1
|
Mirmazloum I, Slavov AK, Marchev AS. The Untapped Potential of Hairy Root Cultures and Their Multiple Applications. Int J Mol Sci 2024; 25:12682. [PMID: 39684394 DOI: 10.3390/ijms252312682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Plants are rich sources of specialized metabolites, such as alkaloids, terpenes, phenolic acids, flavonoids, coumarins, and volatile oils, which provide various health benefits including anticancer, anti-inflammatory, antiaging, skin-altering, and anti-diabetic properties. However, challenges such as low and inconsistent yields, environment and geographic factors, and species-specific production of some specialized metabolites limit the supply of raw plant material for the food, cosmetic, or pharmaceutical industries. Therefore, biotechnological approaches using plant in vitro systems offer an appealing alternative for the production of biologically active metabolites. Among these, hairy root cultures induced by Rhizobium rhizogenes have firmed up their position as "green cell factories" due to their genotypic and biosynthetic stability. Hairy roots are valuable platforms for producing high-value phytomolecules at a low cost, are amenable to pathway engineering, and can be scaled up in bioreactors, making them attractive for commercialization. This review explores the potential of hairy roots for specialized metabolites biosynthesis focusing on biotechnology tools to enhance their production. Aspects of morphological peculiarities of hairy roots, the diversity of bioreactors design, and process intensification technologies for maximizing biosynthetic capacity, as well as examples of patented plant-derived (green-labeled) products produced through hairy root cultivation at lab and industrial scales, are addressed and discussed.
Collapse
Affiliation(s)
- Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Ménesi Str. 44, 1118 Budapest, Hungary
| | - Aleksandar K Slavov
- Department of Ecological Engineering, University of Food Technologies Plovdiv, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria
| | - Andrey S Marchev
- Laboratory of Eukaryotic Cell Biology, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| |
Collapse
|
2
|
Prashant SP, Bhawana M. An update on biotechnological intervention mediated by plant tissue culture to boost secondary metabolite production in medicinal and aromatic plants. PHYSIOLOGIA PLANTARUM 2024; 176:e14400. [PMID: 38945697 DOI: 10.1111/ppl.14400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024]
Abstract
Since prehistoric times, medicinal and aromatic plants (MAPs) have been employed for various therapeutic purposes due to their varied array of pharmaceutically relevant bioactive compounds, i.e. secondary metabolites. However, when secondary metabolites are isolated directly from MAPs, there is occasionally very poor yield and limited synthesis of secondary metabolites from particular tissues and certain developmental stages. Moreover, many MAPs species are in danger of extinction, especially those used in pharmaceuticals, as their natural populations are under pressure from overharvesting due to the excess demand for plant-based herbal remedies. The extensive use of these metabolites in a number of industrial and pharmaceutical industries has prompted a call for more research into increasing the output via optimization of large-scale production using plant tissue culture techniques. The potential of plant cells as sources of secondary metabolites can be exploited through a combination of product recovery technology research, targeted metabolite production, and in vitro culture establishment. The plant tissue culture approach provides low-cost, sustainable, continuous, and viable secondary metabolite production that is not affected by geographic or climatic factors. This study covers recent advancements in the induction of medicinally relevant metabolites, as well as the conservation and propagation of plants by advanced tissue culture technologies.
Collapse
Affiliation(s)
- Shera Pandit Prashant
- Department of Environmental Sciences, Central University of Himachal Pradesh (CUHP), Kangra, Shahpur, Himachal Pradesh
| | - Mishra Bhawana
- Department of Environmental Sciences, Central University of Himachal Pradesh (CUHP), Kangra, Shahpur, Himachal Pradesh
| |
Collapse
|
3
|
Zhong L, Zou X, Wu S, Chen L, Fang S, Zhong W, Xie L, Zhan R, Chen L. Volatilome and flavor analyses based on e-nose combined with HS-GC-MS provide new insights into ploidy germplasm diversity in Platostoma palustre. Food Res Int 2024; 183:114180. [PMID: 38760124 DOI: 10.1016/j.foodres.2024.114180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 05/19/2024]
Abstract
Platostoma palustre (Mesona chinensis Benth or Hsian-tsao, also known as "Xiancao" in China), is an edible and medicinal plant native to India, Myanmar, and Indo-China. It is the main ingredient in the popular desserts Hsian-tsao tea, herbal jelly, and sweet herbal jelly soup. P. palustre is found abundantly in nutrient-rich substances and possesses unique aroma compounds. Variations in the contents of volatile compounds among different germplasms significantly affect the quality and flavor of P. palustre, causing contradiction in demand. This study investigates the variation in the volatile compound profiles of distinct ploidy germplasms of P. palustre by utilising headspace gas chromatography-mass spectrometry (HS-GC-MS) and an electronic nose (e-nose). The results showed significant differences in the aroma characteristics of stem and leaf samples in diverse P. palustre germplasms. A total of sixty-seven volatile compounds have been identified and divided into ten classes. Six volatile compounds (caryophyllene, α-bisabolol, benzaldehyde, β-selinene, β-elemene and acetic acid) were screened as potential marker volatile compounds to discriminate stems and leaves of P. palustre. In this study, leaves of P. palustre showed one odor pattern and stems showed two odor patterns under the influence of α-bisabolol, acetic acid, and butyrolactone. In addition, a correlation analysis was conducted on the main volatile compounds identified by HS-GC-MS and e-nose. This analysis provided additional insight into the variations among samples resulting from diverse germplasms. The present study provides a valuable volatilome, and flavor, and quality evaluation for P. palustre, as well as new insights and scientific basis for the development and use of P. palustre germplasm resources.
Collapse
Affiliation(s)
- Ling'an Zhong
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Xuan Zou
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Shuiqin Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Lang Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Siyu Fang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Wenxuan Zhong
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Lili Xie
- Guangdong Institute of Tropical Crop Science, Maoming, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Likai Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China; Guangdong Yintian Agricultural Technology Co., Ltd, Yunfu, China.
| |
Collapse
|
4
|
Hu X, Liu W, Yan Y, Deng H, Cai Y. Tropinone reductase: A comprehensive review on its role as the key enzyme in tropane alkaloids biosynthesis. Int J Biol Macromol 2023; 253:127377. [PMID: 37839598 DOI: 10.1016/j.ijbiomac.2023.127377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
TAs, including hyoscyamine and scopolamine, were used to treat neuromuscular disorders ranging from nerve agent poisoning to Parkinson's disease. Tropinone reductase I (TR-I; EC 1.1.1.206) catalyzed the conversion of tropinone into tropine in the biosynthesis of TAs, directing the metabolic flow towards hyoscyamine and scopolamine. Tropinone reductase II (TR-II; EC 1.1.1.236) was responsible for the conversion of tropinone into pseudotropine, diverting the metabolic flux towards calystegine A3. The regulation of metabolite flow through both branches of the TAs pathway seemed to be influenced by the enzymatic activity of both enzymes and their accessibility to the precursor tropinone. The significant interest in the utilization of metabolic engineering for the efficient production of TAs has highlighted the importance of TRs as crucial enzymes that govern both the direction of metabolic flow and the yield of products. This review discussed recent advances for the TRs sources, properties, protein structure and biocatalytic mechanisms, and a detailed overview of its crucial role in the metabolism and synthesis of TAs was summarized. Furthermore, we conducted a detailed investigation into the evolutionary origins of these two TRs. A prospective analysis of potential challenges and applications of TRs was presented.
Collapse
Affiliation(s)
- Xiaoxiang Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Wenjing Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yi Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huaxiang Deng
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Institutes of Advanced Technologies, Shenzhen, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Biswas D, Chakraborty A, Mukherjee S, Ghosh B. Hairy root culture: a potent method for improved secondary metabolite production of Solanaceous plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1197555. [PMID: 37731987 PMCID: PMC10507345 DOI: 10.3389/fpls.2023.1197555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/13/2023] [Indexed: 09/22/2023]
Abstract
Secondary metabolites synthesized by the Solanaceous plants are of major therapeutic and pharmaceutical importance, many of which are commonly obtained from the roots of these plants. 'Hairy roots', mirroring the same phytochemical pattern of the corresponding root of the parent plant with higher growth rate and productivity, are therefore extensively studied as an effective alternative for the in vitro production of these metabolites. Hairy roots are the transformed roots, generated from the infection site of the wounded plants with Agrobacterium rhizogenes. With their fast growth, being free from pathogen and herbicide contamination, genetic stability, and autotrophic nature for plant hormones, hairy roots are considered as useful bioproduction systems for specialized metabolites. Lately, several elicitation methods have been employed to enhance the accumulation of these compounds in the hairy root cultures for both small and large-scale production. Nevertheless, in the latter case, the cultivation of hairy roots in bioreactors should still be optimized. Hairy roots can also be utilized for metabolic engineering of the regulatory genes in the metabolic pathways leading to enhanced production of metabolites. The present study summarizes the updated and modern biotechnological aspects for enhanced production of secondary metabolites in the hairy root cultures of the plants of Solanaceae and their respective importance.
Collapse
Affiliation(s)
- Diptesh Biswas
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Avijit Chakraborty
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Swapna Mukherjee
- Department of Microbiology, Dinabandhu Andrews College, Kolkata, India
| | - Biswajit Ghosh
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| |
Collapse
|
6
|
Kluza A, Wojdyla Z, Mrugala B, Kurpiewska K, Porebski PJ, Niedzialkowska E, Minor W, Weiss MS, Borowski T. Regioselectivity of hyoscyamine 6β-hydroxylase-catalysed hydroxylation as revealed by high-resolution structural information and QM/MM calculations. Dalton Trans 2020; 49:4454-4469. [PMID: 32182320 DOI: 10.1039/d0dt00302f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hyoscyamine 6β-hydroxylase (H6H) is a bifunctional non-heme 2-oxoglutarate/Fe2+-dependent dioxygenase that catalyzes the two final steps in the biosynthesis of scopolamine. Based on high resolution crystal structures of H6H from Datura metel, detailed information on substrate binding was obtained that provided insights into the onset of the enzymatic process. In particular, the role of two prominent residues was revealed - Glu-116 that interacts with the tertiary amine located on the hyoscyamine tropane moiety and Tyr-326 that forms CH-π hydrogen bonds with the hyoscyamine phenyl ring. The structures were used as the basis for QM/MM calculations that provided an explanation for the regioselectivity of the hydroxylation reaction on the hyoscyamine tropane moiety (C6 vs. C7) and quantified contributions of active site residues to respective barrier heights.
Collapse
Affiliation(s)
- Anna Kluza
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Zuzanna Wojdyla
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Beata Mrugala
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Katarzyna Kurpiewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland. and Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, PL-30387 Krakow, Poland
| | - Przemyslaw J Porebski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland. and Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue Pinn Hall, Charlottesville, VA 22908, USA
| | - Ewa Niedzialkowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland. and Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue Pinn Hall, Charlottesville, VA 22908, USA
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue Pinn Hall, Charlottesville, VA 22908, USA
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, D-12489, Berlin, Germany
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| |
Collapse
|
7
|
Kowalczyk T, Sitarek P, Toma M, Picot L, Wielanek M, Skała E, Śliwiński T. An Extract of Transgenic Senna obtusifolia L. Hairy Roots with Overexpression of PgSS1 Gene in Combination with Chemotherapeutic Agent Induces Apoptosis in the Leukemia Cell Line. Biomolecules 2020; 10:E510. [PMID: 32230928 PMCID: PMC7226363 DOI: 10.3390/biom10040510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 01/01/2023] Open
Abstract
Many biologically-active plant-derived compounds have therapeutic or chemopreventive effects. The use of plant in vitro cultures in conjunction with modern genetic engineering techniques allows greater amounts of valuable secondary metabolites to be obtained without interfering with the natural environment. This work presents the first findings concerning the acquisition of transgenic hairy roots of Senna obtusifolia overexpressing the gene encoding squalene synthase 1 from Panax ginseng (PgSS1) (SOPSS hairy loot lines) involved in terpenoid biosynthesis. Our results confirm that one of PgSS1-overexpressing hairy root line extracts (SOPSS2) possess a high cytotoxic effect against a human acute lymphoblastic leukemia (NALM6) cell line. Further analysis of the cell cycle, the expression of apoptosis-related genes (TP53, PUMA, NOXA, BAX) and the observed decrease in mitochondrial membrane potential also confirmed that the SOPSS2 hairy root extract displays the highest effects; similar results were also obtained for this extract combined with doxorubicin. The high cytotoxic activity, observed both alone or in combination with doxorubicin, may be due to the higher content of betulinic acid as determined by HPLC analysis. Our results suggest synergistic effects of tested extract (betulinic acid in greater amount) with doxorubicin which may be used in the future to develop new effective strategies of cancer chemosensitization.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (P.S.); (E.S.)
| | - Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (M.T.); (T.Ś.)
| | - Laurent Picot
- Faculté des Sciences et Technologies, La Rochelle Université, UMRi CNRS 7266 LIENSs, CEDEX 1, F-17042 La Rochelle, France;
| | - Marzena Wielanek
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (P.S.); (E.S.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (M.T.); (T.Ś.)
| |
Collapse
|
8
|
Kohnen-Johannsen KL, Kayser O. Tropane Alkaloids: Chemistry, Pharmacology, Biosynthesis and Production. Molecules 2019; 24:E796. [PMID: 30813289 PMCID: PMC6412926 DOI: 10.3390/molecules24040796] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/18/2022] Open
Abstract
Tropane alkaloids (TA) are valuable secondary plant metabolites which are mostly found in high concentrations in the Solanaceae and Erythroxylaceae families. The TAs, which are characterized by their unique bicyclic tropane ring system, can be divided into three major groups: hyoscyamine and scopolamine, cocaine and calystegines. Although all TAs have the same basic structure, they differ immensely in their biological, chemical and pharmacological properties. Scopolamine, also known as hyoscine, has the largest legitimate market as a pharmacological agent due to its treatment of nausea, vomiting, motion sickness, as well as smooth muscle spasms while cocaine is the 2nd most frequently consumed illicit drug globally. This review provides a comprehensive overview of TAs, highlighting their structural diversity, use in pharmaceutical therapy from both historical and modern perspectives, natural biosynthesis in planta and emerging production possibilities using tissue culture and microbial biosynthesis of these compounds.
Collapse
Affiliation(s)
- Kathrin Laura Kohnen-Johannsen
- Technical Biochemistry, Department of Biochemical and Chemical Engineering, Technical University Dortmund, D-44227 Dortmund, Germany.
| | - Oliver Kayser
- Technical Biochemistry, Department of Biochemical and Chemical Engineering, Technical University Dortmund, D-44227 Dortmund, Germany.
| |
Collapse
|
9
|
Shirazi Z, Aalami A, Tohidfar M, Sohani MM. Metabolic Engineering of Glycyrrhizin Pathway by Over-Expression of Beta-amyrin 11-Oxidase in Transgenic Roots of Glycyrrhiza glabra. Mol Biotechnol 2018; 60:412-419. [PMID: 29687371 PMCID: PMC7090481 DOI: 10.1007/s12033-018-0082-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Glycyrrhiza glabra is one of the most important and well-known medicinal plants which produces various triterpene saponins such as glycyrrhizin. Beta-amyrin 11-oxidase (CYP88D6) plays a key role in engineering pathway of glycyrrhizin production and converts an intermediated beta-amyrin compound to glycyrrhizin. In this study, pBI121GUS-9:CYP88D6 construct was transferred to G. glabra using Agrobacterium rhizogene ATCC 15834. The quantitation of transgene was measured in putative transgenic hairy roots using qRT-PCR. The amount of glycyrrhizin production was measured by HPLC in transgenic hairy root lines. Gene expression analysis demonstrated that CYP88D6 was over-expressed only in one of transgenic hairy root lines and was reduced in two others. Beta-amyrin 24-hydroxylase (CYP93E6) was significantly expressed in one of the control hairy root lines. The amount of glycyrrhizin metabolite in over-expressed line was more than or similar to that of control hairy root lines. According to the obtained results, it would be recommended that multi-genes of glycyrrhizin biosynthetic pathway be transferred simultaneously to the hairy root in order to increase glycyrrhizin content.
Collapse
Affiliation(s)
- Zahra Shirazi
- Department of Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Khalij Fars Highway (5th Kilometer of Ghazvin Road), Rasht, 4199613776, Iran
| | - Ali Aalami
- Department of Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Khalij Fars Highway (5th Kilometer of Ghazvin Road), Rasht, 4199613776, Iran.
| | - Masoud Tohidfar
- Department of Plant Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, G.C., Tehran, Iran
| | - Mohammad Mehdi Sohani
- Department of Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Khalij Fars Highway (5th Kilometer of Ghazvin Road), Rasht, 4199613776, Iran
| |
Collapse
|
10
|
Voyaging through chromosomal studies in hairy root cultures towards unravelling their relevance to medicinal plant research: An updated review. THE NUCLEUS 2018. [DOI: 10.1007/s13237-018-0227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
11
|
Chung HH, Shi SK, Huang B, Chen JT. Enhanced Agronomic Traits and Medicinal Constituents of Autotetraploids in Anoectochilus formosanus Hayata, a Top-Grade Medicinal Orchid. Molecules 2017; 22:molecules22111907. [PMID: 29112129 PMCID: PMC6150389 DOI: 10.3390/molecules22111907] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 11/16/2022] Open
Abstract
This study developed an efficient and reliable system for inducing polyploidy in Anoectochilus formosanus Hayata, a top-grade medicinal orchid. The resulting tetraploid gave a significant enhancement on various agronomic traits, including dry weight, fresh weight, shoot length, root length, leaf width, the size of stoma, and number of chloroplasts per stoma. A reduction of the ratio of length to width was observed in stomata and leaves of the tetraploid, and consequently, an alteration of organ shape was found. The major bioactive compounds, total flavonoid and gastrodin, were determined by the aluminum chloride colorimetric method and ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), respectively. The tetraploid produced significantly higher contents of total flavonoid and gastrodin in the leaf, the stem, and the whole plant when compared with the diploid. The resulting tetraploids in this study are proposed to be suitable raw materials in the pharmaceutical industry for enhancing productivity and reducing cost.
Collapse
Affiliation(s)
- Hsiao-Hang Chung
- Department of Horticulture, National Ilan University, Yilan City 260, Taiwan.
| | - Shu-Kai Shi
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan.
| | - Bin Huang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan.
| |
Collapse
|