1
|
Egorova AA, Zykova TE, Hertig CW, Hoffie I, Morozov SV, Chernyak EI, Rogachev AD, Korotkova AM, Vikhorev AV, Vasiliev GV, Shoeva OY, Kumlehn J, Gerasimova SV, Khlestkina EK. Accumulation of Anthocyanin in the Aleurone of Barley Grains by Targeted Restoration of the MYC2 Gene. Int J Mol Sci 2024; 25:12705. [PMID: 39684416 DOI: 10.3390/ijms252312705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Blue barley grain pigmentation results from anthocyanin accumulation in the aleurone layer. Anthocyanins are known for their beneficial effects on human health. The gene encoding the MYELOCYTOMATOSIS 2 (MYC2) transcription factor is potentially responsible for the blue coloration of the aleurone. In non-pigmented barley, a single nucleotide insertion in this gene causes a frameshift mutation with a premature stop codon. It was hypothesized that restoring the MYC2 reading frame could activate anthocyanin accumulation in the aleurone. Using a targeted mutagenesis approach in the present study, the reading frame of MYC2 was restored in the non-pigmented cultivar Golden Promise. Genetic constructs harboring cas9 and gRNA expression units were developed, pre-validated in protoplasts, and then functional MYC2 alleles were generated at the plant level via Agrobacterium-mediated transformation. Anthocyanin accumulation in the aleurone layer of grains from these mutants was confirmed through microscopy and chemical analysis. The expression of anthocyanin biosynthesis genes was analyzed, revealing that the restoration of MYC2 led to increased transcript levels of F3H and ANS genes. These results confirm the critical role of the MYC2 transcription factor in the blue aleurone trait and provide a biotechnological solution for enriching barley grain with anthocyanins.
Collapse
Affiliation(s)
- Anastasiya A Egorova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Tatyana E Zykova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Christian W Hertig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Iris Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Sergey V Morozov
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena I Chernyak
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Artem D Rogachev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Anna M Korotkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Alexander V Vikhorev
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Gennady V Vasiliev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Olesya Y Shoeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Sophia V Gerasimova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Elena K Khlestkina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| |
Collapse
|
2
|
Hu Y, Zhao H, Xue L, Nie N, Zhang H, Zhao N, He S, Liu Q, Gao S, Zhai H. IbMYC2 Contributes to Salt and Drought Stress Tolerance via Modulating Anthocyanin Accumulation and ROS-Scavenging System in Sweet Potato. Int J Mol Sci 2024; 25:2096. [PMID: 38396773 PMCID: PMC10889443 DOI: 10.3390/ijms25042096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Basic helix-loop-helix (bHLH) transcription factors extensively affect various physiological processes in plant metabolism, growth, and abiotic stress. However, the regulation mechanism of bHLH transcription factors in balancing anthocyanin biosynthesis and abiotic stress in sweet potato (Ipomoea batata (L.) Lam.) remains unclear. Previously, transcriptome analysis revealed the genes that were differentially expressed among the purple-fleshed sweet potato cultivar 'Jingshu 6' and its anthocyanin-rich mutant 'JS6-5'. Here, we selected one of these potential genes, IbMYC2, which belongs to the bHLH transcription factor family, for subsequent analyses. The expression of IbMYC2 in the JS6-5 storage roots is almost four-fold higher than Jingshu 6 and significantly induced by hydrogen peroxide (H2O2), methyl jasmonate (MeJA), NaCl, and polyethylene glycol (PEG)6000. Overexpression of IbMYC2 significantly enhances anthocyanin production and exhibits a certain antioxidant capacity, thereby improving salt and drought tolerance. In contrast, reducing IbMYC2 expression increases its susceptibility. Our data showed that IbMYC2 could elevate the expression of anthocyanin synthesis pathway genes by binding to IbCHI and IbDFR promoters. Additionally, overexpressing IbMYC2 activates genes encoding reactive oxygen species (ROS)-scavenging and proline synthesis enzymes under salt and drought conditions. Taken together, these results demonstrate that the IbMYC2 gene exercises a significant impact on crop quality and stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (Y.H.); (H.Z.); (L.X.); (N.N.); (H.Z.); (N.Z.); (S.H.); (Q.L.)
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (Y.H.); (H.Z.); (L.X.); (N.N.); (H.Z.); (N.Z.); (S.H.); (Q.L.)
| |
Collapse
|
3
|
Fu D, Chen Y, Gao F. Yeast One-Hybrid Screening for Transcription Factors of IbbHLH2 in Purple-Fleshed Sweet Potato. Genes (Basel) 2023; 14:genes14051042. [PMID: 37239402 DOI: 10.3390/genes14051042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The transcription factor IbbHLH2 has been identified as involved in the biosynthesis of anthocyanins in purple-flesh sweet potatoes. However, little is known about the upstream transcription regulators of the promoter of IbbHLH2 in terms of their involvement in anthocyanin biosynthesis. For this study, the transcription regulators of the promoter of IbbHLH2 were screened via yeast one-hybrid assays in purple-fleshed sweet potato storage roots. Seven proteins, namely IbERF1, IbERF10, IbEBF2, IbPDC, IbPGP19, IbUR5GT, and IbDRM, were screened as upstream binding proteins of the promoter of IbbHLH2. The interactions between the promoter and these upstream binding proteins were verified using dual-luciferase reporter and yeast two-hybrid assays. Furthermore, the gene expression levels of transcription regulators, transcription factors, and structural genes involved in the anthocyanin biosynthesis of different root stages of purple and white-fleshed sweet potatoes were analyzed via real-time PCR. The obtained results indicate that IbERF1 and IbERF10 are key transcription regulators of the promoter of IbbHLH2 and are involved in anthocyanin biosynthesis in purple-fleshed sweet potatoes.
Collapse
Affiliation(s)
- Danwen Fu
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510310, China
| | - Yahui Chen
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Feng Gao
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
4
|
Kandrokov R. Effects of triticale flour on the quality of honey cookies. FOODS AND RAW MATERIALS 2023. [DOI: 10.21603/2308-4057-2023-2-568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Flour confectionery products are highly popular in Russia, especially honey cookies (pryanik). In order to increase their nutritional value, wheat flour can be replaced by triticale flour rich in essential amino acids and minerals. This study aimed to determine the effects of triticale flour on the quality of honey cookies.
The control cookie sample was made from premium wheat flour, while the test samples were made from mixtures of wheat and triticale flours in various ratios (10–90%), as well as from 100% triticale flour of grade T-80. Standard methods were applied to determine the cookies’ sensory and physicochemical characteristics, as well as their nutritional value and contents of minerals, vitamins, and amino acids.
All the samples with triticale flour showed good sensory characteristics. Adding up to 30% of triticale flour did not change the taste and aroma of honey cookies, whereas larger amounts of triticale flour made them sweeter and more aromatic. The test samples from 100% of triticale flour had higher contents of essential amino acids (arginine, valine, histidine, isoleucine, leucine, lysine, methionine, and threonine) than the control sample from premium wheat flour. The contents of micro- and macroelements also increased with larger amounts of triticale flour in the formulation. While adding triticale flour increased the protein content in the test honey cookies, it had no significant effect on their fat and carbohydrate contents, or the calorie content. The tests showed that 60:40% was the optimal ratio of wheat and triticale flours.
Replacing wheat flour with 40% of triticale flour provided the finished product with good sensory properties and high contents of proteins, vitamins, essential amino acids, as well as micro- and macroelements. Thus, triticale flour proved to be a good replacement for wheat flour in the production of honey cookies.
Collapse
|
5
|
Guo P, Zhang B, Hu Z, Zhou S, Wang Y, Xie Q, Chen G. Anthocyanin accumulation and transcriptional regulation in purple flowering stalk (Brassica campestris L. var. purpurea Bailey). PLANT MOLECULAR BIOLOGY 2023; 111:57-72. [PMID: 36207656 DOI: 10.1007/s11103-022-01311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
1. Purple flowering stalk (Brassica campestris L. ssp. chinensis L. var. purpurea Bailey) is a crop with the high-level anthocyanin. 2. Increased abundance of LBGs promoted the synthesis of anthocyanin. 3. TTG2 (WRKY) interacted with TTG1 (WD40), probably regulating anthocyanin accumulation by shaping a MBWW complex. Brassica crops are a class of nutrient-rich vegetables. Here, two Brassica Crops-Flowering Stalk cultivars, purple flowering stalk (Brassica campestris L. var. purpurea Bailey) and pakchoi (Brassica campestris ssp. chinensis var. communis) were investigated. HPLC-ESI-MS/MS analysis demonstrated that Cy 3-p-coumaroylsophoroside-5-malonylglucoside and Cy 3-diferuloylsophoroside-5-malonylglucoside were identified as the major anthocyanin in peel of purple flowering stalk. The transcript level of structural genes including C4H, CHS, F3H, DFR, ANS and UFGT, and regulatory genes such as TT8, TTG1, Bra004162, Bra001917 and TTG2 in peel of purple flowering stalk were significantly higher than that in peel of pakchoi. In addition, the TTG2(WRKY) interacted only with TTG1(WD40) and the interaction between TT8 (bHLH) and TTG1/Bra004162(MYB)/Bra001917(MYB) were identified. Else, the WD40-WRKY complex (TTG1-TTG2) could activate the transcript of TT12. Our study laid a foundation for the research on the anthocyanin accumulation in Brassica crops.
Collapse
Affiliation(s)
- Pengyu Guo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Bin Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
- School of Agricultural Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zongli Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Shuang Zhou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yunshu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Qiaoli Xie
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.
| | - Guoping Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
6
|
Gao Q, Song W, Li X, Xiang C, Chen G, Xiang G, Liu X, Zhang G, Li X, Yang S, Zhai C, Zhao Y. Genome-wide identification of bHLH transcription factors: Discovery of a candidate regulator related to flavonoid biosynthesis in Erigeron breviscapus. FRONTIERS IN PLANT SCIENCE 2022; 13:977649. [PMID: 36186051 PMCID: PMC9515989 DOI: 10.3389/fpls.2022.977649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Erigeron breviscapus is a Compositae plant, and its rich flavonoids have shown strong preventative and curative effects in the treatment of cardio- and cerebrovascular diseases. bHLH genes play a crucial role in plant growth and development. There are 116 EbbHLH genes in E. breviscapus, and each gene has been named based on its chromosome location. Our phylogenetic analysis divided these genes into 18 subfamilies. To further investigate its function, EbbHLH80 was isolated from E. breviscapus leaves. Next, transcriptomic and metabolomic analyses of tobacco leaves were performed. Among 421 differentially accumulated compounds, 98 flavonoids were identified. In addition, differentially expressed genes were identified using RNA-seq, and further analysis suggested that EbbHLH80-OE could not only regulate the expression of some structural genes in the flavonoid biosynthesis pathway to achieve flavonoid accumulation but also be involved in the regulation of a series of downstream pathways, such as stress response, ABA and ethylene signal transduction, to affect plant growth and development. The results of our analysis provide new insights into the function of EbbHLH80 and lay the foundation for future functional studies on E. breviscapus.
Collapse
Affiliation(s)
- Qingqing Gao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Wanling Song
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Xia Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Chunfan Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Geng Chen
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Guisheng Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Xiangyu Liu
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Guanghui Zhang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Xiaoning Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Shengchao Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Chenxi Zhai
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Yan Zhao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Wang Y, Wang G, Zhou Z, Zong Y, Wang L, Yang S, Zhang Y, Sun X. Transcriptome analysis for genes involved in fructan biosynthesis in the Jerusalem artichoke ( Helianthus tuberosus L.). BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2098056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Affiliation(s)
- Ying Wang
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
- Qinghai-Shanghai Joint Laboratory on Innovation & Genomics of Vegetable Germplasm Resources, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
| | - Gui Wang
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
- Qinghai-Shanghai Joint Laboratory on Innovation & Genomics of Vegetable Germplasm Resources, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
| | - Zhenjie Zhou
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
- Qinghai-Shanghai Joint Laboratory on Innovation & Genomics of Vegetable Germplasm Resources, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
| | - Yuan Zong
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, PR China
| | - Lihui Wang
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
- Qinghai-Shanghai Joint Laboratory on Innovation & Genomics of Vegetable Germplasm Resources, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
| | - Shipeng Yang
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
- Qinghai-Shanghai Joint Laboratory on Innovation & Genomics of Vegetable Germplasm Resources, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
| | - Yaqi Zhang
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
| | - Xuemei Sun
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
- Qinghai-Shanghai Joint Laboratory on Innovation & Genomics of Vegetable Germplasm Resources, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, PR China
| |
Collapse
|
8
|
Dwivedi SL, Mattoo AK, Garg M, Dutt S, Singh B, Ortiz R. Developing Germplasm and Promoting Consumption of Anthocyanin-Rich Grains for Health Benefits. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.867897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Malnutrition, unhealthy diets, and lifestyle changes are the major risk factors for overweight and obesity-linked chronic diseases in humans adversely impact achieving sustainable development goals. Colored grains are a source of anthocyanins, a group of flavonoids, that contribute positively to human health. This review focuses on genetic variation harnessed through breeding and biotechnology tools for developing anthocyanin-rich grain crops. Agronomic practices, genotype × environment interactions, different stresses, seed development and seed maturity are factors that impact the content and composition of anthocyanins. Significant progress has been made in characterizing genes associated with anthocyanin biosynthesis in cereal and other crops. Breeding has led to the development and release of grain anthocyanin-rich crop cultivars in Europe, America and in some countries in Asia. Notably, genetic engineering utilizing specific transcription factors and gene editing has led to the development of anthocyanin-rich genetic variants without any significant yield penalty. A variety of food products derived from colored grains or flours are now available in grocery stores and supermarkets worldwide. The public perception about anthocyanin-rich food is positive, but availability, affordability, and willingness to pay a higher price than before limit consumption. Together with other seed nutrition traits in breeding programs the inclusion of anthocyanins can ensure the development of cultivars that meet nutrition needs of humans, especially in the developing world.
Collapse
|
9
|
Zhang S, Sun F, Zhang C, Zhang M, Wang W, Zhang C, Xi Y. Anthocyanin Biosynthesis and a Regulatory Network of Different-Colored Wheat Grains Revealed by Multiomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:887-900. [PMID: 35029408 DOI: 10.1021/acs.jafc.1c05029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colored wheat has always been a popular research area because of its high performance in the field and significant medical uses. Progress has been made mapping the genes of purple or blue grains; however, the reason why different grain colors form in wheat is not well understood. We created wheat lines with different grain colors (purple and blue) using the white grain cultivar Xiaoyan22 and located the candidate region related to the purple and blue grains in chromosome 2A, 2B, and 4D, 2A, respectively, by the bulked segregant RNA-seq. The transcriptomic and metabolomic analyses of the three grains at different developmental stages indicated that the upregulation of flavonoid 3'-hydroxylase/flavonoid 3',5'hydroxylase 2 and TaMYC1/TaMYC4 was important for the formation of purple/blue grains. The blue TaMYC4 had 16 nonsynonymous single nucleotide variants verified by Sanger sequencing and possessed a different splicing mode in the bHLH_MYC_N domain compared with the reference database. Targeted high-performance liquid chromatography-mass spectrometry/mass spectrometry analysis of anthocyanins found that the purple and blue grains contained more pelargonidin, cyanidin, and delphinidin, respectively. This study provides a comprehensive understanding of the different color formations of wheat grains and useful information about genetic improvements in wheat and other crops.
Collapse
Affiliation(s)
- Shumeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuqiu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiwei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Ma D, Wang C, Feng J, Xu B. Wheat grain phenolics: a review on composition, bioactivity, and influencing factors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6167-6185. [PMID: 34312865 DOI: 10.1002/jsfa.11428] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/13/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Wheat (Triticum aestivum L.) is a widely cultivated crop and one of the most commonly consumed food grains in the world. It possesses several nutritional elements. Increasing attention to wheat grain phenolics bioactivity is due to the increasing demand for foods with natural antioxidants. To provide a comprehensive understanding of phenolics in wheat grain, this review first summarizes the phenolics' form and distribution and the phenolic components identified in wheat grain. In particular, the biosynthesis path for phenolics is discussed, identifying some candidate genes involved in the biosynthesis of phenolic acids and flavonoids. After discussing the methods for determining antioxidant activity, the effect of genotypes, environmental conditions, and cultivation systems on grain phenolic component content are explored. Finally, the bioavailability of phenolics under different food processing method are reported and discussed. Future research is recommended to increase wheat grain phenolic content by genetic engineering, and to improve its bioavailability through proper food processing. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongyun Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Chenyang Wang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Jianchao Feng
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Beiming Xu
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
11
|
Liu X, Zhang M, Jiang X, Li H, Jia Z, Hao M, Jiang B, Huang L, Ning S, Yuan Z, Chen X, Chen X, Liu D, Liu B, Zhang L. TbMYC4A Is a Candidate Gene Controlling the Blue Aleurone Trait in a Wheat- Triticum boeoticum Substitution Line. FRONTIERS IN PLANT SCIENCE 2021; 12:762265. [PMID: 34804098 PMCID: PMC8603940 DOI: 10.3389/fpls.2021.762265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Triticum boeoticum Boiss (AbAb, 2n = 2x = 14) is one of the sources of the blue grain trait controlled by blue aleurone layer 2 (Ba2). However, the underlying genes have not been cloned. In this study, a transcriptomic comparison between a blue-grained wheat-T. boeoticum substitution line and its wheat parent identified 41 unigenes related to anthocyanin biosynthesis and 29 unigenes related to transport. The bHLH transcription factor gene TbMYC4A showed a higher expression level in the blue-grained substitution line. TbMYC4A contained the three characteristic bHLH transcription factor domains (bHLH-MYC_N, HLH and ACT-like) and clustered with genes identified from other wheat lines with the blue grain trait derived from other Triticeae species. TbMYC4A overexpression confirmed that it was a functional bHLH transcription factor. The analysis of a TbMYC4A-specific marker showed that the gene was also present in T. boeoticum and T. monococcum with blue aleurone but absent in other Triticeae materials with white aleurone. These results indicate that TbMYC4A is a candidate gene of Ba2 controlling the blue aleurone trait. The isolation of TbMYC4A is helpful for further clarifying the genetic mechanism of the blue aleurone trait and is of great significance for breeding blue-grained wheat varieties.
Collapse
Affiliation(s)
- Xin Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Minghu Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaomei Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hui Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhenjiao Jia
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Qian Y, Zhang T, Yu Y, Gou L, Yang J, Xu J, Pi E. Regulatory Mechanisms of bHLH Transcription Factors in Plant Adaptive Responses to Various Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:677611. [PMID: 34220896 PMCID: PMC8250158 DOI: 10.3389/fpls.2021.677611] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/19/2021] [Indexed: 05/05/2023]
Abstract
Basic helix-loop-helix proteins (bHLHs) comprise one of the largest families of transcription factors in plants. They have been shown to be involved in responses to various abiotic stresses, such as drought, salinity, chilling, heavy metal toxicity, iron deficiency, and osmotic damages. By specifically binding to cis-elements in the promoter region of stress related genes, bHLHs can regulate their transcriptional expression, thereby regulating the plant's adaptive responses. This review focuses on the structural characteristics of bHLHs, the regulatory mechanism of how bHLHs are involved transcriptional activation, and the mechanism of how bHLHs regulate the transcription of target genes under various stresses. Finally, as increasing research demonstrates that flavonoids are usually induced under fluctuating environments, the latest research progress and future research prospects are described on the mechanisms of how flavonoid biosynthesis is regulated by bHLHs in the regulation of the plant's responses to abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
13
|
Salt-responsive transcriptome analysis of triticale reveals candidate genes involved in the key metabolic pathway in response to salt stress. Sci Rep 2020; 10:20669. [PMID: 33244037 PMCID: PMC7691987 DOI: 10.1038/s41598-020-77686-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
Triticale is tolerant of many environmental stresses, especially highly resistant to salt stress. However, the molecular regulatory mechanism of triticale seedlings under salt stress conditions is still unclear so far. In this study, a salt-responsive transcriptome analysis was conducted to identify candidate genes or transcription factors related to salt tolerance in triticale. The root of salt-tolerant triticale cultivars TW004 with salt-treated and non-salt stress at different time points were sampled and subjected to de novo transcriptome sequencing. Total 877,858 uniquely assembled transcripts were identified and most contigs were annotated in public databases including nr, GO, KEGG, eggNOG, Swiss-Prot and Pfam. 59,280, 49,345, and 85,922 differentially expressed uniquely assembled transcripts between salt treated and control triticale root samples at three different time points (C12_vs_T12, C24_vs_T24, and C48_vs_T48) were identified, respectively. Expression profile and functional enrichment analysis of DEGs found that some DEGs were significantly enriched in metabolic pathways related to salt tolerance, such as reduction–oxidation pathways, starch and sucrose metabolism. In addition, several transcription factor families that may be associated with salt tolerance were also identified, including AP2/ERF, NAC, bHLH, WRKY and MYB. Furthermore, 14 DEGs were selected to validate the transcriptome profiles via quantitative RT-PCR. In conclusion, these results provide a foundation for further researches on the regulatory mechanism of triticale seedlings adaptation to salt stress in the future.
Collapse
|
14
|
Zhao S, Xi X, Zong Y, Li S, Li Y, Cao D, Liu B. Overexpression of ThMYC4E Enhances Anthocyanin Biosynthesis in Common Wheat. Int J Mol Sci 2019; 21:E137. [PMID: 31878210 PMCID: PMC6982250 DOI: 10.3390/ijms21010137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
The basic helix-loop helix (bHLH) transcription factor has been inferred to play an important role in blue and purple grain traits in common wheat, but to date, its overexpression has not been reported. In this study, the bHLH transcription factor ThMYC4E, the candidate gene controlling the blue grain trait from Th. Ponticum, was transferred to the common wheat JW1. The positive transgenic lines displayed higher levels of purple anthocyanin pigments in their grains, leaves and glumes. Stripping the glumes (light treatment) caused white grains to become purple in transgenic lines. RNA-Seq and qRT-PCR analysis demonstrated that the transcript levels of structural genes associated with anthocyanin biosynthesis were higher in transgenic wheat than the wild-type (WT), which indicated that ThMYC4E activated anthocyanin biosynthesis in the transgenic lines. Correspondingly, the anthocyanin contents in grains, roots, stems, leaves and glumes of transgenic lines were higher than those in the WT. Metabolome analysis demonstrated that the anthocyanins were composed of cyanidin and delphinidin in the grains of the transgenic lines. Moreover, the transgenic lines showed higher antioxidant activity, in terms of scavenging DPPH radicals, in the ethanol extracts of their grains. The overexpression of ThMYC4E sheds light on the traits related to anthocyanin biosynthesis in common wheat and provide a new way to improve anthocyanin content.
Collapse
Affiliation(s)
- Shuo Zhao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyuan Xi
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Zong
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiming Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Yun Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining 810008, China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|