1
|
Sharma D, Koul A, Bhushan S, Gupta S, Kaul S, Dhar MK. Insights into microRNA-mediated interaction and regulation of metabolites in tomato. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1142-1153. [PMID: 37681459 DOI: 10.1111/plb.13572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/23/2023] [Indexed: 09/09/2023]
Abstract
microRNAs direct regulation of various metabolic pathways in plants and animals. miRNAs may be useful in developing novel/elite genotypes, with enhanced metabolites and disease resistance. We examined miRNAs in tomato. In tomato, miRNAs in the carotenoid pathway have not been fully elucidated. We examined the potential role of miRNAs in biosynthesis of carotenoids, transcript profiling of miRNAs and their possible targets (genes and transcription factors) at different development stages of tomato using stem-loop PCR and RT-qPCR. We also identified miRNAs targeting key flavonoid genes, such as chalcone isomerase (CHI), and dihydroflavonol-4-reductase (DFR). Distinct expression profiles of miRNAs and their targets were found in fruits of three tomato accessions, suggesting carotenoid regulation by miRNAs at various stages of fruit development. This was also confirmed using HPLC of the carotenoids. The present study may help in understanding possible regulation of carotenoid biosynthesis. The identified miRNAs can be exploited to enhance biosynthesis of different carotenoids in plants.
Collapse
Affiliation(s)
- D Sharma
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| | - A Koul
- Department of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - S Bhushan
- Department of Botany, Central University of Jammu, Bagla (Rahya Suchani), Samba, Jammu, India
| | - S Gupta
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| | - S Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| | - M K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| |
Collapse
|
2
|
Guo S, Zheng C, Wang Y, Xu Y, Wu J, Wang L, Liu X, Chen Z. OsmiRNA5488 Regulates the Development of Embryo Sacs and Targets OsARF25 in Rice ( Oryza sativa L.). Int J Mol Sci 2023; 24:16240. [PMID: 38003430 PMCID: PMC10671434 DOI: 10.3390/ijms242216240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Small RNAs are a class of non-coding RNAs that typically range from 20 to 24 nucleotides in length. Among them, microRNAs (miRNAs) are particularly important regulators for plant development. The biological function of the conserved miRNAs has been studied extensively in plants, while that of the species-specific miRNAs has been studied in-depth. In this study, the regulatory role of a rice-specific OsmiRNA5488 (OsmiR5488) was characterized with the miR5488-overexpressed line (miR5488-OE) and miR5488-silenced line (STTM-5488). The seed-setting rate was notably reduced in miR5488-OE lines, but not in STTM-5488 lines. Cytological observation demonstrated the different types of abnormal mature embryo sacs, including the degeneration of embryo sacs and other variant types, in miR5488-OE lines. The percentage of the abnormal mature embryo sacs accounted for the reduced value of the seed-setting rate. Furthermore, OsARF25 was identified as a target of OsmiR5488 via RNA ligase-mediated 3'-amplifification of cDNA ends, dual luciferase assays, and transient expression assays. The primary root length was decreased with the increases in auxin concentrations in miR5488-OE lines compared to wild-type rice. Summarily, our results suggested that OsmiR5488 regulates the seed-setting rate and down-regulates the targeted gene OsARF25.
Collapse
Affiliation(s)
- Shengyuan Guo
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.G.); (C.Z.); (Y.W.); (Y.X.); (J.W.); (L.W.)
| | - Chuanjiang Zheng
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.G.); (C.Z.); (Y.W.); (Y.X.); (J.W.); (L.W.)
| | - Yan Wang
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.G.); (C.Z.); (Y.W.); (Y.X.); (J.W.); (L.W.)
| | - Yangwen Xu
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.G.); (C.Z.); (Y.W.); (Y.X.); (J.W.); (L.W.)
| | - Jinwen Wu
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.G.); (C.Z.); (Y.W.); (Y.X.); (J.W.); (L.W.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Lan Wang
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.G.); (C.Z.); (Y.W.); (Y.X.); (J.W.); (L.W.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Xiangdong Liu
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.G.); (C.Z.); (Y.W.); (Y.X.); (J.W.); (L.W.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhixiong Chen
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.G.); (C.Z.); (Y.W.); (Y.X.); (J.W.); (L.W.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Du J, Shi Q, Liu Y, Shi G, Li X, Li X. Integrated microRNA and transcriptome profiling reveals the regulatory network of embryo abortion in jujube. TREE PHYSIOLOGY 2023; 43:142-153. [PMID: 35972818 PMCID: PMC9833866 DOI: 10.1093/treephys/tpac098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/01/2022] [Indexed: 06/01/2023]
Abstract
Hybridization is an important approach to the production of new varieties with exceptional traits. Although the kernel rate of wild jujube (Ziziphus jujuba Mill. var. spinosa Hu.) is generally high, that of cultivated jujube (Z. jujuba Mill.) is low, greatly hampering the jujube breeding process. However, the mechanism by which this trait changed during jujube domestication remains unclear. Here, we explored the potential regulatory network that governs jujube embryo abortion using correlation analysis of population traits, artificial pollination, sugar content measurements and multi-omics analysis. The results showed that embryo abortion was an important reason for the low kernel rate of cultivated jujube, and kernel rate was negatively correlated with edible rate. Twenty-one days after pollination was a critical period for embryo abortion. At this time, the sugar content of cultivated 'Junzao' kernels decreased significantly compared with that of the pulp, but sugar content remained relatively stable in kernels of wild 'Suanzao'. A total of 1142 differentially expressed genes targeted by 93 microRNAs (miRNAs) were identified by transcriptome, miRNA and degradome sequencing, and may be involved in the regulation of embryo abortion during kernel development. Among them, DELLA protein, TCP14 and bHLH93 transcription factors have been shown to participate in the regulation of embryonic development. Our findings suggest that carbohydrate flow between different tissues of cultivated jujube exhibits a bias toward the pulp at 21 days after pollination, thereby restricting the process of kernel development. This information enhances our understanding of the embryo abortion process and reveals miRNA-target gene pairs that may be useful for molecular-assisted breeding.
Collapse
Affiliation(s)
- Jiangtao Du
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Qianqian Shi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Yu Liu
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Guozhao Shi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xi Li
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xingang Li
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
- Research Center for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Further Mining and Characterization of miRNA Resource in Chinese Fir (Cunninghamia lanceolata). Genes (Basel) 2022; 13:genes13112137. [DOI: 10.3390/genes13112137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
In this study, we aimed to expand the current miRNA data bank of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) regarding its potential value for further genetic and genomic use in this species. High-throughput small RNA sequencing successfully captured 140 miRNAs from a Chinese fir selfing family harboring vigor and depressed progeny. Strikingly, 75.7% (n = 106) of these miRNAs have not been documented previously, and most (n = 105) of them belong to the novel set with 6858 putative target genes. The new datasets were then integrated with the previous information to gain insight into miRNA genetic architecture in Chinese fir. Collectively, a relatively high proportion (62%, n = 110) of novel miRNAs were found. Furthermore, we identified one MIR536 family that has not been previously documented in this species and four overlapped miRNA families (MIR159, MIR164, MIR171_1, and MIR396) from new datasets. Regarding the stability, we calculated the secondary structure free energy and found a relatively low R2 value (R2 < 0.22) between low minimal folding free energy (MFE) of pre-miRNAs and MFE of its corresponding mature miRNAs in most datasets. When in view of the conservation aspect, the phylogenetic trees showed that MIR536 and MIR159 sequences were highly conserved in gymnosperms.
Collapse
|
5
|
Petrella R, Cucinotta M, Mendes MA, Underwood CJ, Colombo L. The emerging role of small RNAs in ovule development, a kind of magic. PLANT REPRODUCTION 2021; 34:335-351. [PMID: 34142243 PMCID: PMC8566443 DOI: 10.1007/s00497-021-00421-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/08/2021] [Indexed: 05/03/2023]
Abstract
In plants, small RNAs have been recognized as key genetic and epigenetic regulators of development. Small RNAs are usually 20 to 30 nucleotides in length and they control, in a sequence specific manner, the transcriptional or post-transcriptional expression of genes. In this review, we present a comprehensive overview of the most recent findings about the function of small RNAs in ovule development, including megasporogenesis and megagametogenesis, both in sexual and apomictic plants. We discuss recent studies on the role of miRNAs, siRNAs and trans-acting RNAs (ta-siRNAs) in early female germline differentiation. The mechanistic complexity and unique regulatory features are reviewed, and possible directions for future research are provided.
Collapse
Affiliation(s)
- Rosanna Petrella
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Mara Cucinotta
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Marta A Mendes
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
6
|
Chen Z, Li Y, Li P, Huang X, Chen M, Wu J, Wang L, Liu X, Li Y. MircroRNA Profiles of Early Rice Inflorescence Revealed a Specific miRNA5506 Regulating Development of Floral Organs and Female Megagametophyte in Rice. Int J Mol Sci 2021; 22:ijms22126610. [PMID: 34205521 PMCID: PMC8235126 DOI: 10.3390/ijms22126610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
The developmental process of inflorescence and gametophytes is vital for sexual reproduction in rice. Multiple genes and conserved miRNAs have been characterized to regulate the process. The changes of miRNAs expression during the early development of rice inflorescence remain unknown. In this study, the analysis of miRNAs profiles in the early stage of rice inflorescence development identified 671 miRNAs, including 67 known and 44 novel differentially expressed miRNAs (DEMs). Six distinct clusters of miRNAs expression patterns were detected, and Cluster 5 comprised 110 DEMs, including unconserved, rice-specific osa-miR5506. Overexpression of osa-miR5506 caused pleiotropic abnormalities, including over- or under-developed palea, various numbers of floral organs and spikelet indeterminacy. In addition, the defects of ovaries development were frequently characterized by multiple megasporocytes, ovule-free ovary, megasporocyte degenerated and embryo sac degenerated in the transgenic lines. osa-miR5506 targeted REM transcription factor LOC_Os03g11370. Summarily, these results demonstrated that rice-specific osa-miR5506 plays an essential role in the regulation of floral organ number, spikelet determinacy and female gametophyte development in rice.
Collapse
Affiliation(s)
- Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (J.W.); (L.W.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (P.L.); (X.H.); (M.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yajing Li
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (P.L.); (X.H.); (M.C.)
| | - Peigang Li
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (P.L.); (X.H.); (M.C.)
| | - Xiaojie Huang
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (P.L.); (X.H.); (M.C.)
| | - Mingxin Chen
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (P.L.); (X.H.); (M.C.)
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (J.W.); (L.W.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (P.L.); (X.H.); (M.C.)
| | - Lang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (J.W.); (L.W.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (P.L.); (X.H.); (M.C.)
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (J.W.); (L.W.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (P.L.); (X.H.); (M.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.L.); (Y.L.)
| | - Yajuan Li
- Center of Experimental Teaching for Common Basic Courses, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.L.); (Y.L.)
| |
Collapse
|
7
|
Wang W, Cheng X, Zhu J. Long non-coding RNA OTUD6B-AS1 overexpression inhibits the proliferation, invasion and migration of colorectal cancer cells via downregulation of microRNA-3171. Oncol Lett 2021; 21:193. [PMID: 33574932 PMCID: PMC7816294 DOI: 10.3892/ol.2021.12454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a common digestive system malignancy and a major cause of cancer-associated mortality worldwide. Aberrant expression of long non-coding RNAs has been reported in several types of cancer. The aim of the present study was to investigate the role of ovarian tumor domain containing 6B antisense RNA1 (OTUD6B-AS1) in CRC and its underlying mechanisms. OTUD6B-AS1 expression in CRC cell lines was examined using reverse transcription-quantitative PCR. Furthermore, The Cancer Genome Atlas database was utilized to examine the expression levels of OTUD6B-AS1 in CRC tissues. Following OTUD6B-AS1 overexpression, Cell Counting Kit-8 and colony formation assays were used to detect the proliferation ability of HCT116 cells. The expression levels of proliferation-related protein Ki67 were determined using immunofluorescence staining. Subsequently, Transwell and wound healing assays were used to evaluate the invasion and migration of HCT116 cells, respectively. The expression levels of migration-related proteins (MMP2 and MMP9) were measured using western blotting. Additionally, a luciferase reporter assay was used to verify the potential interaction between OTUD6B-AS1 and microRNA-3171 (miR-3171). Subsequently, rescue assays were performed to clarify the regulatory effects of OTUD6B-AS1 and miR-3171 on CRC development. The results demonstrated that OTUD6B-AS1 expression was low in CRC cells and tissues. Overexpression of OTUD6B-AS1 inhibited the proliferation, invasion and migration of HCT116 cells. Furthermore, miR-3171 was demonstrated to be a direct target of OTUD6B-AS1 using a luciferase reporter assay. The rescue assays revealed that miR-3171 mimics markedly reversed the inhibitory effects of OTUD6B-AS1 overexpression on proliferation, invasion and migration of CRC cells. Overall, these findings demonstrated that OTUD6B-AS1 overexpression inhibited the proliferation, invasion and migration of HCT116 cells via downregulation of miR-3171, suggesting that OTUD6B-AS1 may serve as a novel biomarker for CRC treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Emergency Traumatic Surgery, Shanghai Pudong New District Zhoupu Hospital (Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital), Shanghai 201318, P.R. China
| | - Xia Cheng
- Graduate School, Dalian Medical University, Dalian, Liaoning 116000, P.R. China.,Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116000, P.R. China
| | - Jianhua Zhu
- Department of Emergency Traumatic Surgery, Shanghai Pudong New District Zhoupu Hospital (Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital), Shanghai 201318, P.R. China
| |
Collapse
|
8
|
Zeng D, Que C, Teixeira da Silva JA, Xu S, Li D. Comparative Transcriptomic and Metabolic Analyses Reveal the Molecular Mechanism of Ovule Development in the Orchid, Cymbidium sinense. FRONTIERS IN PLANT SCIENCE 2021; 12:814275. [PMID: 35126436 PMCID: PMC8813969 DOI: 10.3389/fpls.2021.814275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/27/2021] [Indexed: 05/04/2023]
Abstract
Ovule development is pivotal to plant reproduction and seed development. Cymbidium sinense (Orchidaceae) has high ornamental value due to its pleasant aroma and elegant floral morphology. The regulatory mechanism underlying ovule development in orchids, especially C. sinense, is largely unknown and information on the C. sinense genome is very scarce. In this study, a combined analysis was performed on the transcriptome and non-targeted metabolomes of 18 C. sinense 'Qi Jian Hei Mo' ovule samples. Transcriptome analysis assembled gene-related information related to six growth stages of C. sinense ovules (S1-S6, equivalent to 30, 35, 42, 46, 53, and 60 days after pollination). Illumina sequencing technology was used to obtain the complete set of transcriptome sequences of the 18 samples. A total of 81,585 unigene sequences were obtained after assembly, 24,860 (30.47%) of which were functionally annotated. Using transcriptome sequencing technology, a total of 9845 differentially expressed unigenes (DEUs) were identified in C. sinense ovules that were assigned to specific metabolic pathways according to the Kyoto Encyclopedia of Genes and Genomes (KEGG). DEUs associated with transcription factors (TFs) and phytohormones were identified and analyzed. The TFs homeobox and MADS-box were associated with C. sinense ovule development. In particular, the phytohormones associated with DEUs such as indole-3-acetic acid (IAA), cytokinin (CK), gibberellin (GA), abscisic acid (ABA), brassinosteroid (BR), and jasmonate (JA), may have important regulatory effects on C. sinense ovule development. Metabolomic analysis showed an inconsistent number of KEGG annotations of differential metabolites across comparisons (S2_vs_S4, S2_vs_S5, and S4_vs_S5 contained 23, 26, and 3 annotations, respectively) in C. sinense ovules. This study provides a valuable foundation for further understanding the regulation of orchid ovule development and formation, and establishes a theoretical background for future practical applications during orchid cultivation.
Collapse
Affiliation(s)
- Danqi Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Caixia Que
- Guangdong Provincial Research Center for Standardization of Production Engineering Technology of Orchids, Shunde Polytechnic, Foshan, China
| | | | - Shutao Xu
- College of Innovative Design, City University of Macau, Taipa, Macao SAR, China
| | - Dongmei Li
- Guangdong Provincial Research Center for Standardization of Production Engineering Technology of Orchids, Shunde Polytechnic, Foshan, China
- *Correspondence: Dongmei Li,
| |
Collapse
|
9
|
Liu J, Luo Q, Zhang X, Zhang Q, Cheng Y. Identification of vital candidate microRNA/mRNA pairs regulating ovule development using high-throughput sequencing in hazel. BMC DEVELOPMENTAL BIOLOGY 2020; 20:13. [PMID: 32605594 PMCID: PMC7329476 DOI: 10.1186/s12861-020-00219-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/01/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Hazels (Corylus spp.) are economically important nut-producing species in which ovule development determines seed plumpness, one of the key parameters reflecting nut quality. microRNAs (miRNAs) play important roles in RNA silencing and the post-transcriptional regulation of gene expression. However, very little is currently known regarding the miRNAs involved in regulating ovule growth and development. RESULTS In this study, we accordingly sought to determine the important miRNAs involved in ovule development and growth in hazel. We examined ovules at four developmental stages, namely, ovule formation (Ov1), early ovule growth (Ov2), rapid ovule growth (Ov3), and ovule maturity (Ov4). On the basis of small RNA and mRNA sequencing using the Illumina sequencing platform, we identified 970 miRNAs in hazel, of which 766 and 204 were known and novel miRNAs, respectively. In Ov1-vs-Ov2, Ov1-vs-Ov3, Ov1-vs-Ov4, Ov2-vs-Ov3, Ov2-vs-Ov4, and Ov3-vs-Ov4 paired comparisons, 471 differentially expressed microRNAs (DEmiRNAs) and their 3117 target differentially expressed messenger RNAs (DEmRNAs) formed 11,199 DEmiRNA/DEmRNA pairs, with each DEmiRNA changing the expression of an average of 6.62 target mRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of all DEmRNAs revealed 29 significantly enriched KEGG pathways in the six paired comparisons, including protein export (ko03060), fatty acid elongation (ko00062), starch and sucrose metabolism (ko00500), fatty acid biosynthesis (ko00061), and amino sugar and nucleotide sugar metabolism (ko00520). Our results indicate that DEmiRNA/DEmRNA pairs showing opposite change trends were related to stress tolerance, embryo and seed development, cell proliferation, auxin transduction, and the biosynthesis of proteins, starch, and fats may participate in ovule growth and development. CONCLUSIONS These findings contribute to a better understanding of ovule development at the level of post-transcriptional regulation, and lay the foundation for further functional analyses of hazelnut ovule growth and development.
Collapse
Affiliation(s)
- Jianfeng Liu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, PR China
| | - Qizheng Luo
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, PR China
| | - Xingzheng Zhang
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, PR China
| | - Qiang Zhang
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, PR China
| | - Yunqing Cheng
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, PR China.
| |
Collapse
|
10
|
Chen L, Luo X, Yang X, Jing D, Xia X, Li H, Poudel K, Cao S. Small RNA and mRNA Sequencing Reveal the Roles of microRNAs Involved in Pomegranate Female Sterility. Int J Mol Sci 2020; 21:ijms21020558. [PMID: 31952315 PMCID: PMC7013964 DOI: 10.3390/ijms21020558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 11/18/2022] Open
Abstract
Female sterility is a key factor restricting plant reproduction. Our previous studies have revealed that pomegranate female sterility mainly arose from the abnormality of ovule development. MicroRNAs (miRNAs) play important roles in ovule development. However, little is known about the roles of miRNAs in female sterility. In this study, a combined high-throughput sequencing approach was used to investigate the miRNAs and their targeted transcripts involved in female development. A total of 103 conserved and 58 novel miRNAs were identified. Comparative profiling indicated that the expression of 43 known miRNAs and 14 novel miRNAs were differentially expressed between functional male flowers (FMFs) and bisexual flowers (BFs), 30 known miRNAs and nine novel miRNAs showed significant differences among different stages of BFs, and 20 known miRNAs and 18 novel miRNAs exhibited remarkable expression differences among different stages of FMFs. Gene ontology (GO) analyses of 144 predicted targets of differentially expressed miRNAs indicated that the “reproduction process” and “floral whorl development” processes were significantly enriched. The miRNA–mRNA interaction analyses revealed six pairs of candidate miRNAs and their targets associated with female sterility. Interestingly, pg-miR166a-3p was accumulated, whereas its predicted targets (Gglean012177.1 and Gglean013966.1) were repressed in functional male flowers (FMFs), and the interaction between pg-miR166a-3p and its targets (Gglean012177.1 and Gglean013966.1) were confirmed by transient assay. A. thaliana transformed with 35S-pre-pg-miR166a-3p verified the role of pg-miR166a-3p in ovule development, which indicated pg-miR166a-3p’s potential role in pomegranate female sterility. The results provide new insights into molecular mechanisms underlying the female sterility at the miRNA level.
Collapse
|
11
|
Jin Y, Liu L, Hao X, Harry DE, Zheng Y, Huang T, Huang J. Unravelling the MicroRNA-Mediated Gene Regulation in Developing Pongamia Seeds by High-Throughput Small RNA Profiling. Int J Mol Sci 2019; 20:ijms20143509. [PMID: 31319494 PMCID: PMC6678122 DOI: 10.3390/ijms20143509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/07/2023] Open
Abstract
Pongamia (Millettia pinnata syn. Pongamia pinnata) is a multipurpose biofuel tree which can withstand a variety of abiotic stresses. Commercial applications of Pongamia trees may substantially benefit from improvements in their oil-seed productivity, which is governed by complex regulatory mechanisms underlying seed development. MicroRNAs (miRNAs) are important molecular regulators of plant development, while relatively little is known about their roles in seed development, especially for woody plants. In this study, we identified 236 conserved miRNAs within 49 families and 143 novel miRNAs via deep sequencing of Pongamia seeds sampled at three developmental phases. For these miRNAs, 1327 target genes were computationally predicted. Furthermore, 115 differentially expressed miRNAs (DEmiRs) between successive developmental phases were sorted out. The DEmiR-targeted genes were preferentially enriched in the functional categories associated with DNA damage repair and photosynthesis. The combined analyses of expression profiles for DEmiRs and functional annotations for their target genes revealed the involvements of both conserved and novel miRNA-target modules in Pongamia seed development. Quantitative Real-Time PCR validated the expression changes of 15 DEmiRs as well as the opposite expression changes of six targets. These results provide valuable miRNA candidates for further functional characterization and breeding practice in Pongamia and other oilseed plants.
Collapse
Affiliation(s)
- Ye Jin
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Lin Liu
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xuehong Hao
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | | | - Yizhi Zheng
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Tengbo Huang
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jianzi Huang
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
12
|
Ortiz JPA, Leblanc O, Rohr C, Grisolia M, Siena LA, Podio M, Colono C, Azzaro C, Pessino SC. Small RNA-seq reveals novel regulatory components for apomixis in Paspalum notatum. BMC Genomics 2019; 20:487. [PMID: 31195966 PMCID: PMC6567921 DOI: 10.1186/s12864-019-5881-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Background Apomixis is considered an evolutionary deviation of the sexual reproductive pathway leading to the generation of clonal maternal progenies by seeds. Recent evidence from model and non-model species suggested that this trait could be modulated by epigenetic mechanisms involving small RNAs (sRNAs). Here we profiled floral sRNAs originated from apomictic and sexual Paspalum notatum genotypes in order to identify molecular pathways under epigenetic control that might be involved in the transition from sexuality to agamospermy. Results The mining of genes participating in sRNA-directed pathways from floral Paspalum transcriptomic resources showed these routes are functional during reproductive development, with several members differentially expressed in apomictic and sexual plants. Triplicate floral sRNA libraries derived from apomictic and a sexual genotypes were characterized by using high-throughput sequencing technology. EdgeR was apply to compare the number of sRNA reads between sexual and apomictic libraries that map over all Paspalum floral transcripts. A total of 1525 transcripts showed differential sRNA representation, including genes related to meiosis, plant hormone signaling, biomolecules transport, transcription control and cell cycle. Survey for miRNA precursors on transcriptome and genome references allowed the discovery of 124 entities, including 40 conserved and 8 novel ones. Fifty-six clusters were differentially represented in apomictic and sexual plants. All differentially expressed miRNAs were up-regulated in apomictic libraries but miR2275, which showed different family members with opposed representation. Examination of predicted miRNAs targets detected 374 potential candidates. Considering sRNA, miRNAs and target surveys together, 14 genes previously described as related with auxin metabolism, transport and signaling were detected, including AMINO ACID/AUXIN PERMEASE 15, IAA-AMIDO SYNTHETASE GH3–8, IAA30, miR160, miR167, miR164, miR319, ARF2, ARF8, ARF10, ARF12, AFB2, PROLIFERATING CELL FACTOR 6 and NITRATE TRANSPORTER 1.1. Conclusions This work provides a comprehensive survey of the sRNA differential representation in flowers of sexual and apomictic Paspalum notatum plants. An integration of the small RNA profiling data presented here and previous transcriptomic information suggests that sRNA-mediated regulation of auxin pathways is pivotal in promoting apomixis. These results will underlie future functional characterization of the molecular components mediating the switch from sexuality to apomixis. Electronic supplementary material The online version of this article (10.1186/s12864-019-5881-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Pablo A Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Olivier Leblanc
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | - Cristian Rohr
- Instituto de Agrobiotecnología de Rosario (INDEAR), Rosario, Argentina
| | - Mauricio Grisolia
- Instituto de Agrobiotecnología de Rosario (INDEAR), Rosario, Argentina
| | - Lorena A Siena
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Maricel Podio
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Carolina Colono
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Celeste Azzaro
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Silvina C Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina.
| |
Collapse
|
13
|
Zhao L, Chen C, Wang Y, Shen J, Ding Z. Conserved MicroRNA Act Boldly During Sprout Development and Quality Formation in Pingyang Tezaocha ( Camellia sinensis). Front Genet 2019; 10:237. [PMID: 31001312 PMCID: PMC6455055 DOI: 10.3389/fgene.2019.00237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/04/2019] [Indexed: 01/20/2023] Open
Abstract
Tea tree [Camellia sinensis (L.) O. Kuntze] is an important leaf (sometimes tender stem)-using commercial plant with many medicinal uses. The development of newly sprouts would directly affect the yield and quality of tea product, especially significant for Pingyang Tezaocha (PYTZ) which takes up a large percent in the early spring tea market. MicroRNA (miRNA), particularly the conserved miRNAs, often position in the center of subtle and complex gene regulatory systems, precisely control the biological processes together with other factors in a spatio-temporal pattern. Here, quality-determined metabolites catechins, theanine and caffeine in PYTZ sprouts including buds (sBud), different development stages of leaves (sL1, sL2) and stems (sS1, sS2) were quantified. A total of 15 miRNA libraries of the same tissue with three repetitions for each were constructed to explore vital miRNAs during the biological processes of development and quality formation. We analyzed the whole miRNA profiles during the sprout development and defined conserved miRNA families in the tea plant. The differentially expressed miRNAs related to the expression profiles buds, leaves, and stems development stages were described. Twenty one miRNAs and eight miRNA-TF pairs that most likely to participate in regulating development, and at least two miRNA-TF-metabolite triplets that participate in both development and quality formation had been filtered. Our results indicated that conserved miRNA act boldly during important biological processes, they are (i) more likely to be linked with morphological function in primary metabolism during sprout development, and (ii) hold an important position in secondary metabolism during quality formation in tea plant, also (iii) coordinate with transcription factors in forming networks of complex multicellular organism regulation.
Collapse
Affiliation(s)
- Lei Zhao
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Horticulture, Qingdao Agricultural University, Qingdao, China.,Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu'an, China
| | - Yu Wang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jiazhi Shen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhaotang Ding
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
14
|
Liu H, Wang R, Mao B, Zhao B, Wang J. Identification of lncRNAs involved in rice ovule development and female gametophyte abortion by genome-wide screening and functional analysis. BMC Genomics 2019; 20:90. [PMID: 30691391 PMCID: PMC6348626 DOI: 10.1186/s12864-019-5442-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/09/2019] [Indexed: 11/15/2022] Open
Abstract
Background As important female reproductive tissues, the rice (Oryza sativa L.) ovule and female gametophyte is significant in terms of their fertility. Long noncoding RNAs (lncRNAs) play important and wide-ranging roles in the growth and development of plants and have become a major research focus in recent years. Therefore, we explored the characterization and expression change of lncRNAs during ovule development and female gametophytic abortion. Results In our study, whole-transcriptome strand-specific RNA sequencing (ssRNA-seq) was performed in the ovules of a high-frequency female-sterile rice line (fsv1) and a wild-type rice line (Gui99) at the megaspore mother cell meiosis stage (stage 1), functional megaspore mitosis stage (stage 2) and female gametophyte mature stage (stage 3). By comparing two rice lines, we identified 152, 233, and 197 differentially expressed lncRNAs at the three ovule developmental stages. Functional analysis of the coherent target genes of these differentially expressed lncRNAs indicated that many lncRNAs participate in multiple pathways such as hormone and cellular metabolism and signal transduction. Moreover, there were many differentially expressed lncRNAs acting as the precursors of some miRNAs that are involved in the development of ovules and female gametophytes. In addition, we have found that lncRNAs can act as decoys, competing with mRNAs for binding to miRNAs to maintain the normal expression of genes related to ovule and female gametophyte development. Conclusion These results provide important clues for elucidating the female gametophyte abortion mechanism in rice. This study also expands our understanding about the biological functions of lncRNAs and the annotation of the rice genome. Electronic supplementary material The online version of this article (10.1186/s12864-019-5442-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helian Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bigang Mao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Bingran Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
15
|
Combinatorial Interactions of Biotic and Abiotic Stresses in Plants and Their Molecular Mechanisms: Systems Biology Approach. Mol Biotechnol 2018; 60:636-650. [PMID: 29943149 DOI: 10.1007/s12033-018-0100-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plants are continually facing biotic and abiotic stresses, and hence, they need to respond and adapt to survive. Plant response during multiple and combined biotic and abiotic stresses is highly complex and varied than the individual stress. These stresses resulted alteration of plant behavior through regulating the levels of microRNA, heat shock proteins, epigenetic variations. These variations can cause many adverse effects on the growth and development of the plant. Further, in natural conditions, several abiotic stresses causing factors make the plant more susceptible to pathogens infections and vice-versa. A very intricate and multifaceted interactions of various biomolecules are involved in metabolic pathways that can direct towards a cross-tolerance and improvement of plant's defence system. Systems biology approach plays a significant role in the investigation of these molecular interactions. The valuable information obtained by systems biology will help to develop stress-resistant plant varieties against multiple stresses. Thus, this review aims to decipher various multilevel interactions at the molecular level under combinatorial biotic and abiotic stresses and the role of systems biology to understand these molecular interactions.
Collapse
|
16
|
Lambing C, Heckmann S. Tackling Plant Meiosis: From Model Research to Crop Improvement. FRONTIERS IN PLANT SCIENCE 2018; 9:829. [PMID: 29971082 PMCID: PMC6018109 DOI: 10.3389/fpls.2018.00829] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/28/2018] [Indexed: 05/04/2023]
Abstract
Genetic engineering and traditional plant breeding, which harnesses the natural genetic variation that arises during meiosis, will have key roles to improve crop varieties and thus deliver Food Security in the future. Meiosis, a specialized cell division producing haploid gametes to maintain somatic diploidy following their fusion, assures genetic variation by regulated genetic exchange through homologous recombination. However, meiotic recombination events are restricted in their total number and their distribution along chromosomes limiting allelic variations in breeding programs. Thus, modifying the number and distribution of meiotic recombination events has great potential to improve and accelerate plant breeding. In recent years much progress has been made in understanding meiotic progression and recombination in plants. Many genes and factors involved in these processes have been identified primarily in Arabidopsis thaliana but also more recently in crops such as Brassica, rice, barley, maize, or wheat. These advances put researchers in the position to translate acquired knowledge to various crops likely improving and accelerating breeding programs. However, although fundamental aspects of meiotic progression and recombination are conserved between species, differences in genome size and organization (due to repetitive DNA content and ploidy level) exist, particularly among plants, that likely account for differences in meiotic progression and recombination patterns found between species. Thus, tools and approaches are needed to better understand differences and similarities in meiotic progression and recombination among plants, to study fundamental aspects of meiosis in a variety of plants including crops and non-model species, and to transfer knowledge into crop species. In this article, we provide an overview of tools and approaches available to study plant meiosis, highlight new techniques, give examples of areas of future research and review distinct aspects of meiosis in non-model species.
Collapse
Affiliation(s)
- Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Christophe Lambing, Stefan Heckmann,
| | - Stefan Heckmann
- Independent Research Group Meiosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- *Correspondence: Christophe Lambing, Stefan Heckmann,
| |
Collapse
|