression of genes involved in the drought, salinity, and cold responses-genes which are unlikely to be required under heat stress-as well as photosynthesis genes and stress hormone signalling repressors, respectively. We also suggest a role for a poorly characterised sHSP hub gene (TraesCS4D02G212300), as an activator of the heat stress response, potentially inducing the expression of a vast suite of heat shock proteins and transcription factors known to play key roles in the heat stress response. Discussion The present work represents an exploratory examination of the heat-induced transcriptional change in wheat landrace seedlings and identifies several candidate hub genes which may act as regulators of this response and, thus, may be targets for breeders in the production of thermotolerant wheat varieties.
Collapse
Affiliation(s)
| | | | - Andrea L. Harper
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
5
|
Tang Y, Li J, Song Q, Cheng Q, Tan Q, Zhou Q, Nong Z, Lv P. Transcriptome and WGCNA reveal hub genes in sugarcane tiller seedlings in response to drought stress. Sci Rep 2023; 13:12823. [PMID: 37550374 PMCID: PMC10406934 DOI: 10.1038/s41598-023-40006-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023] Open
Abstract
Drought stress can severely affect sugarcane growth and yield. The objective of this research was to identify candidate genes in sugarcane tillering seedlings in response to drought stress. We performed a comparative phenotypic, physiological and transcriptomic analysis of tiller seedlings of drought-stressed and well-watered "Guire 2" sugarcane, in a time-course experiment (5 days, 9 days and 15 days). Physiological examination reviewed that SOD, proline, soluble sugars, and soluble proteins accumulated in large amounts in tiller seedlings under different intensities of drought stress, while MDA levels remained at a stable level, indicating that the accumulation of osmoregulatory substances and the enhancement of antioxidant enzyme activities helped to limit further damage caused by drought stress. RNA-seq and weighted gene co-expression network analysis (WGCNA) were performed to identify genes and modules associated with sugarcane tillering seedlings in response to drought stress. Drought stress induced huge down-regulated in gene expression profiles, most of down-regulated genes were mainly associated with photosynthesis, sugar metabolism and fatty acid synthesis. We obtained four gene co-expression modules significantly associated with the physiological changes under drought stress (three modules positively correlated, one module negatively correlated), and found that LSG1-2, ERF1-2, SHKA, TIL, HSP18.1, HSP24.1, HSP16.1 and HSFA6A may play essential regulatory roles as hub genes in increasing SOD, Pro, soluble sugar or soluble protein contents. In addition, one module was found mostly involved in tiller stem diameter, among which members of the BHLH148 were important nodes. These results provide new insights into the mechanisms by which sugarcane tillering seedlings respond to drought stress.
Collapse
Affiliation(s)
- Yuwei Tang
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| | - Jiahui Li
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China.
| | - Qiqi Song
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| | - Qin Cheng
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| | - Qinliang Tan
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| | - Quanguang Zhou
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| | - Zemei Nong
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| | - Ping Lv
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| |
Collapse
|
6
|
Xie K, Guo J, Wang S, Ye W, Sun F, Zhang C, Xi Y. Genome-wide identification, classification, and expression analysis of heat shock transcription factor family in switchgrass (Panicum virgatum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107848. [PMID: 37392668 DOI: 10.1016/j.plaphy.2023.107848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
Switchgrass is one of the most promising bioenergy crops and is generally cultivated in arid climates and poor soils. Heat shock transcription factors (Hsfs) are key regulators of plant responses to abiotic and biotic stressors. However, their role and mechanism of action in switchgrass have not been elucidated. Hence, this study aimed to identify the Hsf family in switchgrass and understand its functional role in heat stress signal transduction and heat tolerance by using bioinformatics and RT-PCR analysis. Forty-eight PvHsfs were identified and divided into three main classes based on their gene structure and phylogenetic relationships: HsfA, HsfB, and HsfC. The results of the bioinformatics analysis showed a DNA-binding domain (DBD) at the N-terminal in PvHsfs, and they were not evenly distributed on all chromosomes except for chromosomes 8 N and 8 K. Many cis-elements related to plant development, stress responses, and plant hormones were identified in the promoter sequence of each PvHsf. Segmental duplication is the primary force underlying Hsf family expansion in switchgrass. The results of the expression pattern of PvHsfs in response to heat stress showed that PvHsf03 and PvHsf25 might play critical roles in the early and late stages of switchgrass response to heat stress, respectively, and HsfB mainly showed a negative response to heat stress. Ectopic expression of PvHsf03 in Arabidopsis significantly increased the heat resistance of seedlings. Overall, our research lays a notable foundation for studying the regulatory network in response to deleterious environments and for further excavating tolerance genes in switchgrass.
Collapse
Affiliation(s)
- Kunliang Xie
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| | - Jinliang Guo
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Shaoyu Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Wenjie Ye
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Chao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
7
|
Qi X, Di Z, Li Y, Zhang Z, Guo M, Tong B, Lu Y, Zhang Y, Zheng J. Genome-Wide Identification and Expression Profiling of Heat Shock Protein 20 Gene Family in Sorbus pohuashanensis (Hance) Hedl under Abiotic Stress. Genes (Basel) 2022; 13:genes13122241. [PMID: 36553508 PMCID: PMC9778606 DOI: 10.3390/genes13122241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Small heat shock proteins (HSP20s) are a significant factor in plant growth and development in response to abiotic stress. In this study, we investigated the role of HSP20s' response to the heat stress of Sorbus pohuashanensis introduced into low-altitude areas. The HSP20 gene family was identified based on the genome-wide data of S. pohuashanensis, and the expression patterns of tissue specificity and the response to abiotic stresses were evaluated. Finally, we identified 38 HSP20 genes that were distributed on 16 chromosomes. Phylogenetic analysis of HSP20s showed that the closest genetic relationship to S. pohuashanensis (SpHSP20s) is Malus domestica, followed by Populus trichocarpa and Arabidopsis thaliana. According to phylogenetic analysis and subcellular localization prediction, the 38 SpHSP20s belonged to 10 subfamilies. Analysis of the gene structure and conserved motifs indicated that HSP20 gene family members are relatively conserved. Synteny analysis showed that the expansion of the SpHSP20 gene family was mainly caused by segmental duplication. In addition, many cis-acting elements connected with growth and development, hormones, and stress responsiveness were found in the SpHSP20 promoter region. Analysis of expression patterns showed that these genes were closely related to high temperature, drought, salt, growth, and developmental processes. These results provide information and a theoretical basis for the exploration of HSP20 gene family resources, as well as the domestication and genetic improvement of S. pohuashanensis.
Collapse
Affiliation(s)
- Xiangyu Qi
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Zexin Di
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Yuyan Li
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Zeren Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Miaomiao Guo
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Yan Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Jian Zheng
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
- Correspondence:
| |
Collapse
|
8
|
Hou Z, Li A, Huang C. Genome-wide identification, characterization and expression of HSP 20 gene family in dove. Front Genet 2022; 13:1011676. [PMID: 36267407 PMCID: PMC9576933 DOI: 10.3389/fgene.2022.1011676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Davidia involucrata is a significant living fossil with high abiotic stress tolerance. Although heat shock protein 20 (HSP20) has already been linked to heat stress, nothing is known about HSP20 family protein activities in D. involucrata. The functional dynamics of the D. involucrata HSP20 (DiHSP20) gene family were identified and characterized using a thorough genome-wide investigation. From the genome of D. involucrata, a total of 42 HSP20 genes were identified, which are distributed across 16 chromosomes. The DiHSP20 proteins were grouped into seven separate subfamilies by our phylogenetic analysis, which was validated by the conserved motif composition and gene structure studies. Segmental duplication events were shown to play a crucial role in the expansion of the DiHSP20 gene family. Synteny analysis revealed that 19 DiHSP20 genes of D. involucrata shared a syntenic connection with Arabidopsis genes, 39 with C. acuminata genes, and just 6 with O. sativa genes. Additionally, heat stress differently enhanced the expression levels of D. involucrata HSP20 genes. After 1 hour of heat treatment, the expression levels of most DiHSP20 genes, particularly DiHSP20-7, DiHSP20-29, DiHSP20-30, DiHSP20-32, and DiHSP20-34, were dramatically increased, suggestted that they might be employed as heat tolerance candidate genes. Overall, these findings add to our knowledge of the HSP20 family genes and provide helpful information for breeding heat stress resistance in D. involucrata.
Collapse
Affiliation(s)
- Zhe Hou
- College of Landscape Engineering, SuZhou Polytechnic Institute of Agriculture, Suzhou, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Ang Li
- College of Landscape Engineering, SuZhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Changbing Huang
- College of Landscape Engineering, SuZhou Polytechnic Institute of Agriculture, Suzhou, China
- *Correspondence: Changbing Huang,
| |
Collapse
|
9
|
Phylogenetic and Transcriptional Analyses of the HSP20 Gene Family in Peach Revealed That PpHSP20-32 Is Involved in Plant Height and Heat Tolerance. Int J Mol Sci 2022; 23:ijms231810849. [PMID: 36142761 PMCID: PMC9501816 DOI: 10.3390/ijms231810849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
The heat shock protein 20 (HSP20) proteins comprise an ancient, diverse, and crucial family of proteins that exists in all organisms. As a family, the HSP20s play an obvious role in thermotolerance, but little is known about their molecular functions in addition to heat acclimation. In this study, 42 PpHSP20 genes were detected in the peach genome and were randomly distributed onto the eight chromosomes. The primary modes of gene duplication of the PpHSP20s were dispersed gene duplication (DSD) and tandem duplication (TD). PpHSP20s in the same class shared similar motifs. Based on phylogenetic analysis of HSP20s in peach, Arabidopsis thaliana, Glycine max, and Oryza sativa, the PpHSP20s were classified into 11 subclasses, except for two unclassified PpHSP20s. cis-elements related to stress and hormone responses were detected in the promoter regions of most PpHSP20s. Gene expression analysis of 42 PpHSP20 genes revealed that the expression pattern of PpHSP20-32 was highly consistent with shoot length changes in the cultivar 'Zhongyoutao 14', which is a temperature-sensitive semi-dwarf. PpHSP20-32 was selected for further functional analysis. The plant heights of three transgenic Arabidopsis lines overexpressing PpHSP20-32 were significantly higher than WT, although there was no significant difference in the number of nodes. In addition, the seeds of three over-expressing lines of PpHSP20-32 treated with high temperature showed enhanced thermotolerance. These results provide a foundation for the functional characterization of PpHSP20 genes and their potential use in the growth and development of peach.
Collapse
|
10
|
Qi H, Chen X, Luo S, Fan H, Guo J, Zhang X, Ke Y, Yang P, Yu F. Genome-Wide Identification and Characterization of Heat Shock Protein 20 Genes in Maize. Life (Basel) 2022; 12:life12091397. [PMID: 36143433 PMCID: PMC9505046 DOI: 10.3390/life12091397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Maize is an important cereal crop worldwide and is sensitive to abiotic stresses in fluctuant environments that seriously affect its growth, yield, and quality. The small heat shock protein (HSP20) plays a crucial role in protecting plants from abiotic stress. However, little is known about HSP20 in maize (ZmHSP20). In this study, 44 ZmHSP20s were identified, which were unequally distributed over 10 chromosomes, and 6 pairs of ZmHSP20s were tandemly presented. The gene structure of ZmHSP20s was highly conserved, with 95% (42) of the genes having no more than one intron. The analysis of the cis-element in ZmHSP20s promoter demonstrated large amounts of elements related to hormonal and abiotic stress responses, including abscisic acid (ABA), high temperature, and hypoxia. The ZmHSP20s protein had more than two conserved motifs that were predictably localized in the cytoplasm, nucleus, endoplasmic reticulum, peroxisome, mitochondria, and plasma. Phylogenetic analysis using HSP20s in Arabidopsis, rice, maize, and Solanum tuberosum indicated that ZmHSP20s were classified into 11 categories, of which each category had unique subcellular localization. Approximately 80% (35) of ZmHSP20 were upregulated under heat stress at the maize seedling stage, whereas the opposite expression profiling of 10 genes under 37 and 48 °C was detected. A total of 20 genes were randomly selected to investigate their expression under treatments of ABA, gibberellin (GA), ethylene, low temperature, drought, and waterlogging, and the results displayed that more than half of these genes were downregulated while ZmHSP20-3, ZmHSP20-7, ZmHSP20-24, and ZmHSP20-44 were upregulated under 1 h treatment of ethylene. A yeast-one-hybrid experiment was conducted to analyze the binding of four heat stress transcription factors (ZmHSFs) with eight of the ZmHSP20s promoter sequences, in which ZmHSF3, ZmHSF13, and ZmHSF17 can bind to most of these selected ZmHSP20s promoters. Our results provided a valuable resource for studying HSP20s function and offering candidates for genetic improvement under abiotic stress.
Collapse
Affiliation(s)
- Huanhuan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiaoke Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Sen Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Hongzeng Fan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jinghua Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yinggen Ke
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Feng Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Correspondence:
| |
Collapse
|
11
|
Wu J, Gao T, Hu J, Zhao L, Yu C, Ma F. Research advances in function and regulation mechanisms of plant small heat shock proteins (sHSPs) under environmental stresses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154054. [PMID: 35202686 DOI: 10.1016/j.scitotenv.2022.154054] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 05/27/2023]
Abstract
Plants respond to various stresses by triggering the expression of genes that encode proteins involved in plant growth, fruit ripening, cellular protein homeostasis, and tolerance systems. sHSPs, a subfamily of heat shock proteins (HSPs), can be expressed in plants to inhibit abnormal aggregation of proteins and protect normal proteins by interacting with folding target proteins, protect cell integrity, and improve resistance under various adverse conditions. Thus, sHSPs have significant influences on seed germination and plant development. In this review, the classification, structure, and functions of sHSP family members in plants are systematically summarized, with emphasis on their roles in promoting fruit ripening and plant growth by reducing the accumulation of ROS, improving the survival rate of plants and the antioxidant activity, and protecting photosynthesis under biotic and abiotic stresses. Meanwhile, the production and regulatory mechanisms of sHSPs are described in detail. Heat shock factors, long non-coding RNA (lncRNAs), microRNA (miRNAs), and FK506 binding proteins are related to the production process of sHSPs. Molecular chaperone complex HSP70/100, plastidic proteins, and abscisic acid (ABA) are involved in the regulatory mechanisms of sHSPs. Besides, scientific efforts and practices for improving plant stress resistance have carried out the constitutive expression of sHSPs in transgenic plants in recent years. It is a powerful path for inducing the protective mechanisms of plants under various stresses. Therefore, exploring the role of sHSPs in the plant defense system paves a way for comprehensively unraveling plant tolerance in response to biotic and abiotic stress.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China.
| | - Tian Gao
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Jianing Hu
- Dalian Neusoft University of Information, Dalian 116032, People's Republic of China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Chang Yu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
12
|
Sun Y, Hu D, Xue P, Wan X. Identification of the DcHsp20 gene family in carnation (Dianthus caryophyllus) and functional characterization of DcHsp17.8 in heat tolerance. PLANTA 2022; 256:2. [PMID: 35624182 DOI: 10.1007/s00425-022-03915-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 05/09/2023]
Abstract
33 heat shock protein 20 (Hsp20) genes were identified from the carnation genome whose expression were altered by abiotic stresses. DcHsp17.8 may function to improve the heat resistance of Arabidopsis. Heat shock proteins 20 (Hsp20s) mainly function as molecular chaperones that play crucial roles in relieving abiotic stresses such as heat stress. In this study, we identified and characterized 33 DcHsp20 genes from the carnation genome that were classified into 9 subfamilies. Gene structure analysis showed that 25 DcHsp20 genes contained 1 intron whilst the remaining 8 DcHsp20 genes did not contain introns. Motif analysis found that DcHsp20 proteins were relatively conserved. Cis-regulatory elements analysis of the Hsp20 promoters revealed a number of cis-regulatory elements that regulate growth and development, hormone and stress responses. Gene expression analysis revealed that DcHsp20 genes had multiple response patterns to heat stress. The largest range of induction occurred in DcHsp17.8 after 1 h of heat stress. Under cold stress, or treatment with saline or abscisic acid, the expression of most DcHsp20 genes was inhibited. To further understand the function of DcHsp20 genes in response to heat stress, we overexpressed DcHsp17.8 in Arabidopis and the plants showed improved heat tolerance, O2- and H2O2 activities and photosynthetic capacity with reduced relative electrolyte leakage and malondialdehyde content. Gene expression analysis revealed that DcHsp17.8 modulated the expression of genes involved in antioxidant enzyme synthesis. Our data provided a solid foundation for the further detailed study of DcHsp20 genes.
Collapse
Affiliation(s)
- Yuying Sun
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Diandian Hu
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Pengcheng Xue
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Xueli Wan
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Ye X, Wang S, Zhao X, Gao N, Wang Y, Yang Y, Wu E, Jiang C, Cheng Y, Wu W, Liu S. Role of lncRNAs in cis- and trans-regulatory responses to salt in Populus trichocarpa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:978-993. [PMID: 35218100 DOI: 10.1111/tpj.15714] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 06/05/2023]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as versatile regulators in diverse biological processes. However, little is known about their cis- and trans-regulatory contributions in gene expression under salt stress. Using 27 RNA-seq data sets from Populus trichocarpa leaves, stems and roots, we identified 2988 high-confidence lncRNAs, including 1183 salt-induced differentially expressed lncRNAs. Among them, 301 lncRNAs have potential for positively affecting their neighboring genes, predominantly in a cis-regulatory manner rather than by co-transcription. Additionally, a co-expression network identified six striking salt-associated modules with a total of 5639 genes, including 426 lncRNAs, and in these lncRNA sequences, the DNA/RNA binding motifs are enriched. This suggests that lncRNAs might contribute to distant gene expression of the salt-associated modules in a trans-regulatory manner. Moreover, we found 30 lncRNAs that have potential to simultaneously cis- and trans-regulate salt-responsive homologous genes, and Ptlinc-NAC72, significantly induced under long-term salt stress, was selected for validating its regulation of the expression and functional roles of the homologs PtNAC72.A and PtNAC72.B (PtNAC72.A/B). The transient transformation of Ptlinc-NAC72 and a dual-luciferase assay of Ptlinc-NAC72 and PtNAC72.A/B promoters confirmed that Ptlinc-NAC72 can directly upregulate PtNAC72.A/B expression, and a presence/absence assay was further conducted to show that the regulation is probably mediated by Ptlinc-NAC72 recognizing the tandem elements (GAAAAA) in the PtNAC72.A/B 5' untranslated region (5'-UTR). Finally, the overexpression of Ptlinc-NAC72 produces a hypersensitive phenotype under salt stress. Altogether, our results shed light on the cis- and trans-regulation of gene expression by lncRNAs in Populus and provides an example of long-term salt-induced Ptlinc-NAC72 that could be used to mitigate growth costs by conferring plant resilience to salt stress.
Collapse
Affiliation(s)
- Xiaoxue Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xijuan Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Ni Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yao Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yanmei Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Ernest Wu
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| |
Collapse
|
14
|
Hu Y, Zhang T, Liu Y, Li Y, Wang M, Zhu B, Liao D, Yun T, Huang W, Zhang W, Zhou Y. Pumpkin ( Cucurbita moschata) HSP20 Gene Family Identification and Expression Under Heat Stress. Front Genet 2021; 12:753953. [PMID: 34721541 PMCID: PMC8553033 DOI: 10.3389/fgene.2021.753953] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Pumpkin (Cucurbita moschata) is an important cucurbit vegetable crop that has strong resistance to abiotic stress. While heat shock protein 20 (HSP20) has been implicated in vegetable response to heat stress, little is known regarding activity of HSP20 family proteins in C. moschata. Here, we performed a comprehensive genome-wide analysis to identify and characterize the functional dynamics of the Cucurbita moschata HSP20 (CmoHSP20) gene family. A total of 33 HSP20 genes distributed across 13 chromosomes were identified from the pumpkin genome. Our phylogenetic analysis determined that the CmoHSP20 proteins fell into nine distinct subfamilies, a division supported by the conserved motif composition and gene structure analyses. Segmental duplication events were shown to play a key role in expansion of the CmoHSP20 gene family. Synteny analysis revealed that 19 and 18 CmoHSP20 genes were collinear with those in the cucumber and melon genomes, respectively. Furthermore, the expression levels of pumpkin HSP20 genes were differentially induced by heat stress. The transcript level of CmoHSP20-16, 24 and 25 were down-regulated by heat stress, while CmoHSP20-7, 13, 18, 22, 26 and 32 were up-regulated by heat stress, which could be used as heat tolerance candidate genes. Overall, these findings contribute to our understanding of vegetable HSP20 family genes and provide valuable information that can be used to breed heat stress resistance in cucurbit vegetable crops.
Collapse
Affiliation(s)
- Yanping Hu
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Tingting Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Ying Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Yuxin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Min Wang
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Baibi Zhu
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Daolong Liao
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Tianhai Yun
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Wenfeng Huang
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Wen Zhang
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| |
Collapse
|
15
|
CaHSP18.1a, a Small Heat Shock Protein from Pepper (Capsicum annuum L.), Positively Responds to Heat, Drought, and Salt Tolerance. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7050117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pepper is a thermophilic crop, shallow-rooted plant that is often severely affected by abiotic stresses such as heat, salt, and drought. The growth and development of pepper is seriously affected by adverse stresses, resulting in decreases in the yield and quality of pepper crops. Small heat shock proteins (s HSPs) play a crucial role in protecting plant cells against various stresses. A previous study in our laboratory showed that the expression level of CaHSP18.1a was highly induced by heat stress, but the function and mechanism of CaHSP18.1a responding to abiotic stresses is not clear. In this study, we first analyzed the expression of CaHSP18.1a in the thermo-sensitive B6 line and thermo-tolerant R9 line and demonstrated that the transcription of CaHSP18.1a was strongly induced by heat stress, salt, and drought stress in both R9 and B6, and that the response is more intense and earlier in the R9 line. In the R9 line, the silencing of CaHSP18.1a decreased resistance to heat, drought, and salt stresses. The silencing of CaHSP18.1a resulted in significant increases in relative electrolyte leakage (REL) and malonaldehyde (MDA) contents, while total chlorophyll content decreased under heat, salt, and drought stresses. Overexpression analyses of CaHSP18.1a in transgenic Arabidopsis further confirmed that CaHSP18.1a functions positively in resistance to heat, drought, and salt stresses. The transgenic Arabidopsis had higherchlorophyll content and activities of superoxide dismutase, catalase, and ascorbate peroxidase than the wild type (WT). However, the relative conductivity and MDA content were decreased in transgenic Arabidopsis compared to the wild type (WT). We further showed that the CaHSP18.1a protein is localized to the cell membrane. These results indicate CaHSP18.1a may act as a positive regulator of responses to abiotic stresses.
Collapse
|
16
|
The Chloroplastic Small Heat Shock Protein Gene KvHSP26 Is Induced by Various Abiotic Stresses in Kosteletzkya virginica. Int J Genomics 2021; 2021:6652445. [PMID: 33623779 PMCID: PMC7875624 DOI: 10.1155/2021/6652445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/03/2021] [Accepted: 01/15/2021] [Indexed: 01/16/2023] Open
Abstract
Small heat shock proteins (sHSPs) are a group of chaperone proteins existed in all organisms. The functions of sHSPs in heat and abiotic stress responses in many glycophyte plants have been studied. However, their possible roles in halophyte plants are still largely known. In this work, a putative sHSP gene KvHSP26 was cloned from K. virginica. Bioinformatics analyses revealed that KvHSP26 encoded a chloroplastic protein with the typical features of sHSPs. Amino acid sequence alignment and phylogenetic analysis demonstrated that KvHSP26 shared 30%-77% homology with other sHSPs from Arabidopsis, cotton, durian, salvia, and soybean. Quantitative real-time PCR (qPCR) assays exhibited that KvHSP26 was constitutively expressed in different tissues such as leaves, stems, and roots, with a relatively higher expression in leaves. Furthermore, expression of KvHSP26 was strongly induced by salt, heat, osmotic stress, and ABA in K. virginica. All these results suggest that KvHSP26 encodes a new sHSP, which is involved in multiple abiotic stress responses in K. virginica, and it has a great potential to be used as a candidate gene for the breeding of plants with improved tolerances to various abiotic stresses.
Collapse
|
17
|
Tian F, Hu XL, Yao T, Yang X, Chen JG, Lu MZ, Zhang J. Recent Advances in the Roles of HSFs and HSPs in Heat Stress Response in Woody Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:704905. [PMID: 34305991 PMCID: PMC8299100 DOI: 10.3389/fpls.2021.704905] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 05/08/2023]
Abstract
A continuous increase in ambient temperature caused by global warming has been considered a worldwide threat. As sessile organisms, plants have evolved sophisticated heat shock response (HSR) to respond to elevated temperatures and other abiotic stresses, thereby minimizing damage and ensuring the protection of cellular homeostasis. In particular, for perennial trees, HSR is crucial for their long life cycle and development. HSR is a cell stress response that increases the number of chaperones including heat shock proteins (HSPs) to counter the negative effects on proteins caused by heat and other stresses. There are a large number of HSPs in plants, and their expression is directly regulated by a series of heat shock transcription factors (HSFs). Therefore, understanding the detailed molecular mechanisms of woody plants in response to extreme temperature is critical for exploring how woody species will be affected by climate changes. In this review article, we summarize the latest findings of the role of HSFs and HSPs in the HSR of woody species and discuss their regulatory networks and cross talk in HSR. In addition, strategies and programs for future research studies on the functions of HSFs and HSPs in the HSR of woody species are also proposed.
Collapse
Affiliation(s)
- Fengxia Tian
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xiao-Li Hu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Jin Zhang ; orcid.org/0000-0002-8397-5078
| |
Collapse
|
18
|
Zhang J, Xie M, Li M, Ding J, Pu Y, Bryan AC, Rottmann W, Winkeler KA, Collins CM, Singan V, Lindquist EA, Jawdy SS, Gunter LE, Engle NL, Yang X, Barry K, Tschaplinski TJ, Schmutz J, Tuskan GA, Muchero W, Chen J. Overexpression of a Prefoldin β subunit gene reduces biomass recalcitrance in the bioenergy crop Populus. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:859-871. [PMID: 31498543 PMCID: PMC7004918 DOI: 10.1111/pbi.13254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 05/06/2023]
Abstract
Prefoldin (PFD) is a group II chaperonin that is ubiquitously present in the eukaryotic kingdom. Six subunits (PFD1-6) form a jellyfish-like heterohexameric PFD complex and function in protein folding and cytoskeleton organization. However, little is known about its function in plant cell wall-related processes. Here, we report the functional characterization of a PFD gene from Populus deltoides, designated as PdPFD2.2. There are two copies of PFD2 in Populus, and PdPFD2.2 was ubiquitously expressed with high transcript abundance in the cambial region. PdPFD2.2 can physically interact with DELLA protein RGA1_8g, and its subcellular localization is affected by the interaction. In P. deltoides transgenic plants overexpressing PdPFD2.2, the lignin syringyl/guaiacyl ratio was increased, but cellulose content and crystallinity index were unchanged. In addition, the total released sugar (glucose and xylose) amounts were increased by 7.6% and 6.1%, respectively, in two transgenic lines. Transcriptomic and metabolomic analyses revealed that secondary metabolic pathways, including lignin and flavonoid biosynthesis, were affected by overexpressing PdPFD2.2. A total of eight hub transcription factors (TFs) were identified based on TF binding sites of differentially expressed genes in Populus transgenic plants overexpressing PdPFD2.2. In addition, several known cell wall-related TFs, such as MYB3, MYB4, MYB7, TT8 and XND1, were affected by overexpression of PdPFD2.2. These results suggest that overexpression of PdPFD2.2 can reduce biomass recalcitrance and PdPFD2.2 is a promising target for genetic engineering to improve feedstock characteristics to enhance biofuel conversion and reduce the cost of lignocellulosic biofuel production.
Collapse
Affiliation(s)
- Jin Zhang
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Meng Xie
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Mi Li
- Chemical & Biomolecular EngineeringUniversity of TennesseeKnoxvilleTNUSA
| | - Jinhua Ding
- Chemical & Biomolecular EngineeringUniversity of TennesseeKnoxvilleTNUSA
- College of TextilesDonghua UniversityShanghaiChina
| | - Yunqiao Pu
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | | | | | | | | | - Vasanth Singan
- U.S. Department of Energy Joint Genome InstituteWalnut CreekCAUSA
| | | | - Sara S. Jawdy
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Lee E. Gunter
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Nancy L. Engle
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Xiaohan Yang
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome InstituteWalnut CreekCAUSA
| | - Timothy J. Tschaplinski
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jeremy Schmutz
- U.S. Department of Energy Joint Genome InstituteWalnut CreekCAUSA
- HudsonAlpha Institute for BiotechnologyHuntsvilleALUSA
| | - Gerald A. Tuskan
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Wellington Muchero
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jin‐Gui Chen
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| |
Collapse
|
19
|
Ali M, Muhammad I, ul Haq S, Alam M, Khattak AM, Akhtar K, Ullah H, Khan A, Lu G, Gong ZH. The CaChiVI2 Gene of Capsicum annuum L. Confers Resistance Against Heat Stress and Infection of Phytophthora capsici. FRONTIERS IN PLANT SCIENCE 2020; 11:219. [PMID: 32174952 PMCID: PMC7057250 DOI: 10.3389/fpls.2020.00219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/12/2020] [Indexed: 05/08/2023]
Abstract
Extreme environmental conditions seriously affect crop growth and development, resulting in substantial reduction in yield and quality. However, chitin-binding proteins (CBP) family member CaChiVI2 plays a crucial role in eliminating the impact of adverse environmental conditions, such as cold and salt stress. Here, for the first time it was discovered that CaChiVI2 (Capana08g001237) gene of pepper (Capsicum annuum L.) had a role in resistance to heat stress and physiological processes. The full-length open-reading frame (ORF) of CaChiVI2 (606-bp, encoding 201-amino acids), was cloned into TRV2:CaChiVI2 vector for silencing. The CaChiVI2 gene carries heat shock elements (HSE, AAAAAATTTC) in the upstream region, and thereby shows sensitivity to heat stress at the transcriptional level. The silencing effect of CaChiVI2 in pepper resulted in increased susceptibility to heat and Phytophthora capsici infection. This was evident from the severe symptoms on leaves, the increase in superoxide (O2 -) and hydrogen peroxide (H2O2) accumulation, higher malondialdehyde (MDA), relative electrolyte leakage (REL) and lower proline contents compared with control plants. Furthermore, the transcript level of other resistance responsive genes was also altered. In addition, the CaChiIV2-overexpression in Arabidopsis thaliana showed mild heat and drought stress symptoms and increased transcript level of a defense-related gene (AtHSA32), indicating its role in the co-regulation network of the plant. The CaChiVI2-overexpressed plants also showed a decrease in MDA contents and an increase in antioxidant enzyme activity and proline accumulation. In conclusion, the results suggest that CaChiVI2 gene plays a decisive role in heat and drought stress tolerance, as well as, provides resistance against P. capsici by reducing the accumulation of reactive oxygen species (ROS) and modulating the expression of defense-related genes. The outcomes obtained here suggest that further studies should be conducted on plants adaptation mechanisms in variable environments.
Collapse
Affiliation(s)
- Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling, China
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Izhar Muhammad
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Mukhtar Alam
- Department of Agriculture, The University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Mateen Khattak
- Department of Horticulture, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Kashif Akhtar
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hidayat Ullah
- Department of Agriculture, The University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Gang Lu
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
20
|
Guo LM, Li J, He J, Liu H, Zhang HM. A class I cytosolic HSP20 of rice enhances heat and salt tolerance in different organisms. Sci Rep 2020; 10:1383. [PMID: 31992813 PMCID: PMC6987133 DOI: 10.1038/s41598-020-58395-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/13/2020] [Indexed: 01/07/2023] Open
Abstract
Small heat shock proteins (sHSPs) have been thought to function as chaperones, protecting their targets from denaturation and aggregation when organisms are subjected to various biotic and abiotic stresses. We previously reported an sHSP from Oryza sativa (OsHSP20) that homodimerizes and forms granules within the cytoplasm but its function was unclear. We now show that OsHSP20 transcripts were significantly up-regulated by heat shock and high salinity but not by drought. A recombinant protein was purified and shown to inhibit the thermal aggregation of the mitochondrial malate dehydrogenase (MDH) enzyme in vitro, and this molecular chaperone activity suggested that OsHSP20 might be involved in stress resistance. Heterologous expression of OsHSP20 in Escherichia coli or Pichia pastoris cells enhanced heat and salt stress tolerance when compared with the control cultures. Transgenic rice plants constitutively overexpressing OsHSP20 and exposed to heat and salt treatments had longer roots and higher germination rates than those of control plants. A series of assays using its truncated mutants showed that its N-terminal arm plus the ACD domain was crucial for its homodimerization, molecular chaperone activity in vitro, and stress tolerance in vivo. The results supported the viewpoint that OsHSP20 could confer heat and salt tolerance by its molecular chaperone activity in different organisms and also provided a more thorough characterization of HSP20-mediated stress tolerance in O. sativa.
Collapse
Affiliation(s)
- Liu-Ming Guo
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.,College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Jing Li
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jing He
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.,College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Han Liu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.,College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Heng-Mu Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China. .,College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
21
|
Zhang C, Xu B, Geng W, Shen Y, Xuan D, Lai Q, Shen C, Jin C, Yu C. Comparative proteomic analysis of pepper ( Capsicum annuum L.) seedlings under selenium stress. PeerJ 2019; 7:e8020. [PMID: 31799069 PMCID: PMC6884995 DOI: 10.7717/peerj.8020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022] Open
Abstract
Selenium (Se) is an essential trace element for human and animal health. Se fertilizer has been used to increase the Se content in crops to meet the Se requirements in humans and animals. To address the challenge of Se poisoning in plants, the mechanisms underlying Se-induced stress in plants must be understood. Here, to elucidate the effects of Se stress on the protein levels in pepper, we used an integrated approach involving tandem mass tag labeling, high performance liquid chromatography fractionation, and mass spectrometry-based analysis. A total of 4,693 proteins were identified, 3,938 of which yielded quantitative information. Among them, the expression of 172 proteins was up-regulated, and the expression of 28 proteins was down-regulated in the Se/mock treatment comparison. According to the above data, we performed a systematic bioinformatics analysis of all identified proteins and differentially expressed proteins (DEPs). The DEPs were most strongly associated with the terms “metabolic process,” “posttranslational modification, protein turnover, chaperones,” and “protein processing in endoplasmic reticulum” according to Gene Ontology, eukaryotic orthologous groups classification, and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, respectively. Furthermore, several heat shock proteins were identified as DEPs. These results provide insights that may facilitate further studies on the pepper proteome expressed downstream of the Se stress response. Our data revealed that the responses of pepper to Se stress involve various pathways.
Collapse
Affiliation(s)
- Chenghao Zhang
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.,Key Labortatory of Creative Agricultrue, Ministry of Agriculture, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang, China
| | - Baoyu Xu
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Wei Geng
- Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yunde Shen
- College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Dongji Xuan
- College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Qixian Lai
- Key Labortatory of Creative Agricultrue, Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chenjia Shen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Chengwu Jin
- School of Food Engineering, Ludong University, Yantai, Shandong, China
| | - Chenliang Yu
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Li J, Sun P, Xia Y, Zheng G, Sun J, Jia H. A Stress-Associated Protein, PtSAP13, From Populus trichocarpa Provides Tolerance to Salt Stress. Int J Mol Sci 2019; 20:ijms20225782. [PMID: 31744233 PMCID: PMC6888306 DOI: 10.3390/ijms20225782] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 01/19/2023] Open
Abstract
The growth and production of poplars are usually affected by unfavorable environmental conditions such as soil salinization. Thus, enhancing salt tolerance of poplars will promote their better adaptation to environmental stresses and improve their biomass production. Stress-associated proteins (SAPs) are a novel class of A20/AN1 zinc finger proteins that have been shown to confer plants' tolerance to multiple abiotic stresses. However, the precise functions of SAP genes in poplars are still largely unknown. Here, the expression profiles of Populus trichocarpa SAPs in response to salt stress revealed that PtSAP13 with two AN1 domains was up-regulated dramatically during salt treatment. The β-glucuronidase (GUS) staining showed that PtSAP13 was accumulated dominantly in leaf and root, and the GUS signal was increased under salt condition. The Arabidopsis transgenic plants overexpressing PtSAP13 exhibited higher seed germination and better growth than wild-type (WT) plants under salt stress, demonstrating that overexpression of PtSAP13 increased salt tolerance. Higher activities of antioxidant enzymes were found in PtSAP13-overexpressing plants than in WT plants under salt stress. Transcriptome analysis revealed that some stress-related genes, including Glutathione peroxidase 8, NADP-malic enzyme 2, Response to ABA and Salt 1, WRKYs, Glutathione S-Transferase, and MYBs, were induced by salt in transgenic plants. Moreover, the pathways of flavonoid biosynthesis and metabolic processes, regulation of response to stress, response to ethylene, dioxygenase activity, glucosyltransferase activity, monooxygenase activity, and oxidoreductase activity were specially enriched in transgenic plants under salt condition. Taken together, our results demonstrate that PtSAP13 enhances salt tolerance through up-regulating the expression of stress-related genes and mediating multiple biological pathways.
Collapse
Affiliation(s)
- Jianbo Li
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China;
- Correspondence: (J.L.); (H.J.)
| | - Pei Sun
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China;
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yongxiu Xia
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
| | - Guangshun Zheng
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
| | - Jingshuang Sun
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
| | - Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China;
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Correspondence: (J.L.); (H.J.)
| |
Collapse
|
23
|
Jia H, Li J, Zhang J, Sun P, Lu M, Hu J. The Salix psammophila SpRLCK1 involved in drought and salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:222-233. [PMID: 31586722 DOI: 10.1016/j.plaphy.2019.09.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/30/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Receptor-like cytoplasmic kinases (RLCKs) play critical roles in biotic and abiotic stress responses in plants. However, the functions of RLCKs from the desert shrub willow Salix psammophila have not been characterized. Here, we focused on the biological function of SpRLCK1, which was previously identified as a potential drought-related gene. Phylogenetic analysis and subcellular localization revealed that SpRLCK1 was a cytoplasmic-localized protein with a protein kinase domain and belonged to the RLCK VIIa subclass. Gene expression profile revealed that SpRLCK1 was predominantly expressed in the root, being consistent with the GUS staining of pSpRLCK1:GUS transgenic plants. Additionally, the expression of SpRLCK1 was significantly induced by drought and salt stresses. To verify the function of SpRLCK1, we generated its overexpressing transgenic lines in Arabidopsis thaliana. The SpRLCK1-overexpressing plants exhibited higher tolerance to drought and salt stresses, as evidenced by the higher survival rate, relative water content and antioxidant enzyme activity than those of wild-type plants. The SpRLCK1-overexpressing plants enhanced drought and salt tolerance by improving ROS-scavenging activities. A co-expression network for SpRLCK1 was constructed, and the expression analysis indicated that SpRLCK1 regulated the expression of a series of stress-related genes. Taken together, our results demonstrate that SpRLCK1 confers plant drought and salt tolerance through enhancing the activity of antioxidant enzymes and cooperating with stress-related genes.
Collapse
Affiliation(s)
- Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jianbo Li
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, China
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Pei Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
24
|
Nagaraju M, Reddy PS, Kumar SA, Kumar A, Rajasheker G, Rao DM, Kavi Kishor PB. Genome-wide identification and transcriptional profiling of small heat shock protein gene family under diverse abiotic stress conditions in Sorghum bicolor (L.). Int J Biol Macromol 2019; 142:822-834. [PMID: 31622710 DOI: 10.1016/j.ijbiomac.2019.10.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/16/2019] [Accepted: 10/02/2019] [Indexed: 11/24/2022]
Abstract
The small heat shock proteins (sHsps/Hsp20s) are the molecular chaperones that maintain proper folding, trafficking and disaggregation of proteins under diverse abiotic stress conditions. In the present investigation, a genome-wide scan revealed the presence of a total of 47 sHsps in Sorghum bicolor (SbsHsps), distributed across 10 subfamilies, the major subfamily being P (plastid) group with 17 genes. Chromosomes 1 and 3 appear as the hot spot regions for SbsHsps, and majority of them were found acidic, hydrophilic, unstable and intron less. Interestingly, promoter analysis indicated that they are associated with both biotic and abiotic stresses, as well as plant development. Sorghum sHsps exhibited 15 paralogous and 20 orthologous duplications. Expression analysis of 15 genes selected from different subfamilies showed high transcript levels in roots and leaves implying that they are likely to participate in the developmental processes. SbsHsp genes were highly induced by diverse abiotic stresses inferring their critical role in mediating the environmental stress responses. Gene expression data revealed that SbsHsp-02 is a candidate gene expressed in all the tissues under varied stress conditions tested. Our results contribute to the understanding of the complexity of SbsHsp genes and help to analyse them further for functional validation.
Collapse
Affiliation(s)
- M Nagaraju
- Department of Genetics, Osmania University, Hyderabad 500 007, India; Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad 500 007, India
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | - S Anil Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522 213, India
| | - Anuj Kumar
- Advance Center for Computational & Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun 248 007, India
| | - G Rajasheker
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| | - D Manohar Rao
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
| |
Collapse
|
25
|
Feng XH, Zhang HX, Ali M, Gai WX, Cheng GX, Yu QH, Yang SB, Li XX, Gong ZH. A small heat shock protein CaHsp25.9 positively regulates heat, salt, and drought stress tolerance in pepper (Capsicum annuum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:151-162. [PMID: 31284139 DOI: 10.1016/j.plaphy.2019.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/22/2019] [Accepted: 07/01/2019] [Indexed: 05/21/2023]
Abstract
Extreme environmental conditions seriously affect crop growth and development, resulting in a decrease in crop yield and quality. However, small heat shock proteins (Hsp20s) play an important role in helping plants to avoid these negative impacts. In this study, we identified the expression pattern of the CaHsp25.9 gene in a thermo-tolerance pepper line R9 and thermo-sensitive line B6. The transcription of CaHsp25.9 was strongly induced by heat stress in both R9 and B6. The expression of CaHsp25.9 was induced by salt and drought stress in R9. Additionally, the CaHsp25.9 protein was localized in the cell membrane and cytoplasm. When silencing the CaHsp25.9 gene in the R9 line, the accumulation of malonaldehyde (MDA), relative electrolytic leakage, hydrogen peroxide, superoxide anion were increased, while total chlorophyll decreased under heat, salt, and drought stress. Over-expression of CaHsp25.9 in Arabidopsis resulted in decreased MDA, while proline, superoxide dismutase activity, germination, and root length increased under heat, salt, and drought stress. However, peroxidase activity was higher in drought stress but lower in heat and salt stress in transgenic Arabidopsis compared to the wild type (WT). Furthermore, the transcription of stress related genes was more highly induced in transgenic lines than WT. Our results indicated that CaHsp25.9 confers heat, salt, and drought stress tolerance to plants by reducing the accumulation of reactive oxygen species, enhancing the activity of antioxidant enzymes, and regulating the expression of stress-related genes. Therefore, these results may provide insight into plant adaption mechanisms developed in variable environments.
Collapse
Affiliation(s)
- Xiao-Hui Feng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Guo-Xin Cheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Qing-Hui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China
| | - Sheng-Bao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China
| | - Xi-Xuan Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
26
|
Zhan Y, Wu Q, Chen Y, Tang M, Sun C, Sun J, Yu C. Comparative proteomic analysis of okra (Abelmoschus esculentus L.) seedlings under salt stress. BMC Genomics 2019; 20:381. [PMID: 31096913 PMCID: PMC6521433 DOI: 10.1186/s12864-019-5737-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/25/2019] [Indexed: 12/13/2022] Open
Abstract
Background Salinization seriously threatens land use efficiency and crop yields across the world. Understanding the mechanisms plants use to protect against salt stress will help breeders develop salt-tolerant vegetable crops. Okra (Abelmoschus esculentus L.) is an important vegetable crop of the mallow family, which is now cultivated in warm regions worldwide. To understand the effects of salt stress on the protein level of okra, a comparative proteomic analysis of okra seedlings grown in the presence of 0 or 300 mmol L− 1 NaCl treatment was performed using an integrated approach of Tandem Mass Tag labeling and LC-MS/MS integrated approach. Results A total of 7179 proteins were identified in this study, for which quantitative information was available for 5774 proteins. In the NaCl/control comparison group, there were 317 differentially expressed proteins (DEPs), of which 165 proteins were upregulated and 152 proteins downregulated in the presence of NaCl. Based on the above data, we carried out a systematic bioinformatics analysis of proteins with information, including protein annotation, domain characteristics, functional classification, and pathway enrichment. Enriched gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the DEPs were most strongly associated with “response to stress” and “protein processing in endoplasmic reticulum”. Furthermore, several heat shock proteins were identified as DEPs. Conclusions This information provides a reference direction for further research on the okra proteome in the downstream of the salt stress response, with our data revealing that the responses of okra to salt stress involves by various pathways. Electronic supplementary material The online version of this article (10.1186/s12864-019-5737-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yihua Zhan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.,Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qingfei Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, 310021, China
| | - Mengling Tang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, 311300, China
| | - Chendong Sun
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou, 311300, China
| | - Junwei Sun
- College of Modern Science and Technology, China Jiliang University, Hangzhou, 310018, China
| | - Chenliang Yu
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
27
|
Zhang X, Liu L, Chen B, Qin Z, Xiao Y, Zhang Y, Yao R, Liu H, Yang H. Progress in Understanding the Physiological and Molecular Responses of Populus to Salt Stress. Int J Mol Sci 2019; 20:ijms20061312. [PMID: 30875897 PMCID: PMC6471404 DOI: 10.3390/ijms20061312] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 11/25/2022] Open
Abstract
Salt stress (SS) has become an important factor limiting afforestation programs. Because of their salt tolerance and fully sequenced genomes, poplars (Populus spp.) are used as model species to study SS mechanisms in trees. Here, we review recent insights into the physiological and molecular responses of Populus to SS, including ion homeostasis and signaling pathways, such as the salt overly sensitive (SOS) and reactive oxygen species (ROS) pathways. We summarize the genes that can be targeted for the genetic improvement of salt tolerance and propose future research areas.
Collapse
Affiliation(s)
- Xiaoning Zhang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China.
| | - Lijun Liu
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, College of Forestry, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Bowen Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China.
| | - Zihai Qin
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China.
| | - Yufei Xiao
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China.
| | - Ye Zhang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China.
| | - Ruiling Yao
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China.
| | - Hailong Liu
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China.
| | - Hong Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China.
| |
Collapse
|
28
|
Huang LJ, Cheng GX, Khan A, Wei AM, Yu QH, Yang SB, Luo DX, Gong ZH. CaHSP16.4, a small heat shock protein gene in pepper, is involved in heat and drought tolerance. PROTOPLASMA 2019; 256:39-51. [PMID: 29946904 DOI: 10.1007/s00709-018-1280-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/18/2018] [Indexed: 05/08/2023]
Abstract
Environmental stress affects growth and development of crops, and reduces yield and quality of crops. To cope with environmental stressors, plants have sophisticated defense mechanisms, including the HSF/HSP pathway. Here, we identify the expression pattern of CaHSP16.4 in thermo-tolerant and thermo-sensitive pepper (Capsicum annuum L.) lines. Under heat stress, R9 thermo-tolerant line had higher CaHSP16.4 expression level than the B6 thermo-sensitive line. Under drought stress, expression pattern of CaHSP16.4 was dynamic. Initially, CaHSP16.4 was downregulated then CaHSP16.4 significantly increased. Subcellular localization assay showed that CaHSP16.4 localizes in cytoplasm and nucleus. In the R9 line, silencing of CaHSP16.4 resulted in a significant increase in malonaldehyde content and a significant reduction in total chlorophyll content, suggesting that silencing of CaHSP16.4 reduces heat and drought stresses tolerance. Overexpression of CaHSP16.4 enhances tolerance to heat stress in Arabidopsis. Under heat stress, the survival rate of CaHSP16.4 overexpression lines was significantly higher than wild type. Furthermore, under heat, drought, and combined stress conditions, the CaHSP16.4-overexpression lines had lower relative electrolytic leakage and malonaldehyde content, higher total chlorophyll content, and higher activity levels of superoxide dismutase, catalase, ascorbic acid peroxidase, and glutathione peroxidase compared to wild type. Furthermore, the expression levels of the stress response genes in the overexpression lines were higher than the wild type. These results indicate that the overexpression of CaHSP16.4 enhances the ability of reactive oxygen species scavenging under heat and drought stress.
Collapse
Affiliation(s)
- Liu-Jun Huang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Guo-Xin Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, People's Republic of China
| | - Qing-Hui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| | - Sheng-Bao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| | - De-Xu Luo
- Xuhuai Region Huaiyin Institute of Agricultural Sciences, Huai'an, 223001, Jiangsu, People's Republic of China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
29
|
Li J, Zhang J, Jia H, Yue Z, Lu M, Xin X, Hu J. Genome-Wide Characterization of the sHsp Gene Family in Salix suchowensis Reveals Its Functions under Different Abiotic Stresses. Int J Mol Sci 2018; 19:E3246. [PMID: 30347736 PMCID: PMC6214038 DOI: 10.3390/ijms19103246] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Small heat shock proteins (sHsps) function mainly as molecular chaperones that play vital roles in response to diverse stresses, especially high temperature. However, little is known about the molecular characteristics and evolutionary history of the sHsp family in Salix suchowensis, an important bioenergy woody plant. In this study, 35 non-redundant sHsp genes were identified in S. suchowensis, and they were divided into four subfamilies (C, CP, PX, and MT) based on their phylogenetic relationships and predicted subcellular localization. Though the gene structure and conserved motif were relatively conserved, the sequences of the Hsp20 domain were diversified. Eight paralogous pairs were identified in the Ssu-sHsp family, in which five pairs were generated by tandem duplication events. Ka/Ks analysis indicated that Ssu-sHsps had undergone purifying selection. The expression profiles analysis showed Ssu-Hsps tissue-specific expression patterns, and they were induced by at least one abiotic stress. The expression correlation between two paralogous pairs (Ssu-sHsp22.2-CV/23.0-CV and 23.8-MT/25.6-MT) were less than 0.6, indicating that they were divergent during the evolution. Various cis-acting elements related to stress responses, hormone or development, were detected in the promoter of Ssu-sHsps. Furthermore, the co-expression network revealed the potential mechanism of Ssu-sHsps under stress tolerance and development. These results provide a foundation for further functional research on the Ssu-sHsp gene family in S. suchowensis.
Collapse
Affiliation(s)
- Jianbo Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China.
| | - Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Zhiqiang Yue
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Xuebing Xin
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China.
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
30
|
Zhang L, Hu W, Gao Y, Pan H, Zhang Q. A cytosolic class II small heat shock protein, PfHSP17.2, confers resistance to heat, cold, and salt stresses in transgenic Arabidopsis. Genet Mol Biol 2018; 41:649-660. [PMID: 30235397 PMCID: PMC6136373 DOI: 10.1590/1678-4685-gmb-2017-0206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/11/2018] [Indexed: 11/22/2022] Open
Abstract
We cloned and characterized the full-length coding sequence of a small heat shock (sHSP) gene, PfHSP17.2, from Primula forrestii leaves following heat stress treatment. Homology and phylogenetic analysis suggested that PfHSP17.2 is a cytosolic class II sHSP, which was further supported by the cytosolic localization of transient expression of PfHSP17.2 fused with green fluorescent protein reporter. Expression analysis showed that PfHSP17.2 was highly inducible by heat stress in almost all the vegetative and generative tissues and was expressed under salt, cold, and oxidative stress conditions as well. Moreover, the expression of PfHSP17.2 in P. forrestii was detected in certain developmental growth stages. Transgenic Arabidopsis thaliana constitutively expressing PfHSP17.2 displayed increased thermotolerance and higher resistance to salt and cold compared with wild type plants. It is suggested that PfHSP17.2 plays a key role in heat and other abiotic stresses.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China.,College of Landscape Architecture, Beijing Forestry University, China National Engineering Research Center for Floriculture, Beijing, China
| | - Weijuan Hu
- College of Landscape Architecture, Beijing Forestry University, China National Engineering Research Center for Floriculture, Beijing, China
| | - Yike Gao
- College of Landscape Architecture, Beijing Forestry University, China National Engineering Research Center for Floriculture, Beijing, China
| | - Huitang Pan
- College of Landscape Architecture, Beijing Forestry University, China National Engineering Research Center for Floriculture, Beijing, China
| | - Qixiang Zhang
- College of Landscape Architecture, Beijing Forestry University, China National Engineering Research Center for Floriculture, Beijing, China
| |
Collapse
|
31
|
Yang M, Zhang Y, Zhang H, Wang H, Wei T, Che S, Zhang L, Hu B, Long H, Song W, Yu W, Yan G. Identification of MsHsp20 Gene Family in Malus sieversii and Functional Characterization of MsHsp16.9 in Heat Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:1761. [PMID: 29163556 PMCID: PMC5672332 DOI: 10.3389/fpls.2017.01761] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/26/2017] [Indexed: 05/20/2023]
Abstract
Heat shock proteins (Hsps) are common molecular chaperones present in all plants that accumulate in response to abiotic stress. Small heat shock proteins (sHsps) play important roles in alleviating diverse abiotic stresses, especially heat stress. However, very little is known about the MsHsp20 gene family in the wild apple Malus sieversii, a precious germplasm resource with excellent resistance characteristics. In this study, 12 putative M. sieversii Hsp20 genes were identified from RNA-Seq data and analyzed in terms of gene structure and phylogenetic relationships. A new Hsp20 gene, MsHsp16.9, was cloned and its function studied in response to stress. MsHsp16.9 expression was strongly induced by heat, and transgenic Arabidopsis plants overexpressing MsHsp16.9 displayed improved heat resistance, enhanced antioxidant enzyme activity, and decreased peroxide content. Overexpression of MsHsp16.9 did not alter the growth or development under normal conditions, or the hypersensitivity to exogenous ABA. Gene expression analysis indicated that MsHsp16.9 mainly modulates the expression of proteins involved in antioxidant enzyme synthesis, as well as ABA-independent stress signaling in 35S:MsHsp16.9-L11. However, MsHsp16.9 could activate ABA-dependent signaling pathways in all transgenic plants. Additionally, MsHsp16.9 may function alongside AtHsp70 to maintain protein homeostasis and protect against cell damage. Our results suggest that MsHsp16.9 is a protein chaperone that positively regulates antioxidant enzyme activity and ABA-dependent and independent signaling pathway to attenuate plant responses to severe stress. Transgenic plants exhibited luxuriant growth in high temperature environments.
Collapse
Affiliation(s)
- Meiling Yang
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Yunxiu Zhang
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Huanhuan Zhang
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongbin Wang
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Tao Wei
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Shiyou Che
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Lipeng Zhang
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Baoquan Hu
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Hong Long
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Wenqin Song
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
- *Correspondence: Wenqin Song
| | - Weiwei Yu
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
- Weiwei Yu
| | - Guorong Yan
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
- Guorong Yan
| |
Collapse
|