1
|
Li H, Meng F, Du S, Cui J. Performance, kinetics, and mechanism of 1,2,3-trimethylbenzene biodegradation by a newly isolated marine microalga. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123907. [PMID: 39806730 DOI: 10.1016/j.jenvman.2024.123907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/24/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
Recently, marine pollution by the accidental spills of C9 aromatics has raised public concerns, especially for 1,2,3-trimethylbenzene (1,2,3-TMB) because it is high-toxic and refractory. However, insufficient understanding of molecular mechanism underlying the biodegradation of 1,2,3-TMB hindered research on its bioremediation. In addition, microalgae-mediated bioremediation is popular due to its eco-friendliness and carbon sequestration. In this study, a marine diatom with degradation capability of 1,2,3-TMB, Chaetoceros sp. QG-1, was isolated from coastal area of Quangang, China. According to kinetics, the degradation efficiency of 1,2,3-TMB was the highest at 5 mg/L (K = 0.237/d) compared with other concentrations. Furthermore, the degradation mechanism of 1,2,3-TMB by Chaetoceros sp. QG-1 was revealed through analysis of degradation products and omics. 1,2,3-TMB was converted into 2,3-dimethylbenzoic acid and 2-hydroxypropionic acid by enzymes including non-heme Fe (II) and 2-oxoglutarate-dependent (2OG Fe (II)) oxygenase, UDP-glucose-6-dehydrogenase, aldehyde dehydrogenase, and other short-chain dehydrogenases, wherein, 2OG Fe (II) oxygenase was identified as the key enzyme to oxidize 1,2,3-TMB. This study provided species and theoretical supports for the bioremediation of marine environments contaminated with 1,2,3-TMB.
Collapse
Affiliation(s)
- Haiping Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Shuhao Du
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jiali Cui
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
2
|
Lv B, Deng H, Wei J, Feng Q, Liu B, Zuo A, Bai Y, Liu J, Dong J, Ma P. SmJAZs-SmbHLH37/SmERF73-SmSAP4 module mediates jasmonic acid signaling to balance biosynthesis of medicinal metabolites and salt tolerance in Salvia miltiorrhiza. THE NEW PHYTOLOGIST 2024; 244:1450-1466. [PMID: 39262232 DOI: 10.1111/nph.20110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
Salvia miltiorrhiza holds significant importance in traditional Chinese medicine. Stress-associated proteins (SAP), identified by A20/AN1 zinc finger structural domains, play crucial roles in regulating plant growth, development, resistance to biotic and abiotic stress, and hormone responses. Herein, we conducted a genome-wide identification of the SAP gene family in S. miltiorrhiza. The expression analysis revealed a significant upregulation of SmSAP4 under methyl jasmonate (MeJA) and salt stress. Overexpressing SmSAP4 in S. miltiorrhiza hairy roots increased tanshinones content while decreasing salvianolic acids content, while RNAi-silencing SmSAP4 had the opposite effect. SmSAP4 overexpression in both Arabidopsis thaliana and S. miltiorrhiza hairy roots decreased their salt stress tolerance, accompanied by increased activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and a hindered ability to maintain the Na+ : K+ ratio. Further investigations demonstrated that MeJA alleviated the inhibitory effect of SmJAZ3 on SmSAP4 activation by SmbHLH37 and SmERF73. However, MeJA did not affect the inhibition of SmSAP4 activation by SmJAZ8 through SmbHLH37. In summary, our research reveals that SmSAP4 negatively regulates the accumulation of salvianic acid through the SmJAZs-SmbHLH37/SmERF73-SmSAP4 module and positively impacting the accumulation of tanshinones. Additionally, it functions as a negative regulator under salt stress.
Collapse
Affiliation(s)
- Bingbing Lv
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Huaiyu Deng
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jia Wei
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, China
| | - Qiaoqiao Feng
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Bo Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Anqi Zuo
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yichen Bai
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jingying Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
3
|
Sun Y, Li X, Najeeb U, Hou Z, Buttar NA, Yang Z, Ali B, Xu L. Soil applied silicon and manganese combined with foliar application of 5-aminolevulinic acid mediate photosynthetic recovery in Cd-stressed Salvia miltiorrhiza by regulating Cd-transporter genes. FRONTIERS IN PLANT SCIENCE 2022; 13:1011872. [PMID: 36247621 PMCID: PMC9558727 DOI: 10.3389/fpls.2022.1011872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Salvia miltiorrhiza is an important medicinal plant that experiences significant growth and biomass losses when cultivated on cadmium (Cd) contaminated soils. High Cd accumulation in plant tissues also increases the risk of metal entry into the food chain. In this study, we proposed that Cd accumulation in S. miltiorrhiza can be restricted through plant growth regulators and nutrient management. Therefore, S. miltiorrhiza seedlings were transplanted into mixed nutrient soil for two weeks, then treated with 30 mg kg-1 CdCl2, 200 mg kg-1 Na2SiO3·9H2O, and 100 mg kg-1 MnSO4, and simultaneously sprayed with 10 mg L-1 ALA on the leaves one week later. This study showed that elevated Cd accumulation significantly reduced plant growth and biomass. This growth inhibition damaged photosynthetic machinery and impaired carbon assimilation. In contrast, 5-aminolevulinic acid (ALA) significantly promoted the biomass of S. miltiorrhiza, and the dry weight of plants treated with ALA combined with manganese (Mn)/silicon (Si) increased by 42% and 55% as compared with Cd+Mn and Cd+Si treatments. Exogenously applied ALA and Si/Mn significantly activated antioxidant enzymes and promoted the growth recovery of S. miltiorrhiza. Further, exogenous ALA also reduced the Cd concentration in S. miltiorrhiza, especially when combined with Si. Compared with the Cd+Si treatment, the Cd+Si+ALA treatment reduced the Cd concentration in roots and leaves by 59% and 60%, respectively. Gene expression analysis suggested that ALA and Si significantly up-regulated genes associated with Cd transport. Other genes related to heavy metal tolerance mechanisms are also regulated to cope with heavy metal stress. These results indicated that the combined action of ALA and Si/Mn could reduce Cd-toxicity by increasing chlorophyll content and changing oxidative stress and can also affect Cd accumulation by regulating gene expression.
Collapse
Affiliation(s)
- Yuee Sun
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xin Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ullah Najeeb
- Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei
| | - Zhuoni Hou
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Noman Ali Buttar
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | - Zongqi Yang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | - Ling Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
4
|
Xu JJ, Hu M, Yang L, Chen XY. How plants synthesize coenzyme Q. PLANT COMMUNICATIONS 2022; 3:100341. [PMID: 35614856 PMCID: PMC9483114 DOI: 10.1016/j.xplc.2022.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Coenzyme Q (CoQ) is a conserved redox-active lipid that has a wide distribution across the domains of life. CoQ plays a key role in the oxidative electron transfer chain and serves as a crucial antioxidant in cellular membranes. Our understanding of CoQ biosynthesis in eukaryotes has come mostly from studies of yeast. Recently, significant advances have been made in understanding CoQ biosynthesis in plants. Unique mitochondrial flavin-dependent monooxygenase and benzenoid ring precursor biosynthetic pathways have been discovered, providing new insights into the diversity of CoQ biosynthetic pathways and the evolution of phototrophic eukaryotes. We summarize research progress on CoQ biosynthesis and regulation in plants and recent efforts to increase the CoQ content in plant foods.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Chenshan Plant Science Research Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| | - Mei Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Chenshan Plant Science Research Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Xiao-Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
Berger A, Latimer S, Stutts LR, Soubeyrand E, Block AK, Basset GJ. Kaempferol as a precursor for ubiquinone (coenzyme Q) biosynthesis: An atypical node between specialized metabolism and primary metabolism. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102165. [PMID: 35026487 DOI: 10.1016/j.pbi.2021.102165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 05/23/2023]
Abstract
Ubiquinone (coenzyme Q) is a vital respiratory cofactor and liposoluble antioxidant. Studies have shown that plants derive approximately a quarter of 4-hydroxybenzoate, which serves as the direct ring precursor of ubiquinone, from the catabolism of kaempferol. Biochemical and genetic evidence suggests that the release of 4-hydroxybenzoate from kaempferol is catalyzed by heme-dependent peroxidases and that 3-O-glycosylations of kaempferol act as a negative regulator of this process. These findings not only represent an atypical instance of primary metabolite being derived from specialized metabolism but also raise the question as to whether ubiquinone contributes to the ROS scavenging and signaling functions already established for flavonols.
Collapse
Affiliation(s)
- Antoine Berger
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Scott Latimer
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Lauren R Stutts
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Eric Soubeyrand
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Anna K Block
- Center for Medical, Agricultural and Veterinary Entomology, Chemistry Research Unit, ARS, USDA, Gainesville, FL, 32608, USA
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
6
|
Latimer S, Keene SA, Stutts LR, Berger A, Bernert AC, Soubeyrand E, Wright J, Clarke CF, Block AK, Colquhoun TA, Elowsky C, Christensen A, Wilson MA, Basset GJ. A dedicated flavin-dependent monooxygenase catalyzes the hydroxylation of demethoxyubiquinone into ubiquinone (coenzyme Q) in Arabidopsis. J Biol Chem 2021; 297:101283. [PMID: 34626646 PMCID: PMC8559556 DOI: 10.1016/j.jbc.2021.101283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Ubiquinone (Coenzyme Q) is a vital respiratory cofactor and liposoluble antioxidant. In plants, it is not known how the C-6 hydroxylation of demethoxyubiquinone, the penultimate step in ubiquinone biosynthesis, is catalyzed. The combination of cross-species gene network modeling along with mining of embryo-defective mutant databases of Arabidopsis thaliana identified the embryo lethal locus EMB2421 (At1g24340) as a top candidate for the missing plant demethoxyubiquinone hydroxylase. In marked contrast with prototypical eukaryotic demethoxyubiquinone hydroxylases, the catalytic mechanism of which depends on a carboxylate-bridged di-iron domain, At1g24340 is homologous to FAD-dependent oxidoreductases that instead use NAD(P)H as an electron donor. Complementation assays in Saccharomyces cerevisiae and Escherichia coli demonstrated that At1g24340 encodes a functional demethoxyubiquinone hydroxylase and that the enzyme displays strict specificity for the C-6 position of the benzoquinone ring. Laser-scanning confocal microscopy also showed that GFP-tagged At1g24340 is targeted to mitochondria. Silencing of At1g24340 resulted in 40 to 74% decrease in ubiquinone content and de novo ubiquinone biosynthesis. Consistent with the role of At1g24340 as a benzenoid ring modification enzyme, this metabolic blockage could not be bypassed by supplementation with 4-hydroxybenzoate, the immediate precursor of ubiquinone's ring. Unlike in yeast, in Arabidopsis overexpression of demethoxyubiquinone hydroxylase did not boost ubiquinone content. Phylogenetic reconstructions indicated that plant demethoxyubiquinone hydroxylase is most closely related to prokaryotic monooxygenases that act on halogenated aromatics and likely descends from an event of horizontal gene transfer between a green alga and a bacterium.
Collapse
Affiliation(s)
- Scott Latimer
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA.
| | - Shea A Keene
- Department of Environmental Horticulture, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Lauren R Stutts
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Antoine Berger
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Ann C Bernert
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Eric Soubeyrand
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Janet Wright
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Anna K Block
- Center for Medical, Agricultural and Veterinary Entomology, Chemistry Research Unit, ARS, USDA, Gainesville, Florida, USA
| | - Thomas A Colquhoun
- Department of Environmental Horticulture, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Christian Elowsky
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Alan Christensen
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mark A Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
7
|
Soubeyrand E, Latimer S, Bernert AC, Keene SA, Johnson TS, Shin D, Block AK, Colquhoun TA, Schäffner AR, Kim J, Basset GJ. 3-O-glycosylation of kaempferol restricts the supply of the benzenoid precursor of ubiquinone (Coenzyme Q) in Arabidopsis thaliana. PHYTOCHEMISTRY 2021; 186:112738. [PMID: 33756238 DOI: 10.1016/j.phytochem.2021.112738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Ubiquinone (Coenzyme Q) is a vital respiratory cofactor and antioxidant in eukaryotes. The recent discovery that kaempferol serves as a precursor for ubiquinone's benzenoid moiety both challenges the conventional view of flavonoids as specialized metabolites, and offers new prospects for engineering ubiquinone in plants. Here, we present evidence that Arabidopsis thaliana mutants lacking kaempferol 3-O-rhamnosyltransferase (ugt78d1) and kaempferol 3-O-glucosyltransferase (ugt78d2) activities display increased de novo biosynthesis of ubiquinone and increased ubiquinone content. These data are congruent with the proposed model that unprotected C-3 hydroxyl of kaempferol triggers the oxidative release of its B-ring as 4-hydroxybenzoate, which in turn is incorporated into ubiquinone. Ubiquinone content in the ugt78d1/ugt78d2 double knockout represented 160% of wild-type level, matching that achieved via exogenous feeding of 4-hydroxybenzoate to wild-type plants. This suggests that 4-hydroxybenzoate is no longer limiting ubiquinone biosynthesis in the ugt78d1/ugt78d2 plants. Evidence is also shown that the glucosylation of 4-hydroxybenzoate as well as the conversion of the immediate precursor of kaempferol, dihydrokaempferol, into dihydroquercetin do not compete with ubiquinone biosynthesis in A. thaliana.
Collapse
Affiliation(s)
- Eric Soubeyrand
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Scott Latimer
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Ann C Bernert
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Shea A Keene
- Department of Environmental Horticulture, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Timothy S Johnson
- Department of Environmental Horticulture, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Doosan Shin
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Anna K Block
- Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Thomas A Colquhoun
- Department of Environmental Horticulture, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Anton R Schäffner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
| | - Jeongim Kim
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
8
|
Li C, Wang M, Qiu X, Zhou H, Lu S. Noncoding RNAs in Medicinal Plants and their Regulatory Roles in Bioactive Compound Production. Curr Pharm Biotechnol 2021; 22:341-359. [PMID: 32469697 DOI: 10.2174/1389201021666200529101942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs), play significant regulatory roles in plant development and secondary metabolism and are involved in plant response to biotic and abiotic stresses. They have been intensively studied in model systems and crops for approximately two decades and massive amount of information have been obtained. However, for medicinal plants, ncRNAs, particularly their regulatory roles in bioactive compound biosynthesis, are just emerging as a hot research field. OBJECTIVE This review aims to summarize current knowledge on herbal ncRNAs and their regulatory roles in bioactive compound production. RESULTS So far, scientists have identified thousands of miRNA candidates from over 50 medicinal plant species and 11794 lncRNAs from Salvia miltiorrhiza, Panax ginseng, and Digitalis purpurea. Among them, more than 30 miRNAs and five lncRNAs have been predicted to regulate bioactive compound production. CONCLUSION The regulation may achieve through various regulatory modules and pathways, such as the miR397-LAC module, the miR12112-PPO module, the miR156-SPL module, the miR828-MYB module, the miR858-MYB module, and other siRNA and lncRNA regulatory pathways. Further functional analysis of herbal ncRNAs will provide useful information for quality and quantity improvement of medicinal plants.
Collapse
Affiliation(s)
- Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiaoxiao Qiu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Hong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
9
|
Liu X, Xia Y, Zhang Y, Liang L, Xiong Z, Wang G, Song X, Ai L. Enhancement of antroquinonol production via the overexpression of 4-hydroxybenzoate polyprenyltransferase biosynthesis-related genes in Antrodia cinnamomea. PHYTOCHEMISTRY 2021; 184:112677. [PMID: 33556840 DOI: 10.1016/j.phytochem.2021.112677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Antroquinonol (AQ) as one of the most potent bioactive components in Antrodia cinnamomea (Fomitopsidaceae) shows a broad spectrum of anticancer effects. The lower yield of AQ has hampered its possible clinical application. AQ production may potentially be improved by genetic engineering. In this study, the protoplast-polyethylene glycol method combined with hygromycin as a selection marker was used in the genetic engineering of A. cinnamomea S-29. The optimization of several crucial parameters revealed that the optimal condition for generating maximal viable protoplasts was digestion of 4-day-old germlings with a mixture of enzymes (lysing enzyme, snailase, and cellulase) and 1.0 M MgSO4 for 4 h. The ubiA and CoQ2 genes, which are involved in the synthesis of 4-hydroxybenzoate polyprenyltransferase, were cloned and overexpressed in A. cinnamomea. The results showed that ubiA and CoQ2 overexpression significantly increased AQ production in submerged fermentation. The overexpressing strain produced maximum AQ concentrations of 14.75 ± 0.41 mg/L and 19.25 ± 0.29 mg/L in pCT74-gpd-ubiA and pCT74-gpd-CoQ2 transformants, respectively. These concentrations were 2.00 and 2.61 times greater than those produced by the control, respectively. This research exemplifies how the production of metabolites may be increased by genetic manipulation, and will be invaluable to guide the genetic engineering of other mushrooms that produce medically useful compounds.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Yao Zhang
- Zhejiang Provincial Key Lab for Chem and Bio Processing Technology of Farm Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, 310023, PR China
| | - Lihong Liang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| |
Collapse
|
10
|
Arabidopsis 4-COUMAROYL-COA LIGASE 8 contributes to the biosynthesis of the benzenoid ring of coenzyme Q in peroxisomes. Biochem J 2020; 476:3521-3532. [PMID: 31688904 DOI: 10.1042/bcj20190688] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Plants have evolved the ability to derive the benzenoid moiety of the respiratory cofactor and antioxidant, ubiquinone (coenzyme Q), either from the β-oxidative metabolism of p-coumarate or from the peroxidative cleavage of kaempferol. Here, isotopic feeding assays, gene co-expression analysis and reverse genetics identified Arabidopsis 4-COUMARATE-COA LIGASE 8 (4-CL8; At5g38120) as a contributor to the β-oxidation of p-coumarate for ubiquinone biosynthesis. The enzyme is part of the same clade (V) of acyl-activating enzymes than At4g19010, a p-coumarate CoA ligase known to play a central role in the conversion of p-coumarate into 4-hydroxybenzoate. A 4-cl8 T-DNA knockout displayed a 20% decrease in ubiquinone content compared with wild-type plants, while 4-CL8 overexpression boosted ubiquinone content up to 150% of the control level. Similarly, the isotopic enrichment of ubiquinone's ring was decreased by 28% in the 4-cl8 knockout as compared with wild-type controls when Phe-[Ring-13C6] was fed to the plants. This metabolic blockage could be bypassed via the exogenous supply of 4-hydroxybenzoate, the product of p-coumarate β-oxidation. Arabidopsis 4-CL8 displays a canonical peroxisomal targeting sequence type 1, and confocal microscopy experiments using fused fluorescent reporters demonstrated that this enzyme is imported into peroxisomes. Time course feeding assays using Phe-[Ring-13C6] in a series of Arabidopsis single and double knockouts blocked in the β-oxidative metabolism of p-coumarate (4-cl8; at4g19010; at4g19010 × 4-cl8), flavonol biosynthesis (flavanone-3-hydroxylase), or both (at4g19010 × flavanone-3-hydroxylase) indicated that continuous high light treatments (500 µE m-2 s-1; 24 h) markedly stimulated the de novo biosynthesis of ubiquinone independently of kaempferol catabolism.
Collapse
|