1
|
Puzanskiy RK, Kirpichnikova AA, Bogdanova EM, Prokopiev IA, Shavarda AL, Romanyuk DA, Vanisov SA, Yemelyanov VV, Shishova MF. From Division to Death: Metabolomic Analysis of Nicotiana tabacum BY-2 Cells Reveals the Complexity of Life in Batch Culture. PLANTS (BASEL, SWITZERLAND) 2024; 13:3426. [PMID: 39683219 DOI: 10.3390/plants13233426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Tobacco BY-2 cell culture is one of the most widely used models in plant biology. The main advantage of BY-2 suspension cultures is the synchronization of cell development and the appearance of polar elongation. In batch culture, BY-2 cells passed through the lag, proliferation, elongation, and stationary phases. During this process, the composition of the growth medium changed dramatically. Sucrose was rapidly eliminated; hexose first accumulated and then depleted. The medium's pH initially decreased and then rose with aging. As a result of the crosstalk between the internal and external stimuli, cells pass through complicated systemic rearrangements, which cause metabolomic alterations. The early stages were characterized by high levels of amino acids and sterols, which could be interpreted as the result of synthetic activity. The most intense rearrangements occurred between the proliferation and active elongation stages, including repression of amino acid accumulation and up-regulation of sugar metabolism. Later stages were distinguished by higher levels of secondary metabolites, which may be a non-specific response to deteriorating conditions. Senescence was followed by some increase in fatty acids and sterols as well as amino acids, and probably led to self-destructive processes. A correlation analysis revealed relationships between metabolites' covariation, their biochemical ratio, and the growth phase.
Collapse
Affiliation(s)
- Roman K Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | | | - Ekaterina M Bogdanova
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Ilya A Prokopiev
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Alexey L Shavarda
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
- Center for Molecular and Cell Technologies, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Daria A Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
| | - Sergey A Vanisov
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | | | - Maria F Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
2
|
Tusé D, McNulty M, McDonald KA, Buchman LW. A review and outlook on expression of animal proteins in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1426239. [PMID: 39239203 PMCID: PMC11374769 DOI: 10.3389/fpls.2024.1426239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/25/2024] [Indexed: 09/07/2024]
Abstract
This review delves into the multifaceted technologies, benefits and considerations surrounding the expression of animal proteins in plants, emphasizing its potential role in advancing global nutrition, enhancing sustainability, while being mindful of the safety considerations. As the world's population continues to grow and is projected to reach 9 billion people by 2050, there is a growing need for alternative protein sources that can meet nutritional demands while minimizing environmental impact. Plant expression of animal proteins is a cutting-edge biotechnology approach that allows crops to produce proteins traditionally derived from animals, offering a sustainable and resource-efficient manner of producing these proteins that diversifies protein production and increases food security. In the United States, it will be important for there to be clear guidance in order for these technologies to reach consumers. As consumer demand for sustainable and alternative food sources rise, biotechnologies can offer economic opportunities, making this emerging technology a key player in the market landscape.
Collapse
Affiliation(s)
- Daniel Tusé
- DT/Consulting Group, Sacramento, CA, United States
| | - Matthew McNulty
- Center for Cellular Agriculture, Tufts University, Medford, MA, United States
| | - Karen A McDonald
- Department of Chemical Engineering and Global Healthshare Initiative, University of California, Davis, Davis, CA, United States
| | - Leah W Buchman
- Biotechniology Innovation Organization, Agriculture and Environment, Washington, DC, United States
| |
Collapse
|
3
|
Puzanskiy RK, Romanyuk DA, Kirpichnikova AA, Yemelyanov VV, Shishova MF. Plant Heterotrophic Cultures: No Food, No Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:277. [PMID: 38256830 PMCID: PMC10821431 DOI: 10.3390/plants13020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Plant cells are capable of uptaking exogenous organic substances. This inherited trait allows the development of heterotrophic cell cultures in various plants. The most common of them are Nicotiana tabacum and Arabidopsis thaliana. Plant cells are widely used in academic studies and as factories for valuable substance production. The repertoire of compounds supporting the heterotrophic growth of plant cells is limited. The best growth of cultures is ensured by oligosaccharides and their cleavage products. Primarily, these are sucrose, raffinose, glucose and fructose. Other molecules such as glycerol, carbonic acids, starch, and mannitol have the ability to support growth occasionally, or in combination with another substrate. Culture growth is accompanied by processes of specialization, such as elongation growth. This determines the pattern of the carbon budget. Culture ageing is closely linked to substrate depletion, changes in medium composition, and cell physiological rearrangements. A lack of substrate leads to starvation, which results in a decrease in physiological activity and the mobilization of resources, and finally in the loss of viability. The cause of the instability of cultivated cells may be the non-optimal metabolism under cultural conditions or the insufficiency of internal regulation.
Collapse
Affiliation(s)
- Roman K. Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia;
| | - Daria A. Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia;
| | | | - Vladislav V. Yemelyanov
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.K.); (V.V.Y.)
| | - Maria F. Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.K.); (V.V.Y.)
| |
Collapse
|
4
|
Raikar SV, Isak I, Patel S, Newson HL, Hill SJ. Establishment of feijoa ( Acca sellowiana) callus and cell suspension cultures and identification of arctigenin - a high value bioactive compound. FRONTIERS IN PLANT SCIENCE 2024; 14:1281733. [PMID: 38298607 PMCID: PMC10829094 DOI: 10.3389/fpls.2023.1281733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024]
Abstract
Feijoa (Acca sellowiana (O. Berg.) Burret), also known as pineapple guava, is a member of the Myrtaceae family and is well known for its fruit. Chemical profiling of the different tissues of the feijoa plant has shown that they generate an array of useful bioactive compounds which have health benefits such as significant antioxidant activities. In this study, an in vitro culture system has been developed, which could be explored to extract high-value bioactive compounds from feijoa. Feijoa tissue culture was initiated by the induction of callus from floral buds. Sections of floral buds were plated on MS medium supplemented with 2,4-D and BAP at 2.0mg/L and 0.2mg/L concentrations, respectively. Cell suspension cultures of feijoa were established using a liquid MS medium with different concentrations of 2,4-D and BAP and cultured on a rotary shaker. The growth of the cell suspension was evaluated with different parameters such as different carbohydrate sources, concentration of MS media, and inoculum density. When the cell suspensions were treated with different concentrations of MeJA at different time points, phytochemicals UPLC - QTOF MS analysis identified extractables of interest. The main compounds identified were secondary metabolites (flavonoids and flavonoid-glucosides) and plant hormones. These compounds are of interest for their potential use in therapeutics or skin and personal care products. This report investigates essential methodology parameters for establishing cell suspension cultures from feijoa floral buds, which could be used to generate in vitro biomass to produce high-value bioactive compounds. This is the first study reporting the identification of arctigenin from feijoa, a high-value compound whose pharmaceutical properties, including anti-tumour, anti-inflammatory and anti-colitis effects, have been widely reported. The ability of feijoa cell cultures to produce such high-value bioactive compounds is extremely promising for its use in pharmaceuticals, cosmeceuticals and nutraceuticals applications.
Collapse
|
5
|
Aisala H, Kärkkäinen E, Jokinen I, Seppänen-Laakso T, Rischer H. Proof of Concept for Cell Culture-Based Coffee. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18478-18488. [PMID: 37972222 PMCID: PMC10690795 DOI: 10.1021/acs.jafc.3c04503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
The global coffee production is facing serious challenges including land use, climate change, and sustainability while demand is rising. Cellular agriculture is a promising alternative to produce plant-based commodities such as coffee, which are conventionally produced by farming. In this study, the complex process of drying and roasting was adapted for bioreactor-grown coffee cells to generate a coffee-like aroma and flavor. The brews resulting from different roasting regimes were characterized with chemical and sensory evaluation-based approaches and compared to conventional coffee. Roasting clearly influenced the aroma profile. In contrast to conventional coffee, the dominant odor and flavor attributes were burned sugar-like and smoky but less roasted. The intensities of bitterness and sourness were similar to those of conventional coffee. The present results demonstrate a proof of concept for a cellular agriculture approach as an alternative coffee production platform and guide future optimization work.
Collapse
Affiliation(s)
- Heikki Aisala
- VTT Technical Research Centre
of Finland Ltd, P.O. Box 1000, Espoo FI-02044, Finland
| | - Elviira Kärkkäinen
- VTT Technical Research Centre
of Finland Ltd, P.O. Box 1000, Espoo FI-02044, Finland
| | - Iina Jokinen
- VTT Technical Research Centre
of Finland Ltd, P.O. Box 1000, Espoo FI-02044, Finland
| | | | - Heiko Rischer
- VTT Technical Research Centre
of Finland Ltd, P.O. Box 1000, Espoo FI-02044, Finland
| |
Collapse
|
6
|
Laurel M, Mojzita D, Seppänen-Laakso T, Oksman-Caldentey KM, Rischer H. Raspberry Ketone Accumulation in Nicotiana benthamiana and Saccharomyces cerevisiae by Expression of Fused Pathway Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13391-13400. [PMID: 37656963 PMCID: PMC10510385 DOI: 10.1021/acs.jafc.3c02097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Raspberry ketone has generated interest in recent years both as a flavor agent and as a health promoting supplement. Raspberry ketone can be synthesized chemically, but the value of a natural nonsynthetic product is among the most valuable flavor compounds on the market. Coumaroyl-coenzyme A (CoA) is the direct precursor for raspberry ketone but also an essential precursor for flavonoid and lignin biosynthesis in plants and therefore highly regulated. The synthetic fusion of 4-coumaric acid ligase (4CL) and benzalacetone synthase (BAS) enables the channeling of coumaroyl-CoA from the ligase to the synthase, proving to be a powerful tool in the production of raspberry ketone in both N. benthamiana and S. cerevisiae. To the best of our knowledge, the key pathway genes for raspberry ketone formation are transiently expressed in N. benthamiana for the first time in this study, producing over 30 μg/g of the compound. Our raspberry ketone producing yeast strains yielded up to 60 mg/L, which is the highest ever reported in yeast.
Collapse
Affiliation(s)
- Markus Laurel
- VTT Technical Research Centre
of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| | - Dominik Mojzita
- VTT Technical Research Centre
of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| | | | | | - Heiko Rischer
- VTT Technical Research Centre
of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| |
Collapse
|
7
|
Hamdeni I, Louhaichi M, Slim S, Boulila A, Bettaieb T. Incorporation of Organic Growth Additives to Enhance In Vitro Tissue Culture for Producing Genetically Stable Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223087. [PMID: 36432813 PMCID: PMC9697419 DOI: 10.3390/plants11223087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/12/2023]
Abstract
The growing demand for native planting material in ecological restoration and rehabilitation for agro-silvo-pastoral ecosystems has resulted in a major global industry in their sourcing, multiplication, and sale. Plant tissue culture is used for producing high-quality, disease-free, and true-to-type plants at a fast rate. Micropropagation can help to meet the increasing demand for planting material and afforestation programs. However, in vitro plant propagation is an expensive technique compared to conventional methods using suckers, seeds, and cuttings. Therefore, adopting measures to lower production costs without compromising plant quality is essential. This can be achieved by improving the culture media composition. Incorporating organic growth additives can stimulate tissue growth and increase the number of shoots, leaves, and roots in culture media. Organic growth supplementation speeds up the formation and development of cultures and yields vigorous plants. Plant regeneration from meristems (shoot tips and axillary buds) is a reliable way to produce true-to-type plants compared with callus and somatic embryogenesis regeneration, but in vitro culture environments can be mutagenic. Therefore, detecting somaclonal variations at an early stage of development is considered crucial in propagating plants. The genetic stability of in vitro regenerated plants needs to be ascertained by using DNA-based molecular markers. This review aims to provide up-to-date research progress on incorporating organic growth additives to enhance in vitro tissue culture protocols and to emphasize the importance of using PCR-based molecular markers such as RAPD, ISSR, SSR, and SCoT. The review was assessed based on the peer-reviewed works published in scientific databases including Science Direct, Scopus, Springer, JSTOR, onlinelibrary, and Google Scholar.
Collapse
Affiliation(s)
- Imtinene Hamdeni
- Research Laboratory of Horticultural Sciences, National Agronomic Institute of Tunisia, University of Carthage, Tunis 1082, Tunisia
| | - Mounir Louhaichi
- International Center for Agricultural Research in the Dry Areas (ICARDA), Tunis 1004, Tunisia
- Department of Animal and Rangeland Science, Oregon State University, Corvallis, OR 97331, USA
| | - Slim Slim
- Research Unit of Biodiversity and Valorization of Resources in Mountainous Areas, School of Higher Education in Agriculture of Mateur, University of Carthage, Mateur 7030, Tunisia
| | - Abdennacer Boulila
- Laboratoire des Substances Naturelles, Institut National de Recherche et d’Analyse Physico-Chimique, Biotechpole de Sidi Thabet, Ariana 2020, Tunisia
| | - Taoufik Bettaieb
- Research Laboratory of Horticultural Sciences, National Agronomic Institute of Tunisia, University of Carthage, Tunis 1082, Tunisia
| |
Collapse
|
8
|
Kärkkäinen E, Aisala H, Rischer H, Sozer N. Formation and analysis of structured solid foam patties based on crosslinked plant cell suspension cultures. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Abdulhafiz F. Plant Cell Culture Technologies: A promising alternatives to Produce High-Value Secondary Metabolites. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
10
|
Tailoring sensory properties of plant cell cultures for food use. Food Res Int 2022; 157:111440. [DOI: 10.1016/j.foodres.2022.111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022]
|
11
|
Oliviero M, Langellotti AL, Russo GL, Baselice M, Donadio A, Ritieni A, Graziani G, Masi P. Use of Different Organic Carbon Sources in Cynara cardunculus Cells: Effects on Biomass Productivity and Secondary Metabolites. PLANTS (BASEL, SWITZERLAND) 2022; 11:701. [PMID: 35270171 PMCID: PMC8912832 DOI: 10.3390/plants11050701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Cynara cardunculus (Asteraceae family) is a perennial plant native to Mediterranean regions. This plant represents a source of high-value compounds, such as polyphenols and fatty acids that have several industrial applications. However, in vitro plant cell cultures can represent a valid alternative to in-field cultivation and facilitate the extraction of metabolites of commercial interest. Generally, sucrose is the main sugar used for plant cell cultures, but other carbon sources can be considered. Here, we investigated the potential use of alternative organic carbon sources, such as galactose, maltose, glucose, glycerol, fructose, lactose, and starch, for the cultivation of C. cardunculus cells. Moreover, cardoon cells were collected, and an extraction of polyphenols and oils was performed to study the effects of different carbon sources on the production of bioactive molecules. This study provided evidence that cardoon cell growth can be supported by carbon sources other than sucrose. However, the carbon source inducing optimum growth, did not necessarily induce the highest production of high-value compounds.
Collapse
Affiliation(s)
- Maria Oliviero
- CAISIAL Center, University of Naples Federico II, 80055 Portici, Italy; (M.O.); (M.B.); (A.D.); (P.M.)
| | - Antonio Luca Langellotti
- CAISIAL Center, University of Naples Federico II, 80055 Portici, Italy; (M.O.); (M.B.); (A.D.); (P.M.)
| | - Giovanni L. Russo
- Unit of Food Science and Technology, Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Marco Baselice
- CAISIAL Center, University of Naples Federico II, 80055 Portici, Italy; (M.O.); (M.B.); (A.D.); (P.M.)
| | - Andrea Donadio
- CAISIAL Center, University of Naples Federico II, 80055 Portici, Italy; (M.O.); (M.B.); (A.D.); (P.M.)
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.R.); (G.G.)
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.R.); (G.G.)
| | - Paolo Masi
- CAISIAL Center, University of Naples Federico II, 80055 Portici, Italy; (M.O.); (M.B.); (A.D.); (P.M.)
- Unit of Food Science and Technology, Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
12
|
Massa S, Pagliarello R, Cemmi A, Di Sarcina I, Bombarely A, Demurtas OC, Diretto G, Paolini F, Petzold HE, Bliek M, Bennici E, Del Fiore A, De Rossi P, Spelt C, Koes R, Quattrocchio F, Benvenuto E. Modifying Anthocyanins Biosynthesis in Tomato Hairy Roots: A Test Bed for Plant Resistance to Ionizing Radiation and Antioxidant Properties in Space. FRONTIERS IN PLANT SCIENCE 2022; 13:830931. [PMID: 35283922 PMCID: PMC8909381 DOI: 10.3389/fpls.2022.830931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Gene expression manipulation of specific metabolic pathways can be used to obtain bioaccumulation of valuable molecules and desired quality traits in plants. A single-gene approach to impact different traits would be greatly desirable in agrospace applications, where several aspects of plant physiology can be affected, influencing growth. In this work, MicroTom hairy root cultures expressing a MYB-like transcription factor that regulates the biosynthesis of anthocyanins in Petunia hybrida (PhAN4), were considered as a testbed for bio-fortified tomato whole plants aimed at agrospace applications. Ectopic expression of PhAN4 promoted biosynthesis of anthocyanins, allowing to profile 5 major derivatives of delphinidin and petunidin together with pelargonidin and malvidin-based anthocyanins, unusual in tomato. Consistent with PhAN4 features, transcriptomic profiling indicated upregulation of genes correlated to anthocyanin biosynthesis. Interestingly, a transcriptome reprogramming oriented to positive regulation of cell response to biotic, abiotic, and redox stimuli was evidenced. PhAN4 hairy root cultures showed the significant capability to counteract reactive oxygen species (ROS) accumulation and protein misfolding upon high-dose gamma irradiation, which is among the most potent pro-oxidant stress that can be encountered in space. These results may have significance in the engineering of whole tomato plants that can benefit space agriculture.
Collapse
Affiliation(s)
- Silvia Massa
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Riccardo Pagliarello
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Alessia Cemmi
- Fusion and Nuclear Safety Technologies Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Ilaria Di Sarcina
- Fusion and Nuclear Safety Technologies Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | | | - Olivia Costantina Demurtas
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Gianfranco Diretto
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Francesca Paolini
- 'Regina Elena' National Cancer Institute, HPV-UNIT, Department of Research, Advanced Diagnostic and Technological Innovation, Translational Research Functional Departmental Area, Rome, Italy
| | - H Earl Petzold
- School of Plants and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Mattijs Bliek
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Elisabetta Bennici
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Antonella Del Fiore
- Department for Sustainability, Biotechnology and Agro-Industry Division - Agrifood Sustainability, Quality, and Safety Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Patrizia De Rossi
- Energy Efficiency Unit Department - Northern Area Regions Laboratory, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Cornelis Spelt
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald Koes
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Francesca Quattrocchio
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Eugenio Benvenuto
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
13
|
Kobayashi Y, Kärkkäinen E, Häkkinen ST, Nohynek L, Ritala A, Rischer H, Tuomisto HL. Life cycle assessment of plant cell cultures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151990. [PMID: 34843779 DOI: 10.1016/j.scitotenv.2021.151990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
A novel food such as plant cell culture (PCC) is an important complementary asset for traditional agriculture to tackle global food insecurity. To evaluate environmental impacts of PCC, a life cycle assessment was applied to tobacco bright yellow-2 and cloudberry PCCs. Global warming potential (GWP), freshwater eutrophication potential (FEUP), marine eutrophication potential, terrestrial acidification potential (TAP), stratospheric ozone depletion, water consumption and land use were assessed. The results showed particularly high contributions (82-93%) of electricity consumption to GWP, FEUP and TAP. Sensitivity analysis indicated that using wind energy instead of the average Finnish electricity mix reduced the environmental impacts by 34-81%. Enhancement in the energy efficiency of bioreactor mixing processes and reduction in cultivation time also effectively improved the environmental performance (4-47% reduction of impacts). In comparison with other novel foods, the environmental impacts of the PCC products studied were mostly comparable to those of microalgae products but higher than those of microbial protein products produced by autotrophic hydrogen-oxidizing bacteria. Assayed fresh PCC products were similar or close to GWP of conventionally grown food products and, with technological advancements, can be highly competitive.
Collapse
Affiliation(s)
- Yumi Kobayashi
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, 00014 University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 4, 00014 University of Helsinki, Finland
| | - Elviira Kärkkäinen
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Suvi T Häkkinen
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Liisa Nohynek
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Heiko Rischer
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland.
| | - Hanna L Tuomisto
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, 00014 University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 4, 00014 University of Helsinki, Finland; Natural Resources Institute Finland, P.O. Box 2, 00790 Helsinki, Finland
| |
Collapse
|
14
|
Wikandari R, Manikharda, Baldermann S, Ningrum A, Taherzadeh MJ. Application of cell culture technology and genetic engineering for production of future foods and crop improvement to strengthen food security. Bioengineered 2021; 12:11305-11330. [PMID: 34779353 PMCID: PMC8810126 DOI: 10.1080/21655979.2021.2003665] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
The growing population and the climate changes put a pressure on food production globally, therefore a fundamental transformation of food production is required. One approach to accelerate food production is application of modern biotechnology such as cell culture, marker assisted selection, and genetic engineering. Cell culture technology reduces the usage of arable land, while marker-assisted selection increases the genetic gain of crop breeding and genetic engineering enable to introduce a desired traits to crop. The cell culture technology has resulted in development of cultured meat, fungal biomass food (mycoprotein), and bioactive compounds from plant cell culture. Except cultured meat which recently begin to penetrate the market, the other products have been in the market for years. The marker-assisted selection and genetic engineering have contributed significantly to increase the resiliency against emerging pests and abiotic stresses. This review addresses diverse techniques of cell culture technology as well as advanced genetic engineering technology CRISPR Cas-9 and its application for crop improvement. The pros and cons of different techniques as well as the challenges and future perspective of application of modern biotechnology for strengthening food security are also discussed.
Collapse
Affiliation(s)
- Rachma Wikandari
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Manikharda
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Susanne Baldermann
- Faculty of Life Science, Food Nutrition and Health, Food Metabolome, Universitat Bayreuth, Kulmbach, 95326, Germany
- Food4Future (F4F), Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg1, Grossbeeren, Germany
| | - Andriati Ningrum
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | |
Collapse
|
15
|
Rischer H, Nohynek L, Puupponen-Pimiä R, Aguiar J, Rocchetti G, Lucini L, Câmara JS, Mendanha Cruz T, Boscacci Marques M, Granato D. Plant cell cultures of Nordic berry species: Phenolic and carotenoid profiling and biological assessments. Food Chem 2021; 366:130571. [PMID: 34284185 DOI: 10.1016/j.foodchem.2021.130571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/08/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Plant cell cultures from cloudberry (CL), lingonberry (LI), stone berry (ST), arctic bramble (AB), and strawberry (SB) were studied in terms of their polyphenol and carotenoid composition, antioxidant activity, antihemolytic activity and cytotoxicity effects on cancerous cells. High-resolution mass spectrometry data showed that LI, presented the highest antioxidant activity, contained the highest contents of flavones, phenolic acids, lignans, and total carotenoids, while CL, ST and SB presented the opposite behavior. AB and SB presented the lowest FRAP and CUPRAC values, while AB and CL presented the lowest reducing power. SB presented the lowest antioxidant activity measured by single electron transfer assays and the lowest content of lignans, phenolic acids, and flavones. CL and LI decreased the viability of in vitro mammary gland adenocarcinoma while only LI decreased the viability of in vitro lung carcinoma and showed protective effects of human erythrocytes against mechanical hemolysis.
Collapse
Affiliation(s)
- Heiko Rischer
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Finland.
| | - Liisa Nohynek
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Finland
| | - Riitta Puupponen-Pimiä
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Finland
| | - Joselin Aguiar
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira. Campus da Penteada, 9020-105 Funchal, Portugal
| | - Thiago Mendanha Cruz
- Department of Chemistry, State University of Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Brazil
| | - Mariza Boscacci Marques
- Department of Chemistry, State University of Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Brazil
| | - Daniel Granato
- Food Processing and Quality, Natural Resources Institute Finland (Luke) - Latokartanonkaari 9, FI- 00790 Helsinki, Finland; Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland.
| |
Collapse
|
16
|
Specialized Metabolites and Valuable Molecules in Crop and Medicinal Plants: The Evolution of Their Use and Strategies for Their Production. Genes (Basel) 2021; 12:genes12060936. [PMID: 34207427 PMCID: PMC8235196 DOI: 10.3390/genes12060936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 01/18/2023] Open
Abstract
Plants naturally produce a terrific diversity of molecules, which we exploit for promoting our overall well-being. Plants are also green factories. Indeed, they may be exploited to biosynthesize bioactive molecules, proteins, carbohydrates and biopolymers for sustainable and large-scale production. These molecules are easily converted into commodities such as pharmaceuticals, antioxidants, food, feed and biofuels for multiple industrial processes. Novel plant biotechnological, genetics and metabolic insights ensure and increase the applicability of plant-derived compounds in several industrial sectors. In particular, synergy between disciplines, including apparently distant ones such as plant physiology, pharmacology, ‘omics sciences, bioinformatics and nanotechnology paves the path to novel applications of the so-called molecular farming. We present an overview of the novel studies recently published regarding these issues in the hope to have brought out all the interesting aspects of these published studies.
Collapse
|
17
|
Balestrini R, Brunetti C, Cammareri M, Caretto S, Cavallaro V, Cominelli E, De Palma M, Docimo T, Giovinazzo G, Grandillo S, Locatelli F, Lumini E, Paolo D, Patanè C, Sparvoli F, Tucci M, Zampieri E. Strategies to Modulate Specialized Metabolism in Mediterranean Crops: From Molecular Aspects to Field. Int J Mol Sci 2021; 22:2887. [PMID: 33809189 PMCID: PMC7999214 DOI: 10.3390/ijms22062887] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Plant specialized metabolites (SMs) play an important role in the interaction with the environment and are part of the plant defense response. These natural products are volatile, semi-volatile and non-volatile compounds produced from common building blocks deriving from primary metabolic pathways and rapidly evolved to allow a better adaptation of plants to environmental cues. Specialized metabolites include terpenes, flavonoids, alkaloids, glucosinolates, tannins, resins, etc. that can be used as phytochemicals, food additives, flavoring agents and pharmaceutical compounds. This review will be focused on Mediterranean crop plants as a source of SMs, with a special attention on the strategies that can be used to modulate their production, including abiotic stresses, interaction with beneficial soil microorganisms and novel genetic approaches.
Collapse
Affiliation(s)
- Raffaella Balestrini
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Cecilia Brunetti
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Maria Cammareri
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Sofia Caretto
- CNR-Institute of Sciences of Food Production, Via Monteroni, 73100 Lecce, Italy; (S.C.); (G.G.)
| | - Valeria Cavallaro
- CNR-Institute of Bioeconomy (IBE), Via Paolo Gaifami, 18, 95126 Catania, Italy; (V.C.); (C.P.)
| | - Eleonora Cominelli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Monica De Palma
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Teresa Docimo
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Giovanna Giovinazzo
- CNR-Institute of Sciences of Food Production, Via Monteroni, 73100 Lecce, Italy; (S.C.); (G.G.)
| | - Silvana Grandillo
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Franca Locatelli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Erica Lumini
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Dario Paolo
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Cristina Patanè
- CNR-Institute of Bioeconomy (IBE), Via Paolo Gaifami, 18, 95126 Catania, Italy; (V.C.); (C.P.)
| | - Francesca Sparvoli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Marina Tucci
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Elisa Zampieri
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| |
Collapse
|
18
|
Gubser G, Vollenweider S, Eibl D, Eibl R. Food ingredients and food made with plant cell and tissue cultures: State-of-the art and future trends. Eng Life Sci 2021; 21:87-98. [PMID: 33716608 PMCID: PMC7923591 DOI: 10.1002/elsc.202000077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 11/11/2022] Open
Abstract
Climate change and an increasing world population means traditional farming methods may not be able to meet the anticipated growth in food demands. Therefore, alternative agricultural strategies should be considered. Here, plant cell and tissue cultures (PCTCs) may present a possible solution, as they allow for controlled, closed and sustainable manufacturing of extracts which have been or are still being used as colorants or health food ingredients today. In this review we would like to highlight developments and the latest trends concerning commercial PCTC extracts and their use as food ingredients or even as food. The commercialization of PCTC-derived products, however, requires not only regulatory approval, but also outstanding product properties or/and a high product titer. If these challenges can be met, PCTCs will become increasingly important for the food sector in coming years.
Collapse
Affiliation(s)
- Geraldine Gubser
- Institute of Chemistry and BiotechnologyZurich University of Applied Sciences (ZHAW)WadenswilSwitzerland
| | | | - Dieter Eibl
- Institute of Chemistry and BiotechnologyZurich University of Applied Sciences (ZHAW)WadenswilSwitzerland
| | - Regine Eibl
- Institute of Chemistry and BiotechnologyZurich University of Applied Sciences (ZHAW)WadenswilSwitzerland
| |
Collapse
|