1
|
He DY, Liang QY, Xiang CB, Xia JQ. Loss of OsSPL8 Function Confers Improved Resistance to Glufosinate and Abiotic Stresses in Rice. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39323026 DOI: 10.1111/pce.15168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Weeds are among the most significant factors contributing to decreases in crop yield and quality. Glufosinate, a nonselective, broad-spectrum herbicide, has been extensively utilized for weed control in recent decades. However, crops are usually sensitive to glufosinate. Therefore, the development of glufosinate-resistant crops is crucial for effective weed management in agriculture. In this study, we characterized a SQUAMOSA promoter-binding-like (SPL) factor, OsSPL8, which acts as a negative regulator of glufosinate resistance by inhibiting the transcription of OsGS1;1 and OsGS2 and consequently reducing GS activity. Furthermore, the loss of OsSPL8 function enhanced tolerance to drought and salt stresses. Transcriptomic comparisons between the gar18-3 mutant and wild type revealed that OsSPL8 largely downregulates stress-responsive genes and upregulates growth-related genes. We demonstrated that OsSPL8 directly regulates OsOMTN6 and OsNAC17, which influence drought tolerance. In addition, OsSPL8 directly represses the expression of salt stress tolerance-related genes such as OsHKT1.1 and OsTPP1. Collectively, our results demonstrate that OsSPL8 is a negative regulator of both glufosinate resistance and abiotic stress tolerance.
Collapse
Affiliation(s)
- Da-Yu He
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Qin-Yu Liang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jin-Qiu Xia
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
2
|
Wang Q, Zhou L, Yuan M, Peng F, Zhu X, Wang Y. Genome-Wide Identification of NAC Gene Family Members of Tree Peony ( Paeonia suffruticosa Andrews) and Their Expression under Heat and Waterlogging Stress. Int J Mol Sci 2024; 25:9312. [PMID: 39273263 PMCID: PMC11395581 DOI: 10.3390/ijms25179312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
An important family of transcription factors (TFs) in plants known as NAC (NAM, ATAF1/2, and CUC2) is crucial for the responses of plants to environmental stressors. In this study, we mined the NAC TF family members of tree peony (Paeonia suffruticosa Andrews) from genome-wide data and analyzed their response to heat and waterlogging stresses in conjunction with transcriptome data. Based on tree peony's genomic information, a total of 48 PsNAC genes were discovered. Based on how similar their protein sequences were, these PsNAC genes were divided into 14 branches. While the gene structures and conserved protein motifs of the PsNAC genes within each branch were largely the same, the cis-acting elements in the promoter region varied significantly. Transcriptome data revealed the presence of five PsNAC genes (PsNAC06, PsNAC23, PsNAC38, PsNAC41, PsNAC47) and one PsNAC gene (PsNAC37) in response to heat and waterlogging stresses, respectively. qRT-PCR analysis reconfirmed the response of these five PsNAC genes to heat stress and one PsNAC gene to waterlogging stress. This study lays a foundation for the study of the functions and regulatory mechanisms of NAC TFs in tree peony. Meanwhile, the NAC TFs of tree peony in response to heat and waterlogging stress were excavated, which is of great significance for the selection and breeding of new tree peony varieties with strong heat and waterlogging tolerance.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lin Zhou
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Meng Yuan
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Fucheng Peng
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiangtao Zhu
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China
| | - Yan Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
3
|
Zhai X, Feng Y, Zhang X, Guo X. Comparative Analysis Based on Physiological and Transcriptomic Data between Juvenile and Adult Tree Peony ( Paeonia delavayi). Int J Mol Sci 2023; 24:10906. [PMID: 37446082 DOI: 10.3390/ijms241310906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
A long juvenile period limits the breeding process of many woody plants including tree peony. To investigate the physiological and transcriptomic differences between juvenile and adult plants of tree peony and to explore the key SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, which are vital in age-dependent pathways, 1-year-old and 3-year-old Paeonia delavayi plants were used to compare the relevant physiological parameters and transcriptomic profiles of the leaves in two phases of plants. The results of the physiological parameters showed that the starch content in the leaves of adult plants remained unchanged and that the soluble sugar content significantly increased compared with those in the juvenile plants. In terms of plant hormones, the contents of cytokinin-like hormone (N6-isopentenyladenine (iP)) and jasmonic acid (JA) significantly decreased, whereas the contents of auxin (indole-3-acetic acid, IAA), abscisic acid (ABA), cytokinin-like hormone (N6-isopentenyladenenosine (iPR)), and ethylene precursor (1-aminocyclopropane-1-carboxylic acid, ACC) showed no statistic difference. Transcriptome sequencing results showed that there were 194 differentially expressed genes (DEGs) between juvenile and adult plants, including 171 up-regulated DEGs and 23 down-regulated DEGs. Circadian rhythm, plant hormone signal transduction, and sugar metabolism were closely related to the juvenile-to-adult transition in P. delavayi, involving a total of 12 DEGs. In addition, a total of 13 SPL genes were identified in the transcriptome data, but only PdSPL10 (c71307.graph_c0) was differentially expressed. It was further validated via qRT-PCR analysis, indicating that PdSPL10 might be a key gene regulating the process of juvenile-to-adult in P. delavayi. Based on the above results, a hypothetical transcriptional network regulating juvenile-to-adult transition and flowering in P. delavayi was proposed. These findings provide a reference for understanding the mechanism of juvenile-to-adult transition in tree peony.
Collapse
Affiliation(s)
- Xiaoli Zhai
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Feng
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Xiuxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianfeng Guo
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
4
|
Liu X, Zhai Y, Liu J, Xue J, Markovic T, Wang S, Zhang X. Comparative transcriptome sequencing analysis to postulate the scheme of regulated leaf coloration in Perilla frutescens. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01342-8. [PMID: 37155022 PMCID: PMC10165580 DOI: 10.1007/s11103-023-01342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/17/2023] [Indexed: 05/10/2023]
Abstract
Perilla as herb, ornamental, oil and edible plant is widely used in East Asia. Until now, the mechanism of regulated leaf coloration is still unclear. In this study, four different kinds of leaf colors were used to measure pigment contents and do transcriptome sequence to postulate the mechanism of leaf coloration. The measurements of chlorophyll, carotenoid, flavonoid, and anthocyanin showed that higher contents of all the aforementioned four pigments were in full purple leaf 'M357', and they may be determined front and back leaf color formation with purple. Meanwhile, the content of anthocyanin was controlled back leaf coloration. The chromatic aberration analysis and correlative analysis between different pigments and L*a*b* values analysis also suggested front and back leaf color change was correlated with the above four pigments. The genes involved in leaf coloration were identified through transcriptome sequence. The expression levels of chlorophyll synthesis and degradation related genes, carotenoid synthesis related genes and anthocyanin synthesis genes showed up-/down-regulated expression in different color leaves and were consistent of accumulation of these pigments. It was suggested that they were the candidate genes regulated perilla leaf color formation, and genes including F3'H, F3H, F3',5'H, DFR, and ANS are probably important for regulating both front and back leaf purple formation. Transcription factors involved in anthocyanin accumulation, and regulating leaf coloration were also identified. Finally, the probable scheme of regulated both full green and full purple leaf coloration and back leaf coloration was postulated.
Collapse
Affiliation(s)
- Xiaoning Liu
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China)Ministry of Agriculture and Rural Affairs, China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanning Zhai
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China)Ministry of Agriculture and Rural Affairs, China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingyu Liu
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China)Ministry of Agriculture and Rural Affairs, China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jingqi Xue
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China)Ministry of Agriculture and Rural Affairs, China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tatjana Markovic
- Nstitute for Medicinal Plants Research "Dr Josif Pancic", 11000, Belgrade, Serbia
| | - Shunli Wang
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China)Ministry of Agriculture and Rural Affairs, China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiuxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China)Ministry of Agriculture and Rural Affairs, China, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
5
|
Zhang L, Song C, Guo D, Guo L, Hou X, Wang H. Identification of differentially expressed miRNAs and their target genes in response to brassinolide treatment on flowering of tree peony ( Paeonia ostii). PLANT SIGNALING & BEHAVIOR 2022; 17:2056364. [PMID: 35343364 PMCID: PMC8959526 DOI: 10.1080/15592324.2022.2056364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Tree peony is a famous flower plant in China, but the short and concentrated flowering period limits its ornamental value and economic value. Brassinolide (BR) plays an important role in plant growth and development including flowering. There have been a large number of reports on the molecular aspects of the flowering process, but the genetic mechanism that was responsible for miRNA-guided regulation of tree peony is almost unclear. In this study, the leaves of tree peony cultivar, 'Feng Dan', were sprayed with different concentrations of BR, and the obvious bloom delay was found at the treatment with BR 50 μg/L. The small RNA sequencing and transcriptome sequencing were performed on the petals of tree peony under an untreated control (CK) and the treatment with BR 50 μg/L during four consecutive flowering development stages. A total of 22 known miRNAs belonging to 12 families were identified and 84 novel miRNAs were predicted. Combined with transcriptome data, a total of 376 target genes were predicted for the 18 differentially expressed known miRNAs and 177 target genes were predicted for the 23 differentially expressed novel miRNAs. Additionally, the potential miRNAs and their target genes were identified, including miR156b targeting SPL, miR172a_4 targeting AP2 and four novel miRNAs targeting SPA1, and revealed that they might affect the flowering time in tree peony. Collectively, these results would provide a theoretical basis for further analysis of miRNA-guided regulation on flowering period in tree peony.
Collapse
Affiliation(s)
- Lin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang, Henan sheng, China
| | - Chengwei Song
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang, Henan sheng, China
| | - Dalong Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan sheng, China
| | - Lili Guo
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang, Henan sheng, China
| | - Xiaogai Hou
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang, Henan sheng, China
| | - Huafang Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
6
|
Ma J, Wang Q, Wei LL, Zhao Y, Zhang GZ, Wang J, Gu CH. Responses of the tree peony (Paeonia suffruticosa, Paeoniaceae) cultivar 'Yu Hong' to heat stress revealed by iTRAQ-based quantitative proteomics. Proteome Sci 2022; 20:18. [PMID: 36578066 PMCID: PMC9798725 DOI: 10.1186/s12953-022-00202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/30/2022] [Indexed: 12/30/2022] Open
Abstract
Horticulture productivity has been increasingly restricted by heat stress from growing global warming, making it far below the optimum production capacity. As a popular ornamental cultivar of tree peony, Paeonia suffruticosa 'Yu Hong' has also been suffering from heat stress not suitable for its optimal growth. To better understand the response mechanisms against heat stress of tree peony, investigations of phenotypic changes, physiological responses, and quantitative proteomics were conducted. Phenotypic and physiological changes indicated that 24 h of exposure to heat stress (40 °C) was the critical duration of heat stress in tree peony. The proteomic analyses revealed a total of 100 heat-responsive proteins (HRPs). According to bioinformatic analysis of HRPs, the heat tolerance of tree peony might be related to signal transduction, synthesis/degradation, heat kinetic proteins, antioxidants, photosynthesis, energy conversion, and metabolism. Our research will provide some new insights into the molecular mechanism under the response against the heat stress of tree peony, which will benefit the future breeding of heat-resistant ornamental plants.
Collapse
Affiliation(s)
- Jin Ma
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration On Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Qun Wang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration On Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Ling-Ling Wei
- Institute of Ecological Civilization, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- School of Humanities & Social Sciences, Beijing Forestry University, Beijing, 100083, China
| | - Yu Zhao
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration On Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Guo-Zhe Zhang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration On Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Jie Wang
- Kunpeng Institute of Modern Agriculture at Foshan, Guangdong, Foshan, 528200, China.
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia.
| | - Cui-Hua Gu
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China.
- Key Laboratory of National Forestry and Grassland Administration On Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
7
|
Wang S, Liu X, Liu X, Xue J, Ren X, Zhai Y, Zhang X. The red/blue light ratios from light-emitting diodes affect growth and flower quality of Hippeastrum hybridum 'Red Lion'. FRONTIERS IN PLANT SCIENCE 2022; 13:1048770. [PMID: 36531383 PMCID: PMC9751929 DOI: 10.3389/fpls.2022.1048770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Light quality strongly impacts the growth and flower quality of ornamental plants. The optimum light quality for the growth and flowering of Hippeastrum remains to be validated. In the present study, we investigated the effect of the red/blue light ratio of LEDs on the growth and flowering quality of H. hybrid 'Red Lion'. Two LEDs with red/blue light ratio of 1:9 (R10B90) and 9:1 (R90B10) were designed. LEDs of white light were the control. In the earlier vegetative and reproductive growth phase, R90B10 increased the biomass of the bulbs, leaves, and flowers. Compared with the control and R10B90 group, R90B10 LEDs delayed flowering by 2.30 d and 3.26 d, respectively. Based on chlorophyll contents, photosynthetic capacity, chlorophyll fluorescence parameters, and carbohydrate contents, the photosynthesis rate was higher in the R10B90 group. Optimal red and blue light intensity promoted the accumulation of carbohydrates and early flowering and prolonged the flowering period of H. hybrid. Microscopic analysis showed that stomatal density was high, and the number of chloroplasts was large in the R10B90 treatment group, which enhanced photosynthesis. Particularly, R10B90 promoted the expression of seven key genes related to chlorophyll synthesis. R10B90 also promoted early overexpression of the HpCOL gene that promotes early flowering. Thus, higher blue light and 10% red light intensities promote early and extended flowering, while higher red light and 10% blue light promote vegetative plant growth but delay flowering.
Collapse
|
8
|
The Mulberry SPL Gene Family and the Response of MnSPL7 to Silkworm Herbivory through Activating the Transcription of MnTT2L2 in the Catechin Biosynthesis Pathway. Int J Mol Sci 2022; 23:ijms23031141. [PMID: 35163065 PMCID: PMC8835075 DOI: 10.3390/ijms23031141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, as unique plant transcription factors, play important roles in plant developmental regulation and stress response adaptation. Although mulberry is a commercially valuable tree species, there have been few systematic studies on SPL genes. In this work, we identified 15 full-length SPL genes in the mulberry genome, which were distributed on 4 Morus notabilis chromosomes. Phylogenetic analysis clustered the SPL genes from five plants (Malus × domestica Borkh, Populus trichocarpa, M. notabilis, Arabidopsis thaliana, and Oryza sativa) into five groups. Two zinc fingers (Zn1 and Zn2) were found in the conserved SBP domain in all of the MnSPLs. Comparative analyses of gene structures and conserved motifs revealed the conservation of MnSPLs within a group, whereas there were significant structure differences among groups. Gene quantitative analysis showed that the expression of MnSPLs had tissue specificity, and MnSPLs had much higher expression levels in older mulberry leaves. Furthermore, transcriptome data showed that the expression levels of MnSPL7 and MnSPL14 were significantly increased under silkworm herbivory. Molecular experiments revealed that MnSPL7 responded to herbivory treatment through promoting the transcription of MnTT2L2 and further upregulating the expression levels of catechin synthesis genes (F3′H, DFR, and LAR).
Collapse
|