1
|
Sagawa CHD, Thomson G, Mermaz B, Vernon C, Liu S, Jacob Y, Irish VF. An efficient multiplex approach to CRISPR/Cas9 gene editing in citrus. PLANT METHODS 2024; 20:148. [PMID: 39342225 PMCID: PMC11438372 DOI: 10.1186/s13007-024-01274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
CRISPR/Cas9-mediated gene editing requires high efficiency to be routinely implemented, especially in species which are laborious and slow to transform. This requirement intensifies further when targeting multiple genes simultaneously, which is required for genetic screening or more complex genome engineering. Species in the Citrus genus fall into this category. Here we describe a series of experiments with the collective aim of improving multiplex gene editing in the Carrizo citrange cultivar using tRNA-based sgRNA arrays. We evaluate a range of promoters for their efficacy in such experiments and achieve significant improvements by optimizing the expression of both the Cas9 endonuclease and the sgRNA array. In the case of the former we find the UBQ10 or RPS5a promoters from Arabidopsis driving the zCas9i endonuclease variant useful for achieving high levels of editing. The choice of promoter expressing the sgRNA array also had a large impact on gene editing efficiency across multiple targets. In this respect Pol III promoters perform especially well, but we also demonstrate that the UBQ10 and ES8Z promoters from Arabidopsis are robust alternatives. Ultimately, this study provides a quantitative insight into CRISPR/Cas9 vector design that has practical application in the simultaneous editing of multiple genes in Citrus, and potentially other eudicot plant species.
Collapse
Affiliation(s)
- Cintia H D Sagawa
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Geoffrey Thomson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Benoit Mermaz
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Corina Vernon
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Environmental Sciences Initiative, Advanced Science Research Center, The City University of New York, New York, NY, USA
| | - Siqi Liu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Vivian F Irish
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Su H, Wang Y, Xu J, Omar AA, Grosser JW, Wang N. Cas12a RNP-mediated co-transformation enables transgene-free multiplex genome editing, long deletions, and inversions in citrus chromosome. FRONTIERS IN PLANT SCIENCE 2024; 15:1448807. [PMID: 39148610 PMCID: PMC11324552 DOI: 10.3389/fpls.2024.1448807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Introduction Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a devastating disease worldwide. Previously, we successfully generated canker-resistant Citrus sinensis cv. Hamlin lines in the T0 generation. This was achieved through the transformation of embryogenic protoplasts using the ribonucleoprotein (RNP) containing Cas12a and one crRNA to edit the canker susceptibility gene, CsLOB1, which led to small indels. Methods Here, we transformed embryogenic protoplasts of Hamlin with RNP containing Cas12a and three crRNAs. Results Among the 10 transgene-free genome-edited lines, long deletions were obtained in five lines. Additionally, inversions were observed in three of the five edited lines with long deletions, but not in any edited lines with short indel mutations, suggesting long deletions maybe required for inversions. Biallelic mutations were observed for each of the three target sites in four of the 10 edited lines when three crRNAs were used, demonstrating that transformation of embryogenic citrus protoplasts with Cas12a and three crRNAs RNP can be very efficient for multiplex editing. Our analysis revealed the absence of off-target mutations in the edited lines. These cslob1 mutant lines were canker- resistant and no canker symptoms were observed after inoculation with Xcc and Xcc growth was significantly reduced in the cslob1 mutant lines compared to the wild type plants. Discussion Taken together, RNP (Cas12a and three crRNAs) transformation of embryogenic protoplasts of citrus provides a promising solution for transgene-free multiplex genome editing with high efficiency and for deletion of long fragments.
Collapse
Affiliation(s)
- Hang Su
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Yuanchun Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Jin Xu
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Ahmad A Omar
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Jude W Grosser
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
3
|
Khadgi A, Sagawa CHD, Vernon C, Mermaz B, Irish VF. Optimization of in planta methodology for genome editing and transformation in Citrus. FRONTIERS IN PLANT SCIENCE 2024; 15:1438031. [PMID: 39070914 PMCID: PMC11272483 DOI: 10.3389/fpls.2024.1438031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024]
Abstract
Genetic transformation of many plant species relies on in vitro tissue culture-based approaches. This can be a labor-intensive process, requiring aseptic conditions and regenerating often recalcitrant species from tissue culture. Here, we have optimized an in planta transformation protocol to rapidly transform commercial citrus cultivars, bypassing the need for tissue culture. As a proof of concept, we used in planta transformation to introduce CRISPR/Cas9 constructs into Limoneira 8A Lisbon lemon and Pineapple sweet orange, cultivars that are challenging to transform with conventional techniques. Using our optimized protocol, the regeneration rate was significantly increased from 4.8% to over 95%, resulting in multiple gene-edited lines in lemon. We also successfully recovered gene-edited Pineapple sweet orange lines using this protocol; the transformation efficiency for these cultivars ranged between 0.63% and 4.17%. Remarkably, these lines were obtained within three months, making this in planta protocol a rapid methodology to obtain transformed citrus plants. This approach can rapidly and effectively introduce key genetic changes into a wide variety of citrus cultivars.
Collapse
Affiliation(s)
- Archana Khadgi
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States
| | - Cintia H. D. Sagawa
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States
| | - Corina Vernon
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States
| | - Benoit Mermaz
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States
| | - Vivian F. Irish
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| |
Collapse
|
4
|
Sarkar P, Santiago Vazquez J, Zhou M, Levy A, Mou Z, Orbović V. Multiplexed gene editing in citrus by using a multi-intron containing Cas9 gene. Transgenic Res 2024; 33:59-66. [PMID: 38564120 DOI: 10.1007/s11248-024-00380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Several expression systems have been developed in clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) framework allowing for gene editing of disease-associated genes across diverse citrus varieties. In this study, we present a new approach employing a multi-intron containing Cas9 gene plus multiple gRNAs separated with tRNA sequences to target the phytoene desaturase gene in both 'Carrizo' citrange and 'Duncan' grapefruit. Notably, using this unified vector significantly boosted editing efficiency in both citrus varieties, showcasing mutations in all three designated targets. The implementation of this multiplex gene editing system with a multi-intron-containing Cas9 plus a gRNA-tRNA array demonstrates a promising avenue for efficient citrus genome editing, equipping us with potent tools in the ongoing battle against several diseases such as canker and huanglongbing.
Collapse
Affiliation(s)
- Poulami Sarkar
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Jorge Santiago Vazquez
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Mingxi Zhou
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32602, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32611, USA
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
- Department of Cell Sciences and Microbiology, University of Florida, Gainesville, FL, 32611, USA
| | - Zhonglin Mou
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32602, USA
| | - Vladimir Orbović
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
5
|
Jia H, Omar AA, Xu J, Dalmendray J, Wang Y, Feng Y, Wang W, Hu Z, Grosser JW, Wang N. Generation of transgene-free canker-resistant Citrus sinensis cv. Hamlin in the T0 generation through Cas12a/CBE co-editing. FRONTIERS IN PLANT SCIENCE 2024; 15:1385768. [PMID: 38595767 PMCID: PMC11002166 DOI: 10.3389/fpls.2024.1385768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Citrus canker disease affects citrus production. This disease is caused by Xanthomonas citri subsp. citri (Xcc). Previous studies confirmed that during Xcc infection, PthA4, a transcriptional activator like effector (TALE), is translocated from the pathogen to host plant cells. PthA4 binds to the effector binding elements (EBEs) in the promoter region of canker susceptibility gene LOB1 (EBEPthA4-LOBP) to activate its expression and subsequently cause canker symptoms. Previously, the Cas12a/CBE co-editing method was employed to disrupt EBEPthA4-LOBP of pummelo, which is highly homozygous. However, most commercial citrus cultivars are heterozygous hybrids and more difficult to generate homozygous/biallelic mutants. Here, we employed Cas12a/CBE co-editing method to edit EBEPthA4-LOBP of Hamlin (Citrus sinensis), a commercial heterozygous hybrid citrus cultivar grown worldwide. Binary vector GFP-p1380N-ttLbCas12a:LOBP1-mPBE:ALS2:ALS1 was constructed and shown to be functional via Xcc-facilitated agroinfiltration in Hamlin leaves. This construct allows the selection of transgene-free regenerants via GFP, edits ALS to generate chlorsulfuron-resistant regenerants as a selection marker for genome editing resulting from transient expression of the T-DNA via nCas9-mPBE:ALS2:ALS1, and edits gene(s) of interest (i.e., EBEPthA4-LOBP in this study) through ttLbCas12a, thus creating transgene-free citrus. Totally, 77 plantlets were produced. Among them, 8 plantlets were transgenic plants (#HamGFP1 - #HamGFP8), 4 plantlets were transgene-free (#HamNoGFP1 - #HamNoGFP4), and the rest were wild type. Among 4 transgene-free plantlets, three lines (#HamNoGFP1, #HamNoGFP2 and #HamNoGFP3) contained biallelic mutations in EBEpthA4, and one line (#HamNoGFP4) had homozygous mutations in EBEpthA4. We achieved 5.2% transgene-free homozygous/biallelic mutation efficiency for EBEPthA4-LOBP in C. sinensis cv. Hamlin, compared to 1.9% mutation efficiency for pummelo in a previous study. Importantly, the four transgene-free plantlets and 3 transgenic plantlets that survived were resistant against citrus canker. Taken together, Cas12a/CBE co-editing method has been successfully used to generate transgene-free canker-resistant C. sinensis cv. Hamlin in the T0 generation via biallelic/homozygous editing of EBEpthA4 of the canker susceptibility gene LOB1.
Collapse
Affiliation(s)
- Hongge Jia
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Ahmad A. Omar
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Javier Dalmendray
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Yuanchun Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Yu Feng
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Wenting Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Zhuyuan Hu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Jude W. Grosser
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
6
|
Wang H, Ren J, Zhou S, Duan Y, Zhu C, Chen C, Liu Z, Zheng Q, Xiang S, Xie Z, Wang X, Chai L, Ye J, Xu Q, Guo W, Deng X, Zhang F. Molecular regulation of oil gland development and biosynthesis of essential oils in Citrus spp. Science 2024; 383:659-666. [PMID: 38330135 DOI: 10.1126/science.adl2953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/29/2023] [Indexed: 02/10/2024]
Abstract
Secretory structures in terrestrial plants serve as reservoirs for a variety of secondary metabolites. Among these, the secretory cavity of the Rutaceae family is notable for containing essential oils with a wide range of applications. However, the molecular basis underlying secretory cavity development is unknown. Here, we reveal a molecular framework for Citrus oil gland formation. Using genetic mapping and genome editing, we demonstrated that this process requires LATE MERISTEM IDENTITY1 (LMI1), a key regulator of leaf serration. A conserved GCC box element of the LMI1 promoter recruits DORNROSCHEN-like (DRNL) for transcriptional activation. This DRNL-LMI1 cascade triggers MYC5 activation, facilitating the development of oil glands and the biosynthesis of essential oils. Our findings spotlight cis-regulatory divergence within leaf shape genes, propelling novel functional tissue formation.
Collapse
Affiliation(s)
- Hongxing Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Ren
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyun Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaoyuan Duan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenqiao Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuanwu Chen
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Ziyan Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingyou Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shu Xiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Zongzhou Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wenwu Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Fei Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
7
|
Prado GS, Rocha DC, dos Santos LN, Contiliani DF, Nobile PM, Martinati-Schenk JC, Padilha L, Maluf MP, Lubini G, Pereira TC, Monteiro-Vitorello CB, Creste S, Boscariol-Camargo RL, Takita MA, Cristofani-Yaly M, de Souza AA. CRISPR technology towards genome editing of the perennial and semi-perennial crops citrus, coffee and sugarcane. FRONTIERS IN PLANT SCIENCE 2024; 14:1331258. [PMID: 38259920 PMCID: PMC10801916 DOI: 10.3389/fpls.2023.1331258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
Gene editing technologies have opened up the possibility of manipulating the genome of any organism in a predicted way. CRISPR technology is the most used genome editing tool and, in agriculture, it has allowed the expansion of possibilities in plant biotechnology, such as gene knockout or knock-in, transcriptional regulation, epigenetic modification, base editing, RNA editing, prime editing, and nucleic acid probing or detection. This technology mostly depends on in vitro tissue culture and genetic transformation/transfection protocols, which sometimes become the major challenges for its application in different crops. Agrobacterium-mediated transformation, biolistics, plasmid or RNP (ribonucleoprotein) transfection of protoplasts are some of the commonly used CRISPR delivery methods, but they depend on the genotype and target gene for efficient editing. The choice of the CRISPR system (Cas9, Cas12), CRISPR mechanism (plasmid or RNP) and transfection technique (Agrobacterium spp., PEG solution, lipofection) directly impacts the transformation efficiency and/or editing rate. Besides, CRISPR/Cas technology has made countries rethink regulatory frameworks concerning genetically modified organisms and flexibilize regulatory obstacles for edited plants. Here we present an overview of the state-of-the-art of CRISPR technology applied to three important crops worldwide (citrus, coffee and sugarcane), considering the biological, methodological, and regulatory aspects of its application. In addition, we provide perspectives on recently developed CRISPR tools and promising applications for each of these crops, thus highlighting the usefulness of gene editing to develop novel cultivars.
Collapse
Affiliation(s)
- Guilherme Souza Prado
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
| | - Dhiôvanna Corrêia Rocha
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
- Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - Lucas Nascimento dos Santos
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
- Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - Danyel Fernandes Contiliani
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Paula Macedo Nobile
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
| | | | - Lilian Padilha
- Coffee Center of the Agronomic Institute of Campinas (IAC), Campinas, Brazil
- Embrapa Coffee, Brazilian Agricultural Research Corporation, Brasília, Federal District, Brazil
| | - Mirian Perez Maluf
- Coffee Center of the Agronomic Institute of Campinas (IAC), Campinas, Brazil
- Embrapa Coffee, Brazilian Agricultural Research Corporation, Brasília, Federal District, Brazil
| | - Greice Lubini
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Tiago Campos Pereira
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Silvana Creste
- Sugarcane Research Center – Agronomic Institute (IAC), Ribeirão Preto, Brazil
- Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Marco Aurélio Takita
- Citrus Research Center “Sylvio Moreira” – Agronomic Institute (IAC), Cordeirópolis, Brazil
| | | | | |
Collapse
|
8
|
Jacobson S, Bondarchuk N, Nguyen TA, Canada A, McCord L, Artlip TS, Welser P, Klocko AL. Apple CRISPR-Cas9-A Recipe for Successful Targeting of AGAMOUS-like Genes in Domestic Apple. PLANTS (BASEL, SWITZERLAND) 2023; 12:3693. [PMID: 37960050 PMCID: PMC10649517 DOI: 10.3390/plants12213693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Fruit trees and other fruiting hardwood perennials are economically valuable, and there is interest in developing improved varieties. Both conventional breeding and biotechnology approaches are being utilized towards the goal of developing advanced cultivars. Increased knowledge of the effectiveness and efficiency of biotechnology approaches can help guide use of the CRISPR gene-editing technology. Here, we examined CRISPR-Cas9-directed genome editing in the valuable commodity fruit tree Malus x domestica (domestic apple). We transformed two cultivars with dual CRISPR-Cas9 constructs designed to target two AGAMOUS-like genes simultaneously. The main goal was to determine the effectiveness of this approach for achieving target gene changes. We obtained 6 Cas9 control and 38 independent CRISPR-Cas9 events. Of the 38 CRISPR-Cas9 events, 34 (89%) had gene edits and 14 (37%) showed changes to all alleles of both target genes. The most common change was large deletions, which were present in 59% of all changed alleles, followed by small deletions (21%), small insertions (12%), and a combination of small insertions and deletions (8%). Overall, a high rate of successful gene alterations was found. Many of these changes are predicted to cause frameshifts and alterations to the predicted peptides. Future work will include monitoring the floral development and floral form.
Collapse
Affiliation(s)
- Seth Jacobson
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Natalie Bondarchuk
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Thy Anh Nguyen
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Allison Canada
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Logan McCord
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Timothy S. Artlip
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), The Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA;
| | - Philipp Welser
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), The Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA;
| | - Amy L. Klocko
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| |
Collapse
|
9
|
Verma V, Kumar A, Partap M, Thakur M, Bhargava B. CRISPR-Cas: A robust technology for enhancing consumer-preferred commercial traits in crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1122940. [PMID: 36824195 PMCID: PMC9941649 DOI: 10.3389/fpls.2023.1122940] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The acceptance of new crop varieties by consumers is contingent on the presence of consumer-preferred traits, which include sensory attributes, nutritional value, industrial products and bioactive compounds production. Recent developments in genome editing technologies provide novel insight to identify gene functions and improve the various qualitative and quantitative traits of commercial importance in plants. Various conventional as well as advanced gene-mutagenesis techniques such as physical and chemical mutagenesis, CRISPR-Cas9, Cas12 and base editors are used for the trait improvement in crops. To meet consumer demand, breakthrough biotechnologies, especially CRISPR-Cas have received a fair share of scientific and industrial interest, particularly in plant genome editing. CRISPR-Cas is a versatile tool that can be used to knock out, replace and knock-in the desired gene fragments at targeted locations in the genome, resulting in heritable mutations of interest. This review highlights the existing literature and recent developments in CRISPR-Cas technologies (base editing, prime editing, multiplex gene editing, epigenome editing, gene delivery methods) for reliable and precise gene editing in plants. This review also discusses the potential of gene editing exhibited in crops for the improvement of consumer-demanded traits such as higher nutritional value, colour, texture, aroma/flavour, and production of industrial products such as biofuel, fibre, rubber and pharmaceuticals. In addition, the bottlenecks and challenges associated with gene editing system, such as off targeting, ploidy level and the ability to edit organelle genome have also been discussed.
Collapse
Affiliation(s)
- Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Akhil Kumar
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Mahinder Partap
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
10
|
Sánchez-Gómez C, Posé D, Martín-Pizarro C. Genome Editing by CRISPR/Cas9 in Polyploids. Methods Mol Biol 2023; 2545:459-473. [PMID: 36720828 DOI: 10.1007/978-1-0716-2561-3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
CRISPR/Cas system has been widely used for genome editing in the past few years. Even though it has been performed in many polyploid species to date, its efficient accomplishment in these organisms is still a challenge. The presence of multiple homoeologous genes as targets for their editing requires more rigorous work and specific needs to assess successful genome editing. Here, we describe a general stepwise protocol to select target sites, design sgRNAs, indicate vector requirements, and screen CRISPR/Cas9-mediated genome editing in polyploid species.
Collapse
Affiliation(s)
- Carlos Sánchez-Gómez
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - David Posé
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Carmen Martín-Pizarro
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain.
| |
Collapse
|
11
|
Khan FS, Goher F, Zhang D, Shi P, Li Z, Htwe YM, Wang Y. Is CRISPR/Cas9 a way forward to fast-track genetic improvement in commercial palms? Prospects and limits. FRONTIERS IN PLANT SCIENCE 2022; 13:1042828. [PMID: 36578341 PMCID: PMC9791139 DOI: 10.3389/fpls.2022.1042828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Commercially important palms (oil palm, coconut, and date palm) are widely grown perennial trees with tremendous commercial significance due to food, edible oil, and industrial applications. The mounting pressure on the human population further reinforces palms' importance, as they are essential crops to meet vegetable oil needs around the globe. Various conventional breeding methods are used for the genetic improvement of palms. However, adopting new technologies is crucial to accelerate breeding and satisfy the expanding population's demands. CRISPR/Cas9 is an efficient genome editing tool that can incorporate desired traits into the existing DNA of the plant without losing common traits. Recent progress in genome editing in oil palm, coconut and date palm are preliminarily introduced to potential readers. Furthermore, detailed information on available CRISPR-based genome editing and genetic transformation methods are summarized for researchers. We shed light on the possibilities of genome editing in palm crops, especially on the modification of fatty acid biosynthesis in oil palm. Moreover, the limitations in genome editing, including inadequate target gene screening due to genome complexities and low efficiency of genetic transformation, are also highlighted. The prospects of CRISPR/Cas9-based gene editing in commercial palms to improve sustainable production are also addressed in this review paper.
Collapse
Affiliation(s)
- Faiza Shafique Khan
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Farhan Goher
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Dapeng Zhang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Peng Shi
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Zhiying Li
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yin Min Htwe
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yong Wang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| |
Collapse
|
12
|
Kumar R, Kamuda T, Budhathoki R, Tang D, Yer H, Zhao Y, Li Y. Agrobacterium- and a single Cas9-sgRNA transcript system-mediated high efficiency gene editing in perennial ryegrass. Front Genome Ed 2022; 4:960414. [PMID: 36147557 PMCID: PMC9485938 DOI: 10.3389/fgeed.2022.960414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Genome editing technologies provide a powerful tool for genetic improvement of perennial ryegrass, an important forage and turfgrass species worldwide. The sole publication for gene editing in perennial ryegrass used gene-gun for plant transformation and a dual promoter based CRISPR/Cas9 system for editing. However, their editing efficiency was low (5.9% or only one gene-edited plant produced). To test the suitability of the maize Ubiquitin 1 (ZmUbi1) promoter in gene editing of perennial ryegrass, we produced ZmUbi1 promoter:RUBY transgenic plants. We observed that ZmUbi1 promoter was active in callus tissue prior to shoot regeneration, suggesting that the promoter is suitable for Cas9 and sgRNA expression in perennial ryegrass for high-efficiency production of bi-allelic mutant plants. We then used the ZmUbi1 promoter for controlling Cas9 and sgRNA expression in perennial ryegrass. A ribozyme cleavage target site between the Cas9 and sgRNA sequences allowed production of functional Cas9 mRNA and sgRNA after transcription. Using Agrobacterium for genetic transformation, we observed a 29% efficiency for editing the PHYTOENE DESATURASE gene in perennial ryegrass. DNA sequencing analyses revealed that most pds plants contained bi-allelic mutations. These results demonstrate that the expression of a single Cas9 and sgRNA transcript unit controlled by the ZmUbi1 promoter provides a highly efficient system for production of bi-allelic mutants of perennial ryegrass and should also be applicable in other related grass species.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
| | - Troy Kamuda
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
| | - Roshani Budhathoki
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
| | - Dan Tang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
| | - Huseyin Yer
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California, San Diego, CA, United States
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
- *Correspondence: Yi Li,
| |
Collapse
|
13
|
CRISPR-Based Genome Editing and Its Applications in Woody Plants. Int J Mol Sci 2022; 23:ijms231710175. [PMID: 36077571 PMCID: PMC9456532 DOI: 10.3390/ijms231710175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 12/21/2022] Open
Abstract
CRISPR/Cas-based genome editing technology provides straightforward, proficient, and multifunctional ways for the site-directed modification of organism genomes and genes. The application of CRISPR-based technology in plants has a vast potential value in gene function research, germplasm innovation, and genetic improvement. The complexity of woody plants genome may pose significant challenges in the application and expansion of various new editing techniques, such as Cas9, 12, 13, and 14 effectors, base editing, particularly for timberland species with a long life span, huge genome, and ploidy. Therefore, many novel optimisms have been drawn to molecular breeding research based on woody plants. This review summarizes the recent development of CRISPR/Cas applications for essential traits, including wood properties, flowering, biological stress, abiotic stress, growth, and development in woody plants. We outlined the current problems and future development trends of this technology in germplasm and the improvement of products in woody plants.
Collapse
|
14
|
Li X, Yang Q, Liao X, Tian Y, Zhang F, Zhang L, Liu Q. A natural antisense RNA improves chrysanthemum cold tolerance by regulating the transcription factor DgTCP1. PLANT PHYSIOLOGY 2022; 190:605-620. [PMID: 35728057 PMCID: PMC9434197 DOI: 10.1093/plphys/kiac267] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/10/2022] [Indexed: 05/20/2023]
Abstract
Long noncoding RNAs (lncRNAs) are widely involved in the regulation of plant growth and development, but their mechanism of action in response to cold stress in plants remains unclear. Here, we found an lncRNA transcribed from the antisense strand of DgTCP1 (class I Teosinte branched1/Cycloidea/Proliferating [TCP] transcription factor) of chrysanthemum (Chrysanthemum morifolium Ramat.), named DglncTCP1. During the response of chrysanthemum to cold stress, overexpression of DgTCP1 improved the cold tolerance of chrysanthemum, while the DgTCP1 editing line (dgtcp1) showed decreased tolerance to cold stress. Overexpression of DglncTCP1 also increased the cold tolerance of chrysanthemum, while the DglncTCP1 amiRNA lines (DglncTCP1 amiR-18/38) also showed decreased tolerance to cold stress. Additionally, the overexpression of DglncTCP1 upregulated the expression of DgTCP1. This indicated that DglncTCP1 may play a cis-regulatory role in the regulatory process of DgTCP1 in cold tolerance. DglncTCP1 acts as a scaffold to recruit the histone modification protein DgATX (ARABIDOPSIS TRITHORAX from chrysanthemum) to DgTCP1 to enhance H3K4me3 levels, thereby activating DgTCP1 expression. Moreover, DgTCP1 can directly target DgPOD (peroxidase gene from chrysanthemum) to promote its expression and reduce reactive oxygen species accumulation, thereby improving the cold tolerance of chrysanthemum. In conclusion, these results suggest that natural antisense lncRNA plays a key role in improving the cold tolerance of chrysanthemum.
Collapse
Affiliation(s)
- Xin Li
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
| | - Qing Yang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
| | - Xiaoqin Liao
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
| | - Yuchen Tian
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
| | - Fan Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
| | - Lei Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
| | - Qinglin Liu
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
| |
Collapse
|
15
|
Jedličková V, Mácová K, Štefková M, Butula J, Staveníková J, Sedláček M, Robert HS. Hairy root transformation system as a tool for CRISPR/Cas9-directed genome editing in oilseed rape ( Brassica napus). FRONTIERS IN PLANT SCIENCE 2022; 13:919290. [PMID: 35991410 PMCID: PMC9386449 DOI: 10.3389/fpls.2022.919290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Our study examined the mutation efficiency of the CRISPR/Cas9 method for tryptophan aminotransferase BnaTAA1 genes involved in the auxin biosynthesis pathway. We made nine CRISPR/Cas9 constructs with various promoters driving the expression of a Cas9 from Staphylococcus aureus (SaCas9) or a plant-codon-optimized Streptococcus pyogenes Cas9 (pcoCas9). We developed a fast and efficient system for evaluating the variety and frequency of mutations caused by each construct using Brassica napus hairy roots. We showed that pcoCas9 is more efficient in mutating the targeted loci than SaCas9 and the presence of the NLS signal enhanced the chance of mutagenesis by 25%. The mutations were studied further in regenerated lines, and we determined the BnaTAA1 gene expression and heritability of the gene modifications in transgenic plants. Hairy root transformation combined with CRISPR/Cas9-mediated gene editing represents a fast and straightforward system for studying target gene function in the important oilseed crop B. napus.
Collapse
Affiliation(s)
- Veronika Jedličková
- CEITEC MU – Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Kateřina Mácová
- CEITEC MU – Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Marie Štefková
- CEITEC MU – Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Jan Butula
- CEITEC MU – Central European Institute of Technology, Masaryk University, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jana Staveníková
- CEITEC MU – Central European Institute of Technology, Masaryk University, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Marek Sedláček
- CEITEC MU – Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Hélène S. Robert
- CEITEC MU – Central European Institute of Technology, Masaryk University, Brno, Czechia
| |
Collapse
|
16
|
Moniruzzaman M, Zhong Y, Huang Z, Zhong G. Having a Same Type IIS Enzyme's Restriction Site on Guide RNA Sequence Does Not Affect Golden Gate (GG) Cloning and Subsequent CRISPR/Cas Mutagenesis. Int J Mol Sci 2022; 23:4889. [PMID: 35563297 PMCID: PMC9101711 DOI: 10.3390/ijms23094889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Golden gate/modular cloning facilitates faster and more efficient cloning by utilizing the unique features of the type IIS restriction enzymes. However, it is known that targeted insertion of DNA fragment(s) must not include internal type IIS restriction recognition sites. In the case of cloning CRISPR constructs by using golden gate (GG) cloning, this narrows down the scope of guide RNA (gRNA) picks because the selection of a good gRNA for successful genome editing requires some obligation of fulfillment, and it is unwanted if a good gRNA candidate cannot be picked only because it has an internal type IIS restriction recognition site. In this article, we have shown that the presence of a type IIS restriction recognition site in a gRNA does not affect cloning and subsequent genome editing. After each step of GG reactions, correct insertions of gRNAs were verified by colony color and restriction digestion and were further confirmed by sequencing. Finally, the final vector containing a Cas12a nuclease and four gRNAs was used for Agrobacterium-mediated citrus cell transformation. Sequencing of PCR amplicons flanking gRNA-2 showed a substitution (C to T) mutation in transgenic plants. The knowledge derived from this study could widen the scope of GG cloning, particularly of gRNAs selection for GG-mediated cloning into CRISPR vectors.
Collapse
Affiliation(s)
- M. Moniruzzaman
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Z.); (Z.H.)
- Center for Viticulture and Small Fruit Research, Florida A&M University, Tallahassee, FL 32308, USA
| | - Yun Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Z.); (Z.H.)
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Zhifeng Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Z.); (Z.H.)
| | - Guangyan Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.Z.); (Z.H.)
| |
Collapse
|
17
|
Alquézar B, Bennici S, Carmona L, Gentile A, Peña L. Generation of Transfer-DNA-Free Base-Edited Citrus Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:835282. [PMID: 35371165 PMCID: PMC8965368 DOI: 10.3389/fpls.2022.835282] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
To recover transgenic citrus plants in the most efficient manner, the use of selection marker genes is essential. In this work, it was shown that the mutated forms of the acetolactate synthase (ALS) gene in combination with the herbicide selection agent imazapyr (IMZ) added to the selection medium may be used to achieve this goal. This approach enables the development of cisgenic regenerants, namely, plants without the incorporation of those bacterial genes currently employed for transgenic selection, and additionally it allows the generation of edited, non-transgenic plants with altered endogenous ALS genes leading to IMZ resistance. In this work, the citrus mutants, in which ALS has been converted into IMZ-resistant forms using a base editor system, were recovered after cocultivation of the explants with Agrobacterium tumefaciens carrying a cytidine deaminase fused to nSpCas9 in the T-DNA and selecting regenerants in the culture medium supplemented with IMZ. Analysis of transgene-free plants indicated that the transient expression of the T-DNA genes was sufficient to induce ALS mutations and thus generate IMZ-resistant shoots at 11.7% frequency. To our knowledge, this is the first report of T-DNA-free edited citrus plants. Although further optimization is required to increase edition efficiency, this methodology will allow generating new citrus varieties with improved organoleptic/agronomic features without the need to use foreign genes.
Collapse
Affiliation(s)
- Berta Alquézar
- Laboratório de Biotecnologia Vegetal, Pesquisa, and Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Stefania Bennici
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Lourdes Carmona
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Alessandra Gentile
- Department of Agriculture, Food, and Environment, University of Catania, Catania, Italy
| | - Leandro Peña
- Laboratório de Biotecnologia Vegetal, Pesquisa, and Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
18
|
Xu Y, Zhang L, Lu L, Liu J, Yi H, Wu J. An efficient CRISPR/Cas9 system for simultaneous editing two target sites in Fortunella hindsii. HORTICULTURE RESEARCH 2022; 9:uhac064. [PMID: 35673604 PMCID: PMC9166532 DOI: 10.1093/hr/uhac064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/01/2022] [Indexed: 06/15/2023]
Abstract
The CRISPR/Cas9 system is a revolutionary genome editing technique and has been widely used in numerous plants. For plants (e.g. citrus) with very low transformation efficiency, how to optimize gene editing efficiency and induce large-fragment deletion has been the focus of research. Here, we report that CRISPR/Cas9 induces efficient deletion of 16-673 bp fragments in the genome of Fortunella hindsii. The ability of two binary vectors, pK7WG2D and pMDC32, to introduce specific mutations into the genome of F. hindsii was evaluated. Double single guide RNAs (sgRNAs) were designed to achieve precise editing of two sites of a gene and deletion of fragments between the two sites. The construction of vectors based on Golden Gate assembly and Gateway recombination cloning is simple and efficient. pK7WG2D is more suitable for F. hindsii genome editing than the pMDC32 vector. Editing efficiency using the pK7WG2D vector reached 66.7%. Allele mutation frequency was 7.14-100%. Plants with 100% allele mutations accounted for 39.4% (13 100% allele mutation plants/33 mutants). The proportion of mutant plants with fragment deletion induced by this editing system was as high as 52.6% (10 fragment-deletion mutants/19 FhNZZ mutants). Altogether, these data suggest that our CRISPR/Cas9 platform is capable of targeted genome editing in citrus and has broad application in research on the citrus functional genome and citrus molecular breeding.
Collapse
Affiliation(s)
- Yanhui Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Liqing Lu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jihong Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hualin Yi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
19
|
Huang X, Wang Y, Wang N. Base Editors for Citrus Gene Editing. Front Genome Ed 2022; 4:852867. [PMID: 35296063 PMCID: PMC8919994 DOI: 10.3389/fgeed.2022.852867] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
Base editors, such as adenine base editors (ABE) and cytosine base editors (CBE), provide alternatives for precise genome editing without generating double-strand breaks (DSBs), thus avoiding the risk of genome instability and unpredictable outcomes caused by DNA repair. Precise gene editing mediated by base editors in citrus has not been reported. Here, we have successfully adapted the ABE to edit the TATA box in the promoter region of the canker susceptibility gene LOB1 from TATA to CACA in grapefruit (Citrus paradise) and sweet orange (Citrus sinensis). TATA-edited plants are resistant to the canker pathogen Xanthomonas citri subsp. citri (Xcc). In addition, CBE was successfully used to edit the acetolactate synthase (ALS) gene in citrus. ALS-edited plants were resistant to the herbicide chlorsulfuron. Two ALS-edited plants did not show green fluorescence although the starting construct for transformation contains a GFP expression cassette. The Cas9 gene was undetectable in the herbicide-resistant citrus plants. This indicates that the ALS edited plants are transgene-free, representing the first transgene-free gene-edited citrus using the CRISPR technology. In summary, we have successfully adapted the base editors for precise citrus gene editing. The CBE base editor has been used to generate transgene-free citrus via transient expression.
Collapse
|
20
|
Jia H, Omar AA, Orbović V, Wang N. Biallelic Editing of the LOB1 Promoter via CRISPR/Cas9 Creates Canker-Resistant 'Duncan' Grapefruit. PHYTOPATHOLOGY 2022; 112:308-314. [PMID: 34213958 DOI: 10.1094/phyto-04-21-0144-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Citrus canker caused by Xanthomonas citri subsp. citri is one of the most devastating citrus diseases worldwide. Generating disease-resistant citrus varieties is considered one of the most efficient and environmentally friendly measures for controlling canker. X. citri subsp. citri causes canker symptoms by inducing the expression of canker susceptibility gene LOB1 via PthA4, a transcription activator-like (TAL) effector, by binding to the effector binding element (EBE) in the promoter region. In previous studies, canker-resistant plants were generated by mutating the coding region or the EBE of LOB1. However, homozygous or biallelic canker-resistant plants have not been generated for commercial citrus varieties, such as grapefruit (Citrus paradisi), which usually contain two alleles of LOB1 and thus, have two types of LOB1 promoter sequences: TI LOBP and TII LOBP. Two different sgRNAs were used to target both EBE types. Both 35S promoter and Yao promoter were used to drive the expression of SpCas9p to modify EBEPthA4-LOBP in grapefruit. Using 'Duncan' grapefruit epicotyls as explants, 19 genome-edited grapefruit plants were generated with one biallelic mutant line (#DunYao7). X. citri subsp. citri caused canker symptoms on wild-type and nonbiallelic mutant plants but not on #DunYao7. XccPthA4 mutant containing the designer TAL effector dLOB1.5, which recognizes a conserved sequence in both wild-type and #DunYao7, caused canker symptoms on both wild-type and #DunYao7. No off-target mutations were detected in #DunYao7. This study represents the first time that CRISPR-mediated genome editing has been successfully used to generate disease-resistant plants for 'Duncan' grapefruit, paving the way for using disease-resistant varieties to control canker.
Collapse
Affiliation(s)
- Hongge Jia
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred 33850, U.S.A
| | - Ahmad A Omar
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred 33850, U.S.A
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Vladimir Orbović
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred 33850, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred 33850, U.S.A
| |
Collapse
|
21
|
Abstract
Above-ground plant architecture is dictated to a large extent by the fates and growth rates of aerial plant meristems. Shoot apical meristem gives rise to the fundamental plant form by generating new leaves. However, the fates of axillary meristems located in leaf axils have a great influence on plant architecture and affect the harvest index, yield potential and cultural practices. Improving plant architecture by breeding facilitates denser plantations, better resource use efficiency and even mechanical harvesting. Knowledge of the genetic mechanisms regulating plant architecture is needed for precision breeding, especially for determining feasible breeding targets. Fortunately, research in many crop species has demonstrated that a relatively small number of genes has a large effect on axillary meristem fates. In this review, we select a number of important horticultural and agricultural plant species as examples of how changes in plant architecture affect the cultivation practices of the species. We focus specifically on the determination of the axillary meristem fate and review how plant architecture may change even drastically because of altered axillary meristem fate. We also explain what is known about the genetic and environmental control of plant architecture in these species, and how further changes in plant architectural traits could benefit the horticultural sector.
Collapse
|
22
|
Jia H, Wang Y, Su H, Huang X, Wang N. LbCas12a-D156R Efficiently Edits LOB1 Effector Binding Elements to Generate Canker-Resistant Citrus Plants. Cells 2022; 11:cells11030315. [PMID: 35159125 PMCID: PMC8834406 DOI: 10.3390/cells11030315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is an economically important disease in most citrus production regions worldwide. Xcc secretes a transcriptional activator like effector (TALE) PthA4 to bind to the effector binding elements (EBEs) in the promoter region of canker susceptibility gene LOB1 to activate its expression, which in turn causes canker symptoms. Editing the EBE region with Cas9/gRNA has been used to generate canker resistant citrus plants. However, most of the EBE-edited lines generated contain indels of 1–2 bp, which has higher possibility to be overcome by PthA4 adaptation. The adaptation capacity of TALEs inversely correlates with the number of mismatches with the EBE. LbCas12a/crRNA is known to generate longer deletion than Cas9. In this study, we used a temperature-tolerant and more efficient LbCas12a variant (ttLbCas12a), harboring the single substitution D156R, to modify the EBE region of LOB1. We first constructed GFP-p1380N-ttLbCas12a:LOBP, which was shown to be functional via Xcc-facilitated agroinfiltration in Pummelo (Citrus maxima) leaves. Subsequently, we stably expressed ttLbCas12a:LOBP in Pummelo. Eight transgenic lines were generated, with seven lines showing 100% mutations of the EBE, among which one line is homozygous. The EBE-edited lines had the ttLbCas12a-mediated deletions of up to 10 bp. Importantly, the seven lines were canker resistant and no off-targets were detected. In summary, ttLbCas12a can be used to efficiently generate biallelic/homozygous citrus mutant lines with short deletions, thus providing a useful tool for the functional study and breeding of citrus.
Collapse
|
23
|
Cao HX, Vu GTH, Gailing O. From Genome Sequencing to CRISPR-Based Genome Editing for Climate-Resilient Forest Trees. Int J Mol Sci 2022; 23:966. [PMID: 35055150 PMCID: PMC8780650 DOI: 10.3390/ijms23020966] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Due to the economic and ecological importance of forest trees, modern breeding and genetic manipulation of forest trees have become increasingly prevalent. The CRISPR-based technology provides a versatile, powerful, and widely accepted tool for analyzing gene function and precise genetic modification in virtually any species but remains largely unexplored in forest species. Rapidly accumulating genetic and genomic resources for forest trees enabled the identification of numerous genes and biological processes that are associated with important traits such as wood quality, drought, or pest resistance, facilitating the selection of suitable gene editing targets. Here, we introduce and discuss the latest progress, opportunities, and challenges of genome sequencing and editing for improving forest sustainability.
Collapse
Affiliation(s)
- Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
| | - Giang Thi Ha Vu
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
- Center for Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, 37073 Gottingen, Germany
| |
Collapse
|
24
|
Huang X, Wang Y, Wang N. Highly Efficient Generation of Canker-Resistant Sweet Orange Enabled by an Improved CRISPR/Cas9 System. FRONTIERS IN PLANT SCIENCE 2022; 12:769907. [PMID: 35087548 PMCID: PMC8787272 DOI: 10.3389/fpls.2021.769907] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/09/2021] [Indexed: 06/02/2023]
Abstract
Sweet orange (Citrus sinensis) is the most economically important species for the citrus industry. However, it is susceptible to many diseases including citrus bacterial canker caused by Xanthomonas citri subsp. citri (Xcc) that triggers devastating effects on citrus production. Conventional breeding has not met the challenge to improve disease resistance of sweet orange due to the long juvenility and other limitations. CRISPR-mediated genome editing has shown promising potentials for genetic improvements of plants. Generation of biallelic/homozygous mutants remains difficult for sweet orange due to low transformation rate, existence of heterozygous alleles for target genes, and low biallelic editing efficacy using the CRISPR technology. Here, we report improvements in the CRISPR/Cas9 system for citrus gene editing. Based on the improvements we made previously [dicot codon optimized Cas9, tRNA for multiplexing, a modified sgRNA scaffold with high efficiency, citrus U6 (CsU6) to drive sgRNA expression], we further improved our CRISPR/Cas9 system by choosing superior promoters [Cestrum yellow leaf curling virus (CmYLCV) or Citrus sinensis ubiquitin (CsUbi) promoter] to drive Cas9 and optimizing culture temperature. This system was able to generate a biallelic mutation rate of up to 89% for Carrizo citrange and 79% for Hamlin sweet orange. Consequently, this system was used to generate canker-resistant Hamlin sweet orange by mutating the effector binding element (EBE) of canker susceptibility gene CsLOB1, which is required for causing canker symptoms by Xcc. Six biallelic Hamlin sweet orange mutant lines in the EBE were generated. The biallelic mutants are resistant to Xcc. Biallelic mutation of the EBE region abolishes the induction of CsLOB1 by Xcc. This study represents a significant improvement in sweet orange gene editing efficacy and generating disease-resistant varieties via CRISPR-mediated genome editing. This improvement in citrus genome editing makes genetic studies and manipulations of sweet orange more feasible.
Collapse
|
25
|
Gupta P, Hirschberg J. The Genetic Components of a Natural Color Palette: A Comprehensive List of Carotenoid Pathway Mutations in Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:806184. [PMID: 35069664 PMCID: PMC8770946 DOI: 10.3389/fpls.2021.806184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/08/2021] [Indexed: 05/16/2023]
Abstract
Carotenoids comprise the most widely distributed natural pigments. In plants, they play indispensable roles in photosynthesis, furnish colors to flowers and fruit and serve as precursor molecules for the synthesis of apocarotenoids, including aroma and scent, phytohormones and other signaling molecules. Dietary carotenoids are vital to human health as a source of provitamin A and antioxidants. Hence, the enormous interest in carotenoids of crop plants. Over the past three decades, the carotenoid biosynthesis pathway has been mainly deciphered due to the characterization of natural and induced mutations that impair this process. Over the year, numerous mutations have been studied in dozens of plant species. Their phenotypes have significantly expanded our understanding of the biochemical and molecular processes underlying carotenoid accumulation in crops. Several of them were employed in the breeding of crops with higher nutritional value. This compendium of all known random and targeted mutants available in the carotenoid metabolic pathway in plants provides a valuable resource for future research on carotenoid biosynthesis in plant species.
Collapse
Affiliation(s)
| | - Joseph Hirschberg
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
26
|
Li J, Zhang M, Li X, Khan A, Kumar S, Allan AC, Lin-Wang K, Espley RV, Wang C, Wang R, Xue C, Yao G, Qin M, Sun M, Tegtmeier R, Liu H, Wei W, Ming M, Zhang S, Zhao K, Song B, Ni J, An J, Korban SS, Wu J. Pear genetics: Recent advances, new prospects, and a roadmap for the future. HORTICULTURE RESEARCH 2022; 9:uhab040. [PMID: 35031796 PMCID: PMC8778596 DOI: 10.1093/hr/uhab040] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023]
Abstract
Pear, belonging to the genus Pyrus, is one of the most economically important temperate fruit crops. Pyrus is an important genus of the Rosaceae family, subfamily Maloideae, and has at least 22 different species with over 5000 accessions maintained or identified worldwide. With the release of draft whole-genome sequences for Pyrus, opportunities for pursuing studies on the evolution, domestication, and molecular breeding of pear, as well as for conducting comparative genomics analyses within the Rosaceae family, have been greatly expanded. In this review, we highlight key advances in pear genetics, genomics, and breeding driven by the availability of whole-genome sequences, including whole-genome resequencing efforts, pear domestication, and evolution. We cover updates on new resources for undertaking gene identification and molecular breeding, as well as for pursuing functional validation of genes associated with desirable economic traits. We also explore future directions for "pear-omics".
Collapse
Affiliation(s)
- Jiaming Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xiaolong Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Awais Khan
- Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Satish Kumar
- Hawke’s Bay Research Centre, The New Zealand Institute for Plant and Food Research Limited, Havelock North 4157, New Zealand
| | - Andrew Charles Allan
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Richard Victor Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Runze Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Xue
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, China
| | - Mengfan Qin
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Manyi Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Richard Tegtmeier
- Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Hainan Liu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Weilin Wei
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Meiling Ming
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kejiao Zhao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Bobo Song
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiangping Ni
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Schuyler S Korban
- Department of Natural Resources & Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jun Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
27
|
Zhang S, Wu S, Hu C, Yang Q, Dong T, Sheng O, Deng G, He W, Dou T, Li C, Sun C, Yi G, Bi F. Increased mutation efficiency of CRISPR/Cas9 genome editing in banana by optimized construct. PeerJ 2022; 10:e12664. [PMID: 35036088 PMCID: PMC8742547 DOI: 10.7717/peerj.12664] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023] Open
Abstract
The CRISPR/Cas9-mediated genome editing system has been used extensively to engineer targeted mutations in a wide variety of species. Its application in banana, however, has been hindered because of the species' triploid nature and low genome editing efficiency. This has delayed the development of a DNA-free genome editing approach. In this study, we reported that the endogenous U6 promoter and banana codon-optimized Cas9 apparently increased mutation frequency in banana, and we generated a method to validate the mutation efficiency of the CRISPR/Cas9-mediated genome editing system based on transient expression in protoplasts. The activity of the MaU6c promoter was approximately four times higher than that of the OsU6a promoter in banana protoplasts. The application of this promoter and banana codon-optimized Cas9 in CRISPR/Cas9 cassette resulted in a fourfold increase in mutation efficiency compared with the previous CRISPR/Cas9 cassette for banana. Our results indicated that the optimized CRISPR/Cas9 system was effective for mutating targeted genes in banana and thus will improve the applications for basic functional genomics. These findings are relevant to future germplasm improvement and provide a foundation for developing DNA-free genome editing technology in banana.
Collapse
Affiliation(s)
- Sen Zhang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaoping Wu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China,College of Life Sciences, Zhaoqing University, Zhaoqing, Guangdong, China
| | - Chunhua Hu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Qiaosong Yang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Tao Dong
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Ou Sheng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Guiming Deng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Weidi He
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Tongxin Dou
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Chunyu Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Chenkang Sun
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China,College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong
| | - Ganjun Yi
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Fangcheng Bi
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
28
|
Movahedi A, Hajiahmadi Z, Wei H, Yang L, Ruan H, Zhuge Q. A Method to Reduce off-Targets in CRISPR/Cas9 System in Plants. Methods Mol Biol 2022; 2408:317-324. [PMID: 35325432 DOI: 10.1007/978-1-0716-1875-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One of the strategies to reduce the off-target mutations in CRISPR/Cas9 system is to use the temperature-independent gene transformation method. Mesoporous silica nanoparticles (MSNs)-gene delivery system is temperature-independent; thus, it can transfer the interesting plasmid (pDNA) to the target plant at different temperatures, including 37 °C. Due to the high activity of SpCas9 at 37 °C compared to lower temperatures, on-target mutagenesis increases at 37 °C. Therefore, we describe the synthesis of the functionalized MSNs with the particle size of less than 40 nm, binding pDNA to the MSNs, and transferring of the pDNA-MSNs into the target plants.
Collapse
Affiliation(s)
- Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China.
| | - Zahra Hajiahmadi
- Department of Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Hui Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Liming Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Honghua Ruan
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
29
|
Bae EK, Choi H, Choi JW, Lee H, Kim SG, Ko JH, Choi YI. Efficient knockout of the phytoene desaturase gene in a hybrid poplar (Populus alba × Populus glandulosa) using the CRISPR/Cas9 system with a single gRNA. Transgenic Res 2021; 30:837-849. [PMID: 34259977 DOI: 10.1007/s11248-021-00272-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
The CRISPR/Cas9 system has been used for genome editing in several plant species; however, there are few reports on its use in trees. Here, CRISPR/Cas9 was used to mutate a target gene in Populus alba × Populus glandulosa hybrid poplars. The hybrid poplar is routinely used in molecular biological studies due to the well-established Agrobacterium-mediated transformation method. A single guide RNA (sgRNA) with reported high mutation efficiency in other popular species was designed with a protospacer adjacent motif sequence for the phytoene desaturase 1 (PagPDS1) gene. The pHSE/Cas9-PagPDS1 sgRNA vector was delivered into hybrid poplar cells using Agrobacterium-mediated transformation. The transgenic plants were propagated and classified them into three groups according to their phenotypes. Among a total of 110 lines of transgenic hybrid poplars, 82 lines showed either an albino or a pale green phenotype, indicating around 74.5% phenotypic mutation efficiency of the PagPDS1 gene. The albino phenotypes were observed when the CRISPR/Cas9-mediated mutations in both PagPDS1 alleles in the transgenic plants. There was no off-target modification of the PagPDS2 gene, which has a potential sgRNA target sequence with two mismatches. The results confirmed that the sgRNA can specifically edit PagPDS1 rather than PagPDS2, indicating that CRISPR/Cas9-mediated genome editing can effectively induce target mutations in the hybrid poplar. This technique will be useful to improve tree quality in hybrid poplars (P. alba × P. glandulosa); for example, by enhancing biomass or stress tolerance.
Collapse
Affiliation(s)
- Eun-Kyung Bae
- Forest Bioresources Department, National Institute of Forest Science, 39 Onjeong-ro, Gwonseon-gu, Suwon, 16631, Korea
| | - Hyunmo Choi
- Forest Biomaterials Research Center, National Institute of Forest Science, 672 Jinju-daero, Jinju, 52817, Korea
| | - Ji Won Choi
- Forest Bioresources Department, National Institute of Forest Science, 39 Onjeong-ro, Gwonseon-gu, Suwon, 16631, Korea
| | - Hyoshin Lee
- Forest Bioresources Department, National Institute of Forest Science, 39 Onjeong-ro, Gwonseon-gu, Suwon, 16631, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Korea
| | - Jae-Heung Ko
- Plant and Environmental New Resources, Kyung Hee University, 1732 Deongyeong-daero, Giheung-gu, Yongin, 17104, Korea
| | - Young-Im Choi
- Forest Bioresources Department, National Institute of Forest Science, 39 Onjeong-ro, Gwonseon-gu, Suwon, 16631, Korea.
| |
Collapse
|
30
|
Tang X, Chen S, Yu H, Zheng X, Zhang F, Deng X, Xu Q. Development of a gRNA-tRNA array of CRISPR/Cas9 in combination with grafting technique to improve gene-editing efficiency of sweet orange. PLANT CELL REPORTS 2021; 40:2453-2456. [PMID: 34554293 DOI: 10.1007/s00299-021-02781-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Here, we developed a reliable protocol for the fast and efficient gene-edited Anliu sweet orange plants production. The application of in vitro shoot grafting technology significantly reduced the growth cycle of transgenic seedlings, and the survival rate of cleft grafting was more than 90%. In addition, the mutation efficiency of the grafted geneedited sweet orange was significantly improved by short-term heat stress treatments. Thus, the combination strategy of grafting and heat stress treatments provided a reference for the fast and efficient multiplex gene editing of sweet orange.
Collapse
Affiliation(s)
- Xiaomei Tang
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shulin Chen
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Huiwen Yu
- Key Laboratory of Landscape Plants With Fujian and Taiwan Characteristics of Fujian Colleges and Universities, Minnan Normal University, Zhangzhou, 363000, China
| | - Xiongjie Zheng
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
- Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, the BioActives Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Fei Zhang
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
31
|
Conti G, Xoconostle-Cázares B, Marcelino-Pérez G, Hopp HE, Reyes CA. Citrus Genetic Transformation: An Overview of the Current Strategies and Insights on the New Emerging Technologies. FRONTIERS IN PLANT SCIENCE 2021; 12:768197. [PMID: 34917104 PMCID: PMC8670418 DOI: 10.3389/fpls.2021.768197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 05/04/2023]
Abstract
Citrus are among the most prevailing fruit crops produced worldwide. The implementation of effective and reliable breeding programs is essential for coping with the increasing demands of satisfactory yield and quality of the fruit as well as to deal with the negative impact of fast-spreading diseases. Conventional methods are time-consuming and of difficult application because of inherent factors of citrus biology, such as their prolonged juvenile period and a complex reproductive stage, sometimes presenting infertility, self-incompatibility, parthenocarpy, or polyembryony. Moreover, certain desirable traits are absent from cultivated or wild citrus genotypes. All these features are challenging for the incorporation of the desirable traits. In this regard, genetic engineering technologies offer a series of alternative approaches that allow overcoming the difficulties of conventional breeding programs. This review gives a detailed overview of the currently used strategies for the development of genetically modified citrus. We describe different aspects regarding genotype varieties used, including elite cultivars or extensively used scions and rootstocks. Furthermore, we discuss technical aspects of citrus genetic transformation procedures via Agrobacterium, regular physical methods, and magnetofection. Finally, we describe the selection of explants considering young and mature tissues, protoplast isolation, etc. We also address current protocols and novel approaches for improving the in vitro regeneration process, which is an important bottleneck for citrus genetic transformation. This review also explores alternative emerging transformation strategies applied to citrus species such as transient and tissue localized transformation. New breeding technologies, including cisgenesis, intragenesis, and genome editing by clustered regularly interspaced short palindromic repeats (CRISPR), are also discussed. Other relevant aspects comprising new promoters and reporter genes, marker-free systems, and strategies for induction of early flowering, are also addressed. We provided a future perspective on the use of current and new technologies in citrus and its potential impact on regulatory processes.
Collapse
Affiliation(s)
- Gabriela Conti
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
- Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gabriel Marcelino-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Horacio Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
- Laboratorio de Agrobiotecnología, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular (FBMC), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina A. Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Buenos Aires, Argentina
| |
Collapse
|
32
|
Shojaei Baghini S, Gardanova ZR, Zekiy AO, Shomali N, Tosan F, Jarahian M. Optimizing sgRNA to Improve CRISPR/Cas9 Knockout Efficiency: Special Focus on Human and Animal Cell. Front Bioeng Biotechnol 2021; 9:775309. [PMID: 34869290 PMCID: PMC8640246 DOI: 10.3389/fbioe.2021.775309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
During recent years, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technologies have been noticed as a rapidly evolving tool to deliver a possibility for modifying target sequence expression and function. The CRISPR/Cas9 tool is currently being used to treat a myriad of human disorders, ranging from genetic diseases and infections to cancers. Preliminary reports have shown that CRISPR technology could result in valued consequences for the treatment of Duchenne muscular dystrophy (DMD), cystic fibrosis (CF), β-thalassemia, Huntington's diseases (HD), etc. Nonetheless, high rates of off-target effects may hinder its application in clinics. Thereby, recent studies have focused on the finding of the novel strategies to ameliorate these off-target effects and thereby lead to a high rate of fidelity and accuracy in human, animals, prokaryotes, and also plants. Meanwhile, there is clear evidence indicating that the design of the specific sgRNA with high efficiency is of paramount importance. Correspondingly, elucidation of the principal parameters that contributed to determining the sgRNA efficiencies is a prerequisite. Herein, we will deliver an overview regarding the therapeutic application of CRISPR technology to treat human disorders. More importantly, we will discuss the potent influential parameters (e.g., sgRNA structure and feature) implicated in affecting the sgRNA efficacy in CRISPR/Cas9 technology, with special concentration on human and animal studies.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zhanna R. Gardanova
- Department of Psychotherapy, Pirogov Russian National Research Medical University, Moscow, Russia
- Medical Faculty, Russian State Social University, Moscow, Russia
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Foad Tosan
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
33
|
Yuan G, Lu H, Tang D, Hassan MM, Li Y, Chen JG, Tuskan GA, Yang X. Expanding the application of a UV-visible reporter for transient gene expression and stable transformation in plants. HORTICULTURE RESEARCH 2021; 8:234. [PMID: 34719678 PMCID: PMC8558336 DOI: 10.1038/s41438-021-00663-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 05/08/2023]
Abstract
Green fluorescent protein (GFP) has been widely used for monitoring gene expression and protein localization in diverse organisms. However, highly sensitive imaging equipment, like fluorescence microscope, is usually required for the visualization of GFP, limitings its application to fixed locations in samples. A reporter that can be visualized in real-time regardless the shape, size and location of the target samples will increase the flexibility and efficiency of research work. Here, we report the application of a GFP-like protein, called eYGFPuv, in both transient expression and stable transformation, in two herbaceous plant species (Arabidopsis and tobacco) and two woody plant species (poplar and citrus). We observed bright fluorescence under UV light in all of the four plant species without any effects on plant growth or development. eYGFPuv was shown to be effective for imaging transient expression in leaf and root tissues. With a focus on in vitro transformation, we demonstrated that the transgenic events expressing 1x eYGFPuv could be easily identified visually during the callus stage and the shoot stage, enabling early and efficient selection of transformants. Furthermore, whole-plant level visualization of eYGFPuv revealed its ubiquitous stability in transgenic plants. In addition, our transformation experiments showed that eYGFPuv can also be used to select transgenic plants without antibiotics. This work demonstrates the feasibility of utilizing 1x eYGFPuv in studies of gene expression and plant transformation in diverse plants.
Collapse
Affiliation(s)
- Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Dan Tang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
- National Center for Citrus Improvement, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
34
|
Venezia M, Creasey Krainer KM. Current Advancements and Limitations of Gene Editing in Orphan Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:742932. [PMID: 34630494 PMCID: PMC8493294 DOI: 10.3389/fpls.2021.742932] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/20/2021] [Indexed: 05/23/2023]
Abstract
Gene editing provides precise, heritable genome mutagenesis without permanent transgenesis, and has been widely demonstrated and applied in planta. In the past decade, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) has revolutionized the application of gene editing in crops, with mechanistic advances expanding its potential, including prime editing and base editing. To date, CRISPR/Cas has been utilized in over a dozen orphan crops with diverse genetic backgrounds, leading to novel alleles and beneficial phenotypes for breeders, growers, and consumers. In conjunction with the adoption of science-based regulatory practices, there is potential for CRISPR/Cas-mediated gene editing in orphan crop improvement programs to solve a plethora of agricultural problems, especially impacting developing countries. Genome sequencing has progressed, becoming more affordable and applicable to orphan crops. Open-access resources allow for target gene identification and guide RNA (gRNA) design and evaluation, with modular cloning systems and enzyme screening methods providing experimental feasibility. While the genomic and mechanistic limitations are being overcome, crop transformation and regeneration continue to be the bottleneck for gene editing applications. International collaboration between all stakeholders involved in crop improvement is vital to provide equitable access and bridge the scientific gap between the world's most economically important crops and the most under-researched crops. This review describes the mechanisms and workflow of CRISPR/Cas in planta and addresses the challenges, current applications, and future prospects in orphan crops.
Collapse
|
35
|
Sattar MN, Iqbal Z, Al-Khayri JM, Jain SM. Induced Genetic Variations in Fruit Trees Using New Breeding Tools: Food Security and Climate Resilience. PLANTS (BASEL, SWITZERLAND) 2021; 10:1347. [PMID: 34371550 PMCID: PMC8309169 DOI: 10.3390/plants10071347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022]
Abstract
Fruit trees provide essential nutrients to humans by contributing to major agricultural outputs and economic growth globally. However, major constraints to sustainable agricultural productivity are the uncontrolled proliferation of the population, and biotic and abiotic stresses. Tree mutation breeding has been substantially improved using different physical and chemical mutagens. Nonetheless, tree plant breeding has certain crucial bottlenecks including a long life cycle, ploidy level, occurrence of sequence polymorphisms, nature of parthenocarpic fruit development and linkage. Genetic engineering of trees has focused on boosting quality traits such as productivity, wood quality, and resistance to biotic and abiotic stresses. Recent technological advances in genome editing provide a unique opportunity for the genetic improvement of woody plants. This review examines application of the CRISPR-Cas system to reduce disease susceptibility, alter plant architecture, enhance fruit quality, and improve yields. Examples are discussed of the contemporary CRISPR-Cas system to engineer easily scorable PDS genes, modify lignin, and to alter the flowering onset, fertility, tree architecture and certain biotic stresses.
Collapse
Affiliation(s)
- Muhammad Naeem Sattar
- Central Laboratories, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.N.S.); (Z.I.)
| | - Zafar Iqbal
- Central Laboratories, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.N.S.); (Z.I.)
| | - Jameel M. Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - S. Mohan Jain
- Department of Agricultural Sciences, PL-27, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
36
|
Zhang F, Wang Y, Irish VF. CENTRORADIALIS maintains shoot meristem indeterminacy by antagonizing THORN IDENTITY1 in Citrus. Curr Biol 2021; 31:2237-2242.e4. [PMID: 33761317 DOI: 10.1016/j.cub.2021.02.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/29/2022]
Abstract
Differential regulation of stem cell activity in shoot meristems contributes to the wide variation in shoot architecture.1-3 In most Citrus species, a thorn meristem and a dormant axillary meristem co-localize at each leaf base, offset from each other in a spiral phyllotactic pattern. We recently identified THORN IDENTITY1 (TI1) and THORN IDENTITY2 (TI2), encoding TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors, as necessary for the termination of meristem proliferation and concomitant thorn production in Citrus.4 However, how the dormant axillary meristem at the same leaf axil maintains stem cell activity is still unknown. The phosphatidylethanolamine-binding protein (PEBP)-type transcription factors CENTRORADIALIS (CEN) and TERMINAL FLOWER1 (TFL1) maintain inflorescence meristem indeterminacy in many plant species by antagonizing floral meristem identity regulators.5-9 Here, we show that, in Citrus, Citrus CEN (CsCEN) maintains vegetative axillary meristem indeterminacy by antagonizing TI1. CsCEN is expressed in the axillary meristem, but not in the thorn meristem. Disruption of CsCEN function results in termination of the stem cell activity and conversion of dormant axillary meristems into thorns, although ectopic overexpression of CsCEN represses TI1 expression and converts thorns into dormant buds, a phenotype similar to the ti1 mutant. We further show that CsCEN interacts with Citrus FD (CsFD) to repress TI1 expression. CsCEN activity depends on the function of TI1 and TI2, as mutations in TI1 and TI2 rescue the cscen mutant phenotype. We suggest that the antagonistic roles of CsCEN and TI1 define the pattern of axillary meristem determinacy, which shapes vegetative Citrus tree shoot architecture.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06520, USA
| | - Yewei Wang
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06520, USA
| | - Vivian F Irish
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06520, USA; Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06520, USA.
| |
Collapse
|
37
|
Genome editing in fruit, ornamental, and industrial crops. Transgenic Res 2021; 30:499-528. [PMID: 33825100 DOI: 10.1007/s11248-021-00240-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/25/2021] [Indexed: 01/24/2023]
Abstract
The advent of genome editing has opened new avenues for targeted trait enhancement in fruit, ornamental, industrial, and all specialty crops. In particular, CRISPR-based editing systems, derived from bacterial immune systems, have quickly become routinely used tools for research groups across the world seeking to edit plant genomes with a greater level of precision, higher efficiency, reduced off-target effects, and overall ease-of-use compared to ZFNs and TALENs. CRISPR systems have been applied successfully to a number of horticultural and industrial crops to enhance fruit ripening, increase stress tolerance, modify plant architecture, control the timing of flower development, and enhance the accumulation of desired metabolites, among other commercially-important traits. As editing technologies continue to advance, so too does the ability to generate improved crop varieties with non-transgenic modifications; in some crops, direct transgene-free edits have already been achieved, while in others, T-DNAs have successfully been segregated out through crossing. In addition to the potential to produce non-transgenic edited crops, and thereby circumvent regulatory impediments to the release of new, improved crop varieties, targeted gene editing can speed up trait improvement in crops with long juvenile phases, reducing inputs resulting in faster market introduction to the market. While many challenges remain regarding optimization of genome editing in ornamental, fruit, and industrial crops, the ongoing discovery of novel nucleases with niche specialties for engineering applications may form the basis for additional and potentially crop-specific editing strategies.
Collapse
|
38
|
Amritha PP, Shah JM. Can genetic engineering-based methods for gene function identification be eclipsed by genome editing in plants? A comparison of methodologies. Mol Genet Genomics 2021; 296:485-500. [PMID: 33751237 DOI: 10.1007/s00438-021-01769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Finding and explaining the functions of genes in plants have promising applications in crop improvement and bioprospecting and hence, it is important to compare various techniques available for gene function identification in plants. Today, the most popular technology among researchers to identify the functions of genes is the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9)-based genome editing method. But by no means can we say that CRISPR/Cas9 is the go-to method for all purposes. It comes with its own baggage. Researchers will agree and have lived through at least seven more technologies deployed to find the functions of genes, which come under three umbrellas: 1. genetic engineering, 2. transient expression, and 3. chemical/physical mutagenesis. Each of the methods evolved when the previous one ran into an insurmountable problem. In this review, we compare the eight technologies against one another on 14 parameters. This review lays bare the pros and cons, and similarities and dissimilarities of various methods. Every method comes with its advantages and disadvantages. For example, the CRISPR/Cas9-based genome editing is an excellent method for modifying gene sequences, creating allelic versions of genes, thereby aiding the understanding of gene function. But it comes with the baggage of unwanted or off-target mutations. Then, we have methods based on random or targeted knockout of the gene, knockdown, and overexpression of the gene. Targeted disruption of genes is required for complete knockout of gene function, which may not be accomplished by editing. We have also discussed the strategies to overcome the shortcomings of the targeted gene-knockout and the CRISPR/Cas9-based methods. This review serves as a comprehensive guide towards the understanding and comparison of various technologies available for gene function identification in plants and hence, it will find application for crop improvement and bioprospecting related research.
Collapse
Affiliation(s)
- P P Amritha
- Department of Plant Science, Central University of Kerala, Periya, Kasaragod, Kerala, 671320, India
| | - Jasmine M Shah
- Department of Plant Science, Central University of Kerala, Periya, Kasaragod, Kerala, 671320, India.
| |
Collapse
|
39
|
Shahid MS, Sattar MN, Iqbal Z, Raza A, Al-Sadi AM. Next-Generation Sequencing and the CRISPR-Cas Nexus: A Molecular Plant Virology Perspective. Front Microbiol 2021; 11:609376. [PMID: 33584572 PMCID: PMC7874184 DOI: 10.3389/fmicb.2020.609376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, next-generation sequencing (NGS) and contemporary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) technologies have revolutionized the life sciences and the field of plant virology. Both these technologies offer an unparalleled platform for sequencing and deciphering viral metagenomes promptly. Over the past two decades, NGS technologies have improved enormously and have impacted plant virology. NGS has enabled the detection of plant viruses that were previously undetectable by conventional approaches, such as quarantine and archeological plant samples, and has helped to track the evolutionary footprints of viral pathogens. The CRISPR-Cas-based genome editing (GE) and detection techniques have enabled the development of effective approaches to virus resistance. Different versions of CRISPR-Cas have been employed to successfully confer resistance against diverse plant viruses by directly targeting the virus genome or indirectly editing certain host susceptibility factors. Applications of CRISPR-Cas systems include targeted insertion and/or deletion, site-directed mutagenesis, induction/expression/repression of the gene(s), epigenome re-modeling, and SNPs detection. The CRISPR-Cas toolbox has been equipped with precision GE tools to engineer the target genome with and without double-stranded (ds) breaks or donor templates. This technique has also enabled the generation of transgene-free genetically engineered plants, DNA repair, base substitution, prime editing, detection of small molecules, and biosensing in plant virology. This review discusses the utilities, advantages, applications, bottlenecks of NGS, and CRISPR-Cas in plant virology.
Collapse
Affiliation(s)
- Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | | | - Zafar Iqbal
- Central Laboratories, King Faisal University, Hofuf, Saudi Arabia
| | - Amir Raza
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Abdullah M. Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
40
|
Rao MJ, Zuo H, Xu Q. Genomic insights into citrus domestication and its important agronomic traits. PLANT COMMUNICATIONS 2021; 2:100138. [PMID: 33511347 PMCID: PMC7816076 DOI: 10.1016/j.xplc.2020.100138] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/04/2020] [Accepted: 12/25/2020] [Indexed: 05/12/2023]
Abstract
Citrus originated in Southeast Asia, and it has become one of the most important fruit crops worldwide. Citrus has a long and obscure domestication history due to its clonal propagation, long life cycle, wide sexual compatibility, and complex genetic background. As the genomic information of both wild and cultivated citrus becomes available, their domestication history and underlying traits or genes are becoming clear. This review outlines the genomic features of wild and cultivated species. We propose that the reduction of citric acid is a critical trait for citrus domestication. The genetic model representing the change during domestication may be associated with a regulatory complex known as WD-repeat-MYB-bHLH-WRKY (WMBW), which is involved in acidification and anthocyanin accumulation. The reduction in or loss of anthocyanins may be due to a hitchhiking effect of fruit acidity selection, in which mutation occurs in the common regulator of these two pathways in some domesticated types. Moreover, we have summarized the domestication traits and candidate genes for breeding purposes. This review represents a comprehensive summary of the genes controlling key traits of interest, such as acidity, metabolism, and disease resistance. It also sheds light on recent advances in early flowering from transgenic studies and provides a new perspective for fast breeding of citrus. Our review lays a foundation for future research on fruit acidity, flavor, and disease resistance in citrus.
Collapse
Affiliation(s)
- Muhammad Junaid Rao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology (Ministry of Education) Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Hao Zuo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology (Ministry of Education) Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Qiang Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology (Ministry of Education) Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
41
|
Dutt M, Mou Z, Zhang X, Tanwir SE, Grosser JW. Efficient CRISPR/Cas9 genome editing with Citrus embryogenic cell cultures. BMC Biotechnol 2020; 20:58. [PMID: 33167938 PMCID: PMC7654154 DOI: 10.1186/s12896-020-00652-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Development of precise genome editing strategies is a prerequisite for producing edited plants that can aid in the study of gene function and help understand the genetic traits in a cultivar. Citrus embryogenic cell cultures can be used to rapidly produce a large population of genome edited transformed citrus lines. The ability to introduce specific mutations in the genome of these cells using two constructs (pC-PDS1 and pC-PDS2) was evaluated in this study. RESULTS Citrus sinensis 'EV2' embryogenic cell cultures are amenable to Agrobacterium-mediated CRISPR/Cas9-based genome editing. Guide RNAs (gRNAs) targeting two locations in the phytoene desaturase (PDS) gene were either driven by the Arabidopsis U6-26 promoter (pC-PDS1) or assembled as a Csy4 array under the control of the CmYLCV promoter (pC-PDS2). All transgenic embryos were completely albino and no variegated phenotype was observed. We evaluated 12 lines from each construct in this study and the majority contain either insertion (1-2 bp), substitution (1 bp), or deletion (1-3 bp) mutations that occurred close to the protospacer adjacent motif. CONCLUSIONS Both the pC-PDS1 and pC-PDS2 could successfully edit the citrus embryogenic cell cultures. However, the editing efficiency was dependent on the gRNA, confirming that the selection of a proper gRNA is essential for successful genome editing using the CRISPR/Cas9 technique. Also, utilization of embryogenic cell cultures offers another option for successful genome editing in citrus.
Collapse
Affiliation(s)
- Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA.
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Sameena E Tanwir
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Jude W Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| |
Collapse
|
42
|
Kaul T, Sony SK, Verma R, Motelb KFA, Prakash AT, Eswaran M, Bharti J, Nehra M, Kaul R. Revisiting CRISPR/Cas-mediated crop improvement: Special focus on nutrition. J Biosci 2020. [DOI: 10.1007/s12038-020-00094-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Xu X, Yuan Y, Feng B, Deng W. CRISPR/Cas9-mediated gene-editing technology in fruit quality improvement. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Fruits are an essential part of a healthy, balanced diet and it is particularly important for fibre, essential vitamins, and trace elements. Improvement in the quality of fruit and elongation of shelf life are crucial goals for researchers. However, traditional techniques have some drawbacks, such as long period, low efficiency, and difficulty in the modification of target genes, which limit the progress of the study. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technique was developed and has become the most popular gene-editing technology with high efficiency, simplicity, and low cost. CRISPR/Cas9 technique is widely accepted to analyse gene function and complete genetic modification. This review introduces the latest progress of CRISPR/Cas9 technology in fruit quality improvement. For example, CRISPR/Cas9-mediated targeted mutagenesis of RIPENING INHIBITOR gene (RIN), Lycopene desaturase (PDS), Pectate lyases (PL), SlMYB12, and CLAVATA3 (CLV3) can affect fruit ripening, fruit bioactive compounds, fruit texture, fruit colouration, and fruit size. CRISPR/Cas9-mediated mutagenesis has become an efficient method to modify target genes and improve fruit quality.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yujin Yuan
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Bihong Feng
- College of Agriculture, Guangxi University, Nanning, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
44
|
Huang X, Wang Y, Xu J, Wang N. Development of multiplex genome editing toolkits for citrus with high efficacy in biallelic and homozygous mutations. PLANT MOLECULAR BIOLOGY 2020; 104:297-307. [PMID: 32748081 DOI: 10.1007/s11103-020-01043-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/28/2020] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE We have developed multiplex genome editing toolkits for citrus that significantly improve citrus genome editing efficacy. CRISPR/Cas systems have been engineered for genome editing in many organisms, including plants. However, the gene editing efficiency in citrus via CRISPR technology remains too low to be implemented for genetic improvement in practice. Moreover, it is very difficult to obtain homozygous or biallelic knockout mutants in citrus. Here, we have developed multiplex genome editing toolkits for citrus including PEG-mediated protoplast transformation, a GFP reporter system that allows the rapid assessment of CRISPR constructs, citrus U6 promoters with improved efficacy, and tRNA-mediated or Csy4-mediated multiplex genome editing. Using the toolkits, we successfully conducted genome modification of embryogenic protoplast cells and epicotyl tissues. We have achieved a biallelic mutation rate of 44.4% and a homozygous mutation rate of 11.1%, representing a significant improvement in citrus genome editing efficacy. In addition, our study lays the foundation for nontransgenic genome editing of citrus.
Collapse
Affiliation(s)
- Xiaoen Huang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, USA
| | - Yuanchun Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, USA
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, USA.
| |
Collapse
|
45
|
Zhang F, Rossignol P, Huang T, Wang Y, May A, Dupont C, Orbovic V, Irish VF. Reprogramming of Stem Cell Activity to Convert Thorns into Branches. Curr Biol 2020; 30:2951-2961.e5. [DOI: 10.1016/j.cub.2020.05.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022]
|
46
|
Poles L, Licciardello C, Distefano G, Nicolosi E, Gentile A, La Malfa S. Recent Advances of In Vitro Culture for the Application of New Breeding Techniques in Citrus. PLANTS (BASEL, SWITZERLAND) 2020; 9:E938. [PMID: 32722179 PMCID: PMC7465985 DOI: 10.3390/plants9080938] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Citrus is one of the most important fruit crops in the world. This review will discuss the recent findings related to citrus transformation and regeneration protocols of juvenile and adult explants. Despite the many advances that have been made in the last years (including the use of inducible promoters and site-specific recombination systems), transformation efficiency, and regeneration potential still represent a bottleneck in the application of the new breeding techniques in commercial citrus varieties. The influence of genotype, explant type, and other factors affecting the regeneration and transformation of the most used citrus varieties will be described, as well as some examples of how these processes can be applied to improve fruit quality and resistance to various pathogens and pests, including the potential of using genome editing in citrus. The availability of efficient regeneration and transformation protocols, together with the availability of the source of resistance, is made even more important in light of the fast diffusion of emerging diseases, such as Huanglongbing (HLB), which is seriously challenging citriculture worldwide.
Collapse
Affiliation(s)
- Lara Poles
- Food and Environment (Di3A), Department of Agriculture, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (L.P.); (G.D.); (E.N.); (S.L.M.)
- CREA, Research Centre for Olive, Fruit and Citrus Crops, Corso Savoia 190, 95024 Acireale, Italy;
| | - Concetta Licciardello
- CREA, Research Centre for Olive, Fruit and Citrus Crops, Corso Savoia 190, 95024 Acireale, Italy;
| | - Gaetano Distefano
- Food and Environment (Di3A), Department of Agriculture, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (L.P.); (G.D.); (E.N.); (S.L.M.)
| | - Elisabetta Nicolosi
- Food and Environment (Di3A), Department of Agriculture, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (L.P.); (G.D.); (E.N.); (S.L.M.)
| | - Alessandra Gentile
- Food and Environment (Di3A), Department of Agriculture, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (L.P.); (G.D.); (E.N.); (S.L.M.)
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha 410128, China
| | - Stefano La Malfa
- Food and Environment (Di3A), Department of Agriculture, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (L.P.); (G.D.); (E.N.); (S.L.M.)
| |
Collapse
|
47
|
Zhou J, Li D, Wang G, Wang F, Kunjal M, Joldersma D, Liu Z. Application and future perspective of CRISPR/Cas9 genome editing in fruit crops. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:269-286. [PMID: 30791200 PMCID: PMC6703982 DOI: 10.1111/jipb.12793] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/18/2019] [Indexed: 05/24/2023]
Abstract
Fruit crops, including apple, orange, grape, banana, strawberry, watermelon, kiwifruit and tomato, not only provide essential nutrients for human life but also contribute to the major agricultural output and economic growth of many countries and regions in the world. Recent advancements in genome editing provides an unprecedented opportunity for the genetic improvement of these agronomically important fruit crops. Here, we summarize recent reports of applying CRISPR/Cas9 to fruit crops, including efforts to reduce disease susceptibility, change plant architecture or flower morphology, improve fruit quality traits, and increase fruit yield. We discuss challenges facing fruit crops as well as new improvements and platforms that could be used to facilitate genome editing in fruit crops, including dCas9-base-editing to introduce desirable alleles and heat treatment to increase editing efficiency. In addition, we highlight what we see as potentially revolutionary development ranging from transgene-free genome editing to de novo domestication of wild relatives. Without doubt, we now see only the beginning of what will eventually be possible with the use of the CRISPR/Cas9 toolkit. Efforts to communicate with the public and an emphasis on the manipulation of consumer-friendly traits will be critical to facilitate public acceptance of genetically engineered fruits with this new technology.
Collapse
Affiliation(s)
- Junhui Zhou
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Dongdong Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Guoming Wang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology
Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Fuxi Wang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Merixia Kunjal
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Dirk Joldersma
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
48
|
Zlobin NE, Lebedeva MV, Taranov VV. CRISPR/Cas9 genome editing through in planta transformation. Crit Rev Biotechnol 2020; 40:153-168. [PMID: 31903793 DOI: 10.1080/07388551.2019.1709795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this review, the application of CRISPR/Cas9 plant genome editing using alternative transformation methods is discussed. Genome editing by the CRISPR/Cas9 system is usually implemented via the generation of transgenic plants carrying Cas9 and sgRNA genes in the genome. Transgenic plants are usually developed by in vitro regeneration from single transformed cells, which requires using different in vitro culture-based methods. Despite their common application, these methods have some disadvantages and limitations. Thus, some methods of plant transformation that do not depend on in vitro regeneration have been developed. These methods are known as "in planta" transformation. The main focus of this review is the so-called floral dip in planta transformation method, although other approaches are also described. The main features of in planta transformation in the context of CRISPR/Cas9 genome editing are discussed. Furthermore, multiple ways to increase the effectiveness of this approach and to broaden its use in different plant species are considered.
Collapse
Affiliation(s)
- Nikolay E Zlobin
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russian
| | - Marina V Lebedeva
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russian
| | - Vasiliy V Taranov
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russian
| |
Collapse
|
49
|
Salonia F, Ciacciulli A, Poles L, Pappalardo HD, La Malfa S, Licciardello C. New Plant Breeding Techniques in Citrus for the Improvement of Important Agronomic Traits. A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:1234. [PMID: 32922420 PMCID: PMC7456868 DOI: 10.3389/fpls.2020.01234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/28/2020] [Indexed: 05/18/2023]
Abstract
New plant breeding techniques (NPBTs) aim to overcome traditional breeding limits for fruit tree species, in order to obtain new varieties with improved organoleptic traits and resistance to biotic and abiotic stress, and to maintain fruit quality achieved over centuries by (clonal) selection. Knowledge on the gene(s) controlling a specific trait is essential for the use of NPBTs, such as genome editing and cisgenesis. In the framework of the international scientific community working on fruit tree species, including citrus, NPBTs have mainly been applied to address pathogen threats. Citrus could take advantage of NPBTs because of its complex species biology (seedlessness, apomixis, high heterozygosity, and long juvenility phase) and aptitude for in vitro manipulation. To our knowledge, genome editing in citrus via transgenesis has successful for induced resistance to Citrus bacterial canker in sweet orange and grapefruit using the resistance gene CsLOB1. In the future, NPBTs will also be used to improve fruit traits, making them healthier. The regeneration of plants following the application of NPBTs is a bottleneck, making it necessary to optimize the efficiency of current protocols. The strengths and weaknesses of using explants from young in vitro plantlets, and from mature plants, will be discussed. Other major issues addressed in this review are related to the requirement for marker-free systems and shortening the long juvenility phase. This review aims to summarize methods and approaches available in the literature that are suitable to citrus, focusing on the principles observed before the use of NPBTs.
Collapse
Affiliation(s)
- Fabrizio Salonia
- CREA - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Angelo Ciacciulli
- CREA - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Lara Poles
- CREA - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | | | - Stefano La Malfa
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
- *Correspondence: Stefano La Malfa, ; Concetta Licciardello,
| | - Concetta Licciardello
- CREA - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
- *Correspondence: Stefano La Malfa, ; Concetta Licciardello,
| |
Collapse
|
50
|
Hoijemberg M, Cerdán PD. Epigenetic accounting of a previous harvest. THE NEW PHYTOLOGIST 2020; 225:10-12. [PMID: 31721235 DOI: 10.1111/nph.16258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Mauro Hoijemberg
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, 1405-Buenos, Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428-Buenos, Aires, Argentina
| | - Pablo D Cerdán
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, 1405-Buenos, Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428-Buenos, Aires, Argentina
| |
Collapse
|