1
|
Tripathi JN, Ntui VO, Tripathi L. Precision genetics tools for genetic improvement of banana. THE PLANT GENOME 2024; 17:e20416. [PMID: 38012108 DOI: 10.1002/tpg2.20416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
Banana is an important food security crop for millions of people in the tropics but it faces challenges from diseases and pests. Traditional breeding methods have limitations, prompting the exploration of precision genetic tools like genetic modification and genome editing. Extensive efforts using transgenic approaches have been made to develop improved banana varieties with resistance to banana Xanthomonas wilt, Fusarium wilt, and nematodes. However, these efforts should be extended for other pests, diseases, and abiotic stresses. The commercialization of transgenic crops still faces continuous challenges with regulatory and public acceptance. Genome editing, particularly CRISPR/Cas, offers precise modifications to the banana genome and has been successfully applied in the improvement of banana. Targeting specific genes can contribute to the development of improved banana varieties with enhanced resistance to various biotic and abiotic constraints. This review discusses recent advances in banana improvement achieved through genetic modification and genome editing.
Collapse
Affiliation(s)
| | | | - Leena Tripathi
- International Institute of Tropical Agriculture, Nairobi, Kenya
| |
Collapse
|
2
|
Cordeiro D, Alves A, Ferraz R, Casimiro B, Canhoto J, Correia S. An Efficient Agrobacterium-Mediated Genetic Transformation Method for Solanum betaceum Cav. Embryogenic Callus. PLANTS (BASEL, SWITZERLAND) 2023; 12:1202. [PMID: 36904062 PMCID: PMC10005457 DOI: 10.3390/plants12051202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Somatic embryogenesis in Solanum betaceum (tamarillo) has proven to be an effective model system for studying morphogenesis, since optimized plant regeneration protocols are available, and embryogenic competent cell lines can be induced from different explants. Nevertheless, an efficient genetic transformation system for embryogenic callus (EC) has not yet been implemented for this species. Here, an optimized faster protocol of genetic transformation using Agrobacterium tumefaciens is described for EC. The sensitivity of EC to three antibiotics was determined, and kanamycin proved to be the best selective agent for tamarillo callus. Two Agrobacterium strains, EHA105 and LBA4404, both harboring the p35SGUSINT plasmid, carrying the reporter gene for β-glucuronidase (gus) and the marker gene neomycin phosphotransferase (nptII), were used to test the efficiency of the process. To increase the success of the genetic transformation, a cold-shock treatment, coconut water, polyvinylpyrrolidone and an appropriate selection schedule based on antibiotic resistance were employed. The genetic transformation was evaluated by GUS assay and PCR-based techniques, and a 100% efficiency rate was confirmed in the kanamycin-resistant EC clumps. Genetic transformation with the EHA105 strain resulted in higher values for gus insertion in the genome. The protocol presented provides a useful tool for functional gene analysis and biotechnology approaches.
Collapse
Affiliation(s)
- Daniela Cordeiro
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana Alves
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Ricardo Ferraz
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Bruno Casimiro
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- InnovPlantProtect CoLab, Estrada de Gil Vaz, 7350-478 Elvas, Portugal
| |
Collapse
|
3
|
Thingnam SS, Lourembam DS, Tongbram PS, Lokya V, Tiwari S, Khan MK, Pandey A, Hamurcu M, Thangjam R. A Perspective Review on Understanding Drought Stress Tolerance in Wild Banana Genetic Resources of Northeast India. Genes (Basel) 2023; 14:genes14020370. [PMID: 36833297 PMCID: PMC9957078 DOI: 10.3390/genes14020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
The enormous perennial monocotyledonous herb banana (Musa spp.), which includes dessert and cooking varieties, is found in more than 120 countries and is a member of the order Zingiberales and family Musaceae. The production of bananas requires a certain amount of precipitation throughout the year, and its scarcity reduces productivity in rain-fed banana-growing areas due to drought stress. To increase the tolerance of banana crops to drought stress, it is necessary to explore crop wild relatives (CWRs) of banana. Although molecular genetic pathways involved in drought stress tolerance of cultivated banana have been uncovered and understood with the introduction of high-throughput DNA sequencing technology, next-generation sequencing (NGS) techniques, and numerous "omics" tools, unfortunately, such approaches have not been thoroughly implemented to utilize the huge potential of wild genetic resources of banana. In India, the northeastern region has been reported to have the highest diversity and distribution of Musaceae, with more than 30 taxa, 19 of which are unique to the area, accounting for around 81% of all wild species. As a result, the area is regarded as one of the main locations of origin for the Musaceae family. The understanding of the response of the banana genotypes of northeastern India belonging to different genome groups to water deficit stress at the molecular level will be useful for developing and improving drought tolerance in commercial banana cultivars not only in India but also worldwide. Hence, in the present review, we discuss the studies conducted to observe the effect of drought stress on different banana species. Moreover, the article highlights the tools and techniques that have been used or that can be used for exploring and understanding the molecular basis of differentially regulated genes and their networks in different drought stress-tolerant banana genotypes of northeast India, especially wild types, for unraveling their potential novel traits and genes.
Collapse
Affiliation(s)
| | | | - Punshi Singh Tongbram
- Department of Biotechnology, School of Life Sciences, Mizoram University, Aizawl 796004, India
| | - Vadthya Lokya
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali 140306, India
| | - Siddharth Tiwari
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali 140306, India
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey
| | - Robert Thangjam
- Department of Biotechnology, School of Life Sciences, Mizoram University, Aizawl 796004, India
- Department of Life Sciences, School of Life Sciences, Manipur University, Imphal 795003, India
- Correspondence:
| |
Collapse
|
4
|
Negi S, Bhakta S, Ganapathi TR, Tak H. MusaNAC29-like transcription factor improves stress tolerance through modulation of phytohormone content and expression of stress responsive genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111507. [PMID: 36332768 DOI: 10.1016/j.plantsci.2022.111507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 05/20/2023]
Abstract
Understanding the molecular mechanisms governed by genes and cross-talks among stress signaling pathways is vital for generating a broad view on stress responses in plants. Here, we analysed the effects of MusaNAC29-like transcription factor of banana on stress responses and report the quantitative modulation of phytohormone and flavonoid content and analysed the growth parameters and yield trait in transgenic banana plants. Expression of MusaNAC29-like transcription factor was strongly altered in responses to stress conditions and application of signaling molecules. Under control conditions, PMusaNAC29-like-GUS is activated in cells bordering xylem vessel elements and is strongly triggered in other cells types after influence of salicylic acid and abscisic acid. Transgenic banana plants of cultivar Rasthali and Grand Naine overexpressing MusaNAC29-like transcription factor displayed superior tolerance towards drought and salinity stress. LC-MS analysis indicated elevated levels of jasmonic acid and salicylic acid while content of zeatin was significantly reduced in leaves of transgenic banana lines. Transgenic banana lines displayed increased levels of gallic acid, coumaric acid, naringenin, chlorogenic acid while levels of vanillic acid and piperine were significantly reduced. Expression of stress related genes coding for antioxidants, thiol peptidase proteins, cold-regulated proteins, late embryogenesis abundant proteins, ethylene-responsive transcription factors, bHLH proteins, jasmonate-zim-domain proteins and WRKY transcription factors were significantly induced in transgenic banana lines. Though MusaNAC29-like transcription factor improved stress tolerance, its overexpression resulted in retarded growth of transgenic lines resulting in reduced yield of banana fruits.
Collapse
Affiliation(s)
- Sanjana Negi
- Department of Biotechnology, University of Mumbai, Mumbai 400098, India.
| | - Subham Bhakta
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - T R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
5
|
Justine AK, Kaur N, Savita, Pati PK. Biotechnological interventions in banana: current knowledge and future prospects. Heliyon 2022; 8:e11636. [DOI: 10.1016/j.heliyon.2022.e11636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/01/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
|
6
|
Bhakta S, Negi S, Tak H, Singh S, Ganapathi TR. MusaATAF2-like protein regulates shoot development and multiplication by inducing cytokinin hypersensitivity and flavonoid accumulation in banana plants. PLANT CELL REPORTS 2022; 41:1197-1208. [PMID: 35244754 DOI: 10.1007/s00299-022-02849-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/14/2022] [Indexed: 05/20/2023]
Abstract
Senescence-associated transcription factor ATAF2 regulates cytokinin signalling and in vitro shoot multiplication in banana plants. MusaATAF2-like protein is a stress-related NAC transcription factor of banana. It regulates senescence in rooted banana plants. During the early stages of plant development under in vitro conditions, the presence of 6-benzylaminopurine leads to vigorous shoot multiplication. The major contributor to plant shoot multiplication is auxin to cytokinin ratio and their signalling components. The LC-MS analysis of transgenic banana plants overexpressing MusaATAF2 indicated significantly higher cytokinin content and remarkably lower auxin content. Auxin transport has been reported to be inhibited by flavonoids. Their significantly higher abundance in the shoot tissues in transgenic lines suggested potential negative regulation of auxin signalling in transgenic plants. Enhanced shoot multiplication in transgenic lines was further corroborated by reduced transcript abundance of type-A Arabidopsis response regulator-like genes (inhibitors of cytokinin signalling pathway) and higher expression of Arabidopsis histidine kinase-like genes and type-B Arabidopsis response regulator-like genes (positive regulators of cytokinin signalling pathway) in transgenic lines. Altogether, the data concludes that MusaATAF2 induces cytokinin hypersensitivity in banana shoots by modulating/regulating the cytokinin signalling components and flavonoids content.
Collapse
Affiliation(s)
- Subham Bhakta
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sanjana Negi
- Department of Biotechnology, University of Mumbai, Mumbai, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sudhir Singh
- Homi Bhabha National Institute, Mumbai, India
- Plant Biotechnology and Secondary Metabolites Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - T R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
7
|
Tripathi L, Ntui VO, Tripathi JN. Control of Bacterial Diseases of Banana Using CRISPR/Cas-Based Gene Editing. Int J Mol Sci 2022; 23:3619. [PMID: 35408979 PMCID: PMC8998688 DOI: 10.3390/ijms23073619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/30/2022] Open
Abstract
Banana is an important staple food crop and a source of income for smallholder farmers in about 150 tropical and sub-tropical countries. Several bacterial diseases, such as banana Xanthomonas wilt (BXW), blood, and moko disease, cause substantial impacts on banana production. There is a vast yield gap in the production of bananas in regions where bacterial pathogens and several other pathogens and pests are present together in the same field. BXW disease caused by Xanthomonas campestris pv. musacearum is reported to be the most destructive banana disease in East Africa. The disease affects all the banana varieties grown in the region. Only the wild-type diploid banana, Musa balbisiana, is resistant to BXW disease. Developing disease-resistant varieties of bananas is one of the most effective strategies to manage diseases. Recent advances in CRISPR/Cas-based gene editing techniques can accelerate banana improvement. Some progress has been made to create resistance against bacterial pathogens using CRISPR/Cas9-mediated gene editing by knocking out the disease-causing susceptibility (S) genes or activating the expression of the plant defense genes. A synopsis of recent advancements and perspectives on the application of gene editing for the control of bacterial wilt diseases are presented in this article.
Collapse
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi P.O. Box 30709-00100, Kenya; (V.O.N.); (J.N.T.)
| | | | | |
Collapse
|
8
|
Dash A, Ghag SB. Genome-wide in silico characterization and stress induced expression analysis of BcL-2 associated athanogene (BAG) family in Musa spp. Sci Rep 2022; 12:625. [PMID: 35022483 PMCID: PMC8755836 DOI: 10.1038/s41598-021-04707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022] Open
Abstract
Programmed cell death (PCD) is a genetically controlled process for the selective removal of damaged cells. Though understanding about plant PCD has improved over years, the mechanisms are yet to be fully deciphered. Among the several molecular players of PCD in plants, B cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) family of co-chaperones are evolutionary conserved and regulate cell death, growth and development. In this study, we performed a genome-wide in silico analysis of the MusaBAG gene family in a globally important fruit crop banana. Thirteen MusaBAG genes were identified, out of which MusaBAG1, 7 and 8 genes were found to have multiple copies. MusaBAG genes were distributed on seven out of 11 chromosomes in banana. Except for one paralog of MusaBAG8 all the other 12 proteins have characteristic BAG domain. MusaBAG1, 2 and 4 have an additional ubiquitin-like domain whereas MusaBAG5-8 have a calmodulin binding motif. Most of the MusaBAG proteins were predicted to be localized in the nucleus and mitochondria or chloroplast. The in silico cis-regulatory element analysis suggested regulation associated with photoperiodic control, abiotic and biotic stress. The phylogenetic analysis revealed 2 major clusters. Digital gene expression analysis and quantitative real-time RT-PCR depicted the differential expression pattern of MusaBAG genes under abiotic and biotic stress conditions. Further studies are warranted to uncover the role of each of these proteins in growth, PCD and stress responses so as to explore them as candidate genes for engineering transgenic banana plants with improved agronomic traits.
Collapse
Affiliation(s)
- Ashutosh Dash
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Campus, Kalina, Santacruz (East), Mumbai, 400 098, India
| | - Siddhesh B Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Campus, Kalina, Santacruz (East), Mumbai, 400 098, India.
| |
Collapse
|
9
|
Bhakta S, Negi S, Tak H, Singh S, Ganapathi TR. MusaATAF2 like protein, a stress-related transcription factor, induces leaf senescence by regulating chlorophyll catabolism and H 2 O 2 accumulation. PHYSIOLOGIA PLANTARUM 2022; 174:e13593. [PMID: 34761415 DOI: 10.1111/ppl.13593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
NAC transcription factors are known for their diverse role in plants. In this study, we have demonstrated the role of MusaATAF2, a banana NAC transcription factor, in leaf senescence. Its expression gets strongly up-regulated during the early stress responses of drought and high salinity exposure and down-regulated under ABA application, which suggests MusaATAF2 is a stress-related NAC transcription factor. To study the role of MusaATAF2 in banana, we have transformed the banana embryogenic cells with MusaATAF2 coding region and generated transgenic banana plants. Overexpression of MusaATAF2 in banana plants caused yellow leaf phenotype under control condition, suggesting its role as a senescence-associated transcription factor. Transgenic banana leaves exhibited low chlorophyll content and high H2 O2 accumulation. Hormone analysis of the leaves demonstrated a higher accumulation of ABA in the transgenic plants than the controls. Transgenic plants overexpressing MusaATAF2 have a higher transcript abundance of two chlorophyll catabolic pathway genes (PAO and HCAR) and lower transcript abundance of ROS scavenging enzymes (TDP, THIO, CAT, APX, and PRXDN) than control. Together, all these analyses indicate that MusaATAF2 induces senescence by inducing chlorophyll degradation and H2 O2 accumulation in banana plants and controls its own expression using an ABA-dependent feedback loop.
Collapse
Affiliation(s)
- Subham Bhakta
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sanjana Negi
- Department of Biotechnology, University of Mumbai, Mumbai, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sudhir Singh
- Homi Bhabha National Institute, Mumbai, India
- Plant Biotechnology & Secondary Metabolites Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Thumbali R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
10
|
Rocha ADJ, Soares JMDS, Nascimento FDS, Santos AS, Amorim VBDO, Ferreira CF, Haddad F, dos Santos-Serejo JA, Amorim EP. Improvements in the Resistance of the Banana Species to Fusarium Wilt: A Systematic Review of Methods and Perspectives. J Fungi (Basel) 2021; 7:249. [PMID: 33806239 PMCID: PMC8066237 DOI: 10.3390/jof7040249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
The fungus Fusarium oxysporum f. sp. cubense (FOC), tropical race 4 (TR4), causes Fusarium wilt of banana, a pandemic that has threatened the cultivation and export trade of this fruit. This article presents the first systematic review of studies conducted in the last 10 years on the resistance of Musa spp. to Fusarium wilt. We evaluated articles deposited in different academic databases, using a standardized search string and predefined inclusion and exclusion criteria. We note that the information on the sequencing of the Musa sp. genome is certainly a source for obtaining resistant cultivars, mainly by evaluating the banana transcriptome data after infection with FOC. We also showed that there are sources of resistance to FOC race 1 (R1) and FOC TR4 in banana germplasms and that these data are the basis for obtaining resistant cultivars, although the published data are still scarce. In contrast, the transgenics approach has been adopted frequently. We propose harmonizing methods and protocols to facilitate the comparison of information obtained in different research centers and efforts based on global cooperation to cope with the disease. Thus, we offer here a contribution that may facilitate and direct research towards the production of banana resistant to FOC.
Collapse
Affiliation(s)
- Anelita de Jesus Rocha
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana 44036-900, Bahia, Brazil; (A.d.J.R.); (J.M.d.S.S.); (F.d.S.N.)
| | - Julianna Matos da Silva Soares
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana 44036-900, Bahia, Brazil; (A.d.J.R.); (J.M.d.S.S.); (F.d.S.N.)
| | - Fernanda dos Santos Nascimento
- Department of Biological Sciences, State University of Feira de Santana, Feira de Santana 44036-900, Bahia, Brazil; (A.d.J.R.); (J.M.d.S.S.); (F.d.S.N.)
| | | | | | - Claudia Fortes Ferreira
- Embrapa Cassava and Fruit, Cruz das Almas 44380-000, Bahia, Brazil; (V.B.d.O.A.); (C.F.F.); (F.H.); (J.A.d.S.-S.)
| | - Fernando Haddad
- Embrapa Cassava and Fruit, Cruz das Almas 44380-000, Bahia, Brazil; (V.B.d.O.A.); (C.F.F.); (F.H.); (J.A.d.S.-S.)
| | | | - Edson Perito Amorim
- Embrapa Cassava and Fruit, Cruz das Almas 44380-000, Bahia, Brazil; (V.B.d.O.A.); (C.F.F.); (F.H.); (J.A.d.S.-S.)
| |
Collapse
|
11
|
Wang X, Yu R, Li J. Using Genetic Engineering Techniques to Develop Banana Cultivars With Fusarium Wilt Resistance and Ideal Plant Architecture. FRONTIERS IN PLANT SCIENCE 2021; 11:617528. [PMID: 33519876 PMCID: PMC7838362 DOI: 10.3389/fpls.2020.617528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/16/2020] [Indexed: 05/28/2023]
Abstract
Bananas (Musa spp.) are an important fruit crop worldwide. The fungus Fusarium oxysporum f. sp. cubense (Foc), which causes Fusarium wilt, is widely regarded as one of the most damaging plant diseases. Fusarium wilt has previously devastated global banana production and continues to do so today. In addition, due to the current use of high-density banana plantations, desirable banana varieties with ideal plant architecture (IPA) possess high lodging resistance, optimum photosynthesis, and efficient water absorption. These properties may help to increase banana production. Genetic engineering is useful for the development of banana varieties with Foc resistance and ideal plant architecture due to the sterility of most cultivars. However, the sustained immune response brought about by genetic engineering is always accompanied by yield reductions. To resolve this problem, we should perform functional genetic studies of the Musa genome, in conjunction with genome editing experiments, to unravel the molecular mechanisms underlying the immune response and the formation of plant architecture in the banana. Further explorations of the genes associated with Foc resistance and ideal architecture might lead to the development of banana varieties with both ideal architecture and pathogen super-resistance. Such varieties will help the banana to remain a staple food worldwide.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Renbo Yu
- Key Laboratory of Vegetable Research Center, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jingyang Li
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
12
|
Gurdaswani V, Ghag SB, Ganapathi TR. FocSge1 in Fusarium oxysporum f. sp. cubense race 1 is essential for full virulence. BMC Microbiol 2020; 20:255. [PMID: 32795268 PMCID: PMC7427899 DOI: 10.1186/s12866-020-01936-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Background Fusarium wilt disease of banana is one of the most devastating diseases and was responsible for destroying banana plantations in the late nineteenth century. Fusarium oxysporum f. sp. cubense is the causative agent. Presently, both race 1 and 4 strains of Foc are creating havoc in the major banana-growing regions of the world. There is an urgent need to devise strategies to control this disease; that is possible only after a thorough understanding of the molecular basis of this disease. Results There are a few regulators of Foc pathogenicity which are triggered during this infection, among which Sge1 (Six Gene Expression 1) regulates the expression of effector genes. The protein sequence is conserved in both race 1 and 4 strains of Foc indicating that this gene is vital for pathogenesis. The deletion mutant, FocSge1 displayed poor conidial count, loss of hydrophobicity, reduced pigmentation, decrease in fusaric acid production and pathogenicity as compared to the wild-type and genetically complemented strain. Furthermore, the C-terminal domain of FocSge1 protein is crucial for its activity as deletion of this region results in a knockout-like phenotype. Conclusion These results indicated that FocSge1 plays a critical role in normal growth and pathogenicity with the C-terminal domain being crucial for its activity.
Collapse
Affiliation(s)
- Vartika Gurdaswani
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz (E), Mumbai, 400 098, India
| | - Siddhesh B Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz (E), Mumbai, 400 098, India.
| | - Thumballi R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| |
Collapse
|
13
|
Jekayinoluwa T, Tripathi JN, Obiero G, Muge E, Tripathi L. Phytochemical Analysis and Establishment of Embryogenic Cell Suspension and Agrobacterium-mediated Transformation for Farmer Preferred Cultivars of West African Plantain ( Musa spp.). PLANTS 2020; 9:plants9060789. [PMID: 32599771 PMCID: PMC7357122 DOI: 10.3390/plants9060789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 12/23/2022]
Abstract
Banana and plantain are among the foremost staple food crops providing food and livelihood to over 500 million people in tropical countries. Despite the importance, their production is hampered due to several biotic and abiotic stresses. Plant tissue culture techniques such as somatic embryogenesis and genetic transformation offer a valuable tool for genetic improvement. Identification and quantification of phytochemicals found in banana and plantain are essential in optimizing in vitro activities for crop improvement. Total antioxidants, phenolics, flavonoids, and tannins were quantified in various explants obtained from the field, as well as in vitro plants of banana and plantain cultivars. The result showed genotypic variation in the phytochemicals of selected cultivars. The embryogenic cell suspensions were developed for three farmer-preferred plantain cultivars, Agbagba, Obino l’Ewai, and Orishele, using different MS and B5-based culture media. Both culture media supported the development of friable embryogenic calli (FEC), while MS culture media supported the proliferation of fine cell suspension in liquid culture media. The percentage of FEC generated for Agbagba, Obino l’Ewai, and Orishele were 22 ± 24%, 13 ± 28%, and 9 ± 16%, respectively. Cell suspensions produced from FECs were successfully transformed by Agrobacterium-mediated transformation with reporter gene constructs and regenerated into whole plants.
Collapse
Affiliation(s)
- Temitope Jekayinoluwa
- International Institute of Tropical Agriculture (IITA), 30709-00100 Nairobi, Kenya; (T.J.); (J.N.T.)
- Centre for Biotechnology and Bioinformatics, University of Nairobi, 30197-00100 Nairobi, Kenya;
| | - Jaindra Nath Tripathi
- International Institute of Tropical Agriculture (IITA), 30709-00100 Nairobi, Kenya; (T.J.); (J.N.T.)
| | - George Obiero
- Centre for Biotechnology and Bioinformatics, University of Nairobi, 30197-00100 Nairobi, Kenya;
| | - Edward Muge
- Department of Biochemistry, University of Nairobi, 30197-00100 Nairobi, Kenya;
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), 30709-00100 Nairobi, Kenya; (T.J.); (J.N.T.)
- Correspondence: ; Tel.: +254-20-422-3472
| |
Collapse
|
14
|
Tak H, Negi S, Rajpurohit YS, Misra HS, Ganapathi TR. MusaMPK5, a mitogen activated protein kinase is involved in regulation of cold tolerance in banana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:112-123. [PMID: 31739146 DOI: 10.1016/j.plaphy.2019.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Mitogen activated protein kinases (MAPKs) are known to play important functions in stress responses of plants. We have functionally characterized a MAPK, MusaMPK5 from banana and demonstrated its function in cold tolerance response of banana plants. Expression of MusaMPK5 showed positive response to cold, methyl-jasmonate and salicylic acid treatment. Transgenic banana plants harbouring PMusaMPK5::GUS after exposure to cold stress (8 °C) showed strong induction of GUS in cells surrounding central vascular cylinder of corm and cortical cells of pseudostem. Transgenic banana lines overexpressing MusaMPK5 were regenerated and four different transgenic lines were confirmed for T-DNA insertions by Southern blot and PCR analysis. In an in-vitro growth assay transgenic lines gained better shoot length and fresh weight during recovery from cold stress indicating improved cold tolerance ability of transgenic lines than control plants. Leaf discs of transgenic lines bleached less and retain lower MDA content than leaf discs of control plants after cold stress (4 °C and 8 °C). Cold stress tolerance analysis using two month old plants suggested that improved cold tolerance ability of transgenic lines might be associated with increased level of proline and reduced MDA content. MusaMPK5 gets localized in cytoplasm as observed in onion epidermal cells transiently overexpressing either MusaMPK5-GFP or MusaMPK5-GUS fusion protein. MusaMPK5 is a functional kinase as it autophosphorylate itself and phosphorylate myelin basic protein (MBP) in an in vitro reaction. Purified MusaMPK5 can phosphorylate NAC042 and SNAC67 transcription factors of banana which are important regulators of stress tolerance in banana plants.
Collapse
Affiliation(s)
- Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Sanjana Negi
- Department of Biotechnology, University of Mumbai, Mumbai, 400098, India
| | - Yogendra S Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - T R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
15
|
Patel P, Yadav K, Srivastava AK, Suprasanna P, Ganapathi TR. Overexpression of native Musa-miR397 enhances plant biomass without compromising abiotic stress tolerance in banana. Sci Rep 2019; 9:16434. [PMID: 31712582 PMCID: PMC6848093 DOI: 10.1038/s41598-019-52858-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
Plant micro RNAs (miRNAs) control growth, development and stress tolerance but are comparatively unexplored in banana, whose cultivation is threatened by abiotic stress and nutrient deficiencies. In this study, a native Musa-miR397 precursor harboring 11 copper-responsive GTAC motifs in its promoter element was identified from banana genome. Musa-miR397 was significantly upregulated (8-10) fold in banana roots and leaves under copper deficiency, correlating with expression of root copper deficiency marker genes such as Musa-COPT and Musa-FRO2. Correspondingly, target laccases were significantly downregulated (>-2 fold), indicating miRNA-mediated silencing for Cu salvaging. No significant expression changes in the miR397-laccase module were observed under iron stress. Musa-miR397 was also significantly upregulated (>2 fold) under ABA, MV and heat treatments but downregulated under NaCl stress, indicating universal stress-responsiveness. Further, Musa-miR397 overexpression in banana significantly increased plant growth by 2-3 fold compared with wild-type but did not compromise tolerance towards Cu deficiency and NaCl stress. RNA-seq of transgenic and wild type plants revealed modulation in expression of 71 genes related to diverse aspects of growth and development, collectively promoting enhanced biomass. Summing up, our results not only portray Musa-miR397 as a candidate for enhancing plant biomass but also highlight it at the crossroads of growth-defense trade-offs.
Collapse
Affiliation(s)
- Prashanti Patel
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Karuna Yadav
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Ashish Kumar Srivastava
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Penna Suprasanna
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Thumballi Ramabhatta Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
16
|
Sunisha C, Sowmya HD, Usharani TR, Umesha M, Gopalkrishna HR, Saxena A. Deployment of Stacked Antimicrobial Genes in Banana for Stable Tolerance Against Fusarium oxysporum f.sp. cubense Through Genetic Transformation. Mol Biotechnol 2019; 62:8-17. [PMID: 31667713 DOI: 10.1007/s12033-019-00219-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enhanced tolerance to wilt disease (Fusarium oxysporum f.sp. cubense) was achieved in banana variety Rasthali (AAB) by the transformation of embryogenic cells with two antimicrobial genes viz., Ace-AMP1 and pflp using Agrobacterium mediated transformation. The transgene copy numbers in stable transformants were confirmed by Southern analysis. The expression of stacked genes in the transgenic lines was validated by RT-PCR as well as Northern analysis. Bioassay using Foc race 1 in pot culture experiments demonstrated enhanced tolerance after 180 days of planting. Two independent transformants showed 10-20% Vascular Discoloration Index compared to untransformed banana cv. Rasthali (96%). The stacked lines revealed higher activity of Super Oxide Dismutase and Peroxidase compared to untransformed control which depicted higher tolerance to oxidative stress caused by Foc infection.
Collapse
Affiliation(s)
- C Sunisha
- Department of Biotechnology and Biochemistry, Centre for Post-Graduate Studies, Jain University, Bangalore, India
| | - H D Sowmya
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089, India
| | - T R Usharani
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089, India.
| | - M Umesha
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089, India
| | - H R Gopalkrishna
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089, India
| | - Arvindkumar Saxena
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089, India
| |
Collapse
|
17
|
Marimuthu K, Subbaraya U, Suthanthiram B, Marimuthu SS. Molecular analysis of somatic embryogenesis through proteomic approach and optimization of protocol in recalcitrant Musa spp. PHYSIOLOGIA PLANTARUM 2019; 167:282-301. [PMID: 30883793 DOI: 10.1111/ppl.12966] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/23/2019] [Accepted: 03/11/2019] [Indexed: 05/12/2023]
Abstract
Somatic embryogenesis (SE) is a complex stress related process regulated by numerous biological factors. SE is mainly applicable to mass propagation and genetic improvement of plants through gene transfer technology and induced mutations. In banana, SE is highly genome dependent as the efficiency varies with cultivars. To understand the molecular mechanism of SE, a proteomics approach was carried out to identify proteins expressed during embryogenic calli (EC) induction, regeneration and germination of somatic embryos in the banana cultivar cv. Rasthali (AAB). In total, 70 spots were differentially expressed in various developmental stages of SE, of which 16 were uniquely expressed and 17 were highly abundant in EC compared to non-embryogenic calli and explants. Also, four spots were uniquely expressed in germinating somatic embryos. The functional annotation of identified proteins revealed that calcium signaling along with stress and endogenous hormones related proteins played a vital role in EC induction and germination of somatic embryos. Thus, based on this outcome, the callus induction media was modified and tested in five cultivars. Among them, cultivars Grand Naine (AAA), Monthan (ABB) and Ney Poovan (AB) showed a better response in tryptophan added media, whereas Red Banana (AAA) and Karpuravalli (ABB) showed maximum EC induction in kinetin and CaCl2 supplemented media respectively. Simultaneously, germination media were modified to induce proteins responsible for germination. In cv. Rasthali, media supplemented with 10 mM CaCl2 showed a maximum increase in germination (51.79%) over control plants. Thus, the present study revealed that media modification based on proteomic analysis can induce SE in recalcitrant cultivars and also enhance germination in cultivars amenable for SE.
Collapse
Affiliation(s)
- Kumaravel Marimuthu
- Crop Improvement Division, ICAR-National Research Centre for Banana, Tiruchirappalli, India
| | - Uma Subbaraya
- Crop Improvement Division, ICAR-National Research Centre for Banana, Tiruchirappalli, India
| | | | - Saraswathi S Marimuthu
- Crop Improvement Division, ICAR-National Research Centre for Banana, Tiruchirappalli, India
| |
Collapse
|
18
|
Efficient and rapid in-vitro plantlet regeneration via somatic embryogenesis in ornamental bananas (Musa spp.). Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00358-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Tripathi L, Ntui VO, Tripathi JN. Application of genetic modification and genome editing for developing climate‐smart banana. Food Energy Secur 2019. [DOI: 10.1002/fes3.168] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical Agriculture (IITA) Nairobi Kenya
| | | | | |
Collapse
|
20
|
Tak H, Negi S, Gupta A, Ganapathi TR. A stress associated NAC transcription factor MpSNAC67 from banana (Musa x paradisiaca) is involved in regulation of chlorophyll catabolic pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:61-71. [PMID: 30172854 DOI: 10.1016/j.plaphy.2018.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 05/02/2023]
Abstract
Process of senescence includes multiple steps involving break-down of chlorophyll to degrade photosynthetic machinery. In this study, we showed that a stress-associated NAC transcription factor MpSNAC67 regulates senescence by promoting chlorophyll-catabolic genes. MpSNAC67 encodes a transcriptional activator and its promoter activity is restricted to vascular tissue of banana. Expression of MpSNAC67 showed positive responses to multiple abiotic stress conditions suggesting that MpSNAC67 is a stress associated NAC transcription factor. Transgenic banana lines overexpressing MpSNAC67 showed highly senesced phenotype including yellowing and de-greening of leaves similar to etiolated leaves. Transgenic leaves possessed low chlorophyll content and failed to retain normal chloroplast morphology including loss of granum thylakoid, non-uniform chloroplast membrane and increased number as well as size of plastoglobulins. In a gel shift assay MpSNAC67 could retard the mobility of chlorophyll catabolic genes such as PAO-like (Pheophorbide-a-oxygenase), HCAR-like (hydroxymethyl chlorophyll-a-reductase), NYC/NOL-like (Chlorophyll-b-reductase) as well as ORS1-like (a SenNAC). Expression of these genes were highly elevated in transgenic lines which indicate that MpSNAC67 is a positive regulator of senescence in banana and exercise its effect by regulating the expression of chlorophyll catabolic genes and ORS1.
Collapse
Affiliation(s)
- Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Sanjana Negi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Alka Gupta
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - T R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
21
|
Ratjens S, Mortensen S, Kumpf A, Bartsch M, Winkelmann T. Embryogenic Callus as Target for Efficient Transformation of Cyclamen persicum Enabling Gene Function Studies. FRONTIERS IN PLANT SCIENCE 2018; 9:1035. [PMID: 30087683 PMCID: PMC6066641 DOI: 10.3389/fpls.2018.01035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/26/2018] [Indexed: 05/20/2023]
Abstract
Cyclamen persicum is an ornamental plant with economic relevance in many parts of the world. Moreover, it can be regarded as an applied model for somatic embryogenesis, since transcriptomic, proteomic, and metabolomic comparisons have revealed insights into this regeneration process on the molecular level. To enable gene function analyses, the aim of this study was to establish an efficient Agrobacterium tumefaciens-mediated genetic transformation protocol for C. persicum. For the first time, embryogenic callus cultures were used as a target material. The advantages of embryogenic callus are the defined and known genotype compared to seedlings, the high regeneration potential and the stability of the regenerated plants. A. tumefaciens strains EHA105 and LBA4404 were most efficient for transformation, resulting in transformation efficiencies of up to 43 and 20%, respectively. In regenerated plants, the presence of the transgenes was verified by PCR, Southern hybridization, and a histochemical GUS assay. The protocol was applied successfully to two C. persicum genotypes. Moreover, it served to transfer two reporter constructs, the auxin-responsive promoter DR5 driving the gus gene and the redox sensor roGFP2_Orp1, to the C. persicum genotypes, allowing the localization of high auxin concentrations and reactive oxygen species in order to study their roles in somatic embryogenesis in the future. For success in transformation, we regard the following factors as important: highly embryogenic cell lines, the use of Silwet® L-77 as a surfactant during co-culture, a genotype-specific appropriate selection schedule with hygromycin, and A. tumefaciens strains EHA105 and LBA4404.
Collapse
Affiliation(s)
| | | | | | | | - Traud Winkelmann
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
22
|
Negi S, Tak H, Ganapathi TR. A banana NAC transcription factor (MusaSNAC1) impart drought tolerance by modulating stomatal closure and H 2O 2 content. PLANT MOLECULAR BIOLOGY 2018; 96:457-471. [PMID: 29470695 DOI: 10.1007/s11103-018-0710-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/17/2018] [Indexed: 05/28/2023]
Abstract
MusaSNAC1 function in H2O2 mediated stomatal closure and promote drought tolerance by directly binding to CGT[A/G] motif in regulatory region of multiple stress-related genes. Drought is a abiotic stress-condition, causing reduced plant growth and diminished crop yield. Guard cells of the stomata control photosynthesis and transpiration by regulating CO2 exchange and water loss, thus affecting growth and crop yield. Roles of NAC (NAM, ATAF1/2 and CUC2) protein in regulation of stress-conditions has been well documented however, their control over stomatal aperture is largely unknown. In this study we report a banana NAC protein, MusaSNAC1 which induced stomatal closure by elevating H2O2 content in guard cells during drought stress. Overexpression of MusaSNAC1 in banana resulted in higher number of stomata closure causing reduced water loss and thus elevated drought-tolerance. During drought, expression of GUS (β-glucuronidase) under P MusaSNAC1 was remarkably elevated in guard cells of stomata which correlated with its function as a transcription factor regulating stomatal aperture closing. MusaSNAC1 is a transcriptional activator belonging to SNAC subgroup and its 5'-upstream region contain multiple Dof1 elements as well as stress-associated cis-elements. Moreover, MusaSNAC1 also regulate multiple stress-related genes by binding to core site of NAC-proteins CGT[A/G] in their 5'-upstream region. Results indicated an interesting mechanism of drought tolerance through stomatal closure by H2O2 generation in guard cells, regulated by a NAC-protein in banana.
Collapse
Affiliation(s)
- Sanjana Negi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, AnushaktiNagar, Mumbai, 400094, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, AnushaktiNagar, Mumbai, 400094, India
| | - T R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
| |
Collapse
|
23
|
Negi S, Tak H, Ganapathi TR. Xylem specific activation of 5' upstream regulatory region of two NAC transcription factors (MusaVND6 and MusaVND7) in banana is regulated by SNBE-like sites. PLoS One 2018; 13:e0192852. [PMID: 29438404 PMCID: PMC5811034 DOI: 10.1371/journal.pone.0192852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/31/2018] [Indexed: 11/18/2022] Open
Abstract
Deposition of secondary cell wall in the xylem elements is controlled by a subgroup of NAC (NAM, ATAF, CUC) family, known as vascular-related NAC transcription factors (VNDs). In the present study, we analyzed the 5' upstream regulatory region of two banana NAC transcription factors (MusaVND6 and MusaVND7) for tissue specific expression and presence of 19-bp secondary-wall NAC binding element (SNBE)-like motifs. Transgenic banana plants of Musa cultivar Rasthali harboring either PMusaVND7::GUS or PMusaVND6::GUS showed specific GUS (β-D-Glucuronidase) activity in cells of the xylem tissue. Approximately 1.2kb promoter region of either MusaVND6 or MusaVND7 showed presence of at least two SNBE-like motifs. This 1.2kb promoter region was retarded in a gel shift assay by three banana VND protein (VND1,VND2 and VND3). The banana VND1-VND3 could also retard the mobility of isolated SNBE-like motifs of MusaVND6 or MusaVND7 in a gel shift assay. Transcript levels of MusaVND6 and MusaVND7 were elevated in transgenic banana overexpressing either banana VND1, VND2 or VND3. Present study suggested a probable regulation of banana VND6 and VND7 expression through direct interaction of banana VND1- VND3 with SNBE-like motifs. Our study also indicated two promoter elements for possible utilization in cell wall modifications in plants especially banana, which is being recently considered as a potential biofuel crop.
Collapse
Affiliation(s)
- Sanjana Negi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, AnushaktiNagar, Mumbai, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, AnushaktiNagar, Mumbai, India
| | - T. R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, AnushaktiNagar, Mumbai, India
| |
Collapse
|
24
|
Negi S, Tak H, Ganapathi TR. Native vascular related NAC transcription factors are efficient regulator of multiple classes of secondary wall associated genes in banana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 265:70-86. [PMID: 29223344 DOI: 10.1016/j.plantsci.2017.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/18/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
Secondary-wall deposition in xylem vessel elements is regulated by vascular-related NAC transcription factors (VNDs). We show that three banana VNDs (MusaVND1, MusaVND2 and MusaVND3) directly regulate multiple secondary-wall associated genes by binding to their 5'-upstream regulatory region. Transgenic banana harboring either PMusaVND1:GUS, PMusaVND2:GUS or PMusaVND3:GUS showed specific GUS staining in lignified tissues. MusaVND1, MusaVND2 and MusaVND3 encodes transcriptional-activators as its C-terminal region drive expression of reporter genes in vivo in yeast. Purified MusaVND1, MusaVND2 and MusaVND3 proteins in gel shift assay bind to 19-bp secondary-wall NAC binding element (SNBE) while it fails to bind mutated SNBE. Putative SNBE sites in the 5'-upstream regulatory region of important secondary-wall associated genes related to programmed cell death (XCP1), cell-wall modification (IRX1/CesA8, IRX3/CesA7,IRX5/CesA4, IRX8, IRX10 and IRX12) and transcriptional regulation (MYB52, MYB48/59, MYB85, MYB58/72, MYB46, and MYB83) in banana was identified and mobility of these regulatory regions got retarded by MusaVND1, MusaVND2 and MusaVND3. Transcript level of these important secondary wall associated genes were elevated in transgenic banana overexpressing either MusaVND1, MusaVND2 or MusaVND3. Present study suggested promoters with prospective utilization in wall modification in banana (a potential biofuel crop) and suggest a complex transcriptional regulation of secondary wall deposition in plants.
Collapse
Affiliation(s)
- Sanjana Negi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - T R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| |
Collapse
|
25
|
Yadav K, Patel P, Srivastava AK, Ganapathi TR. Overexpression of native ferritin gene MusaFer1 enhances iron content and oxidative stress tolerance in transgenic banana plants. PLoS One 2017; 12:e0188933. [PMID: 29190821 PMCID: PMC5708808 DOI: 10.1371/journal.pone.0188933] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 11/15/2017] [Indexed: 11/30/2022] Open
Abstract
Iron is an indispensable element for plant growth and defense and hence it is essential to improve the plant's ability to accumulate iron. Besides, it is also an important aspect for human health. In view of this, we attempted to increase the iron content in banana cultivar Rasthali using MusaFer1 as a candidate gene. Initially, the expression of all five genes of the MusaFer family (MusaFer1-5) was quantified under iron-excess and -deficient conditions. The supplementation of 250 and 350 μM iron enhanced expression of all MusaFer genes; however, MusaFer1 was increased maximally by 2- and 4- fold in leaves and roots respectively. Under iron deficient condition, all five MusaFer genes were downregulated, indicating their iron dependent regulation. In MusaFer1 overexpressing lines, iron content was increased by 2- and 3-fold in leaves and roots respectively, as compared with that of untransformed lines. The increased iron was mainly localized in the epidermal regions of petiole. The analysis of MusaFer1 promoter indicated that it might control the expression of iron metabolism related genes and also other genes of MusaFer family. MusaFer1 overexpression led to downregulated expression of MusaFer3, MusaFer4 and MusaFer5 in transgenic leaves which might be associated with the plant's compensatory mechanism in response to iron flux. Other iron metabolism genes like Ferric reductase (FRO), transporters (IRT, VIT and YSL) and chelators (NAS, DMAS and NAAT) were also differentially expressed in transgenic leaf and root, suggesting the multifaceted impact of MusaFer1 towards iron uptake and organ distribution. Additionally, MusaFer1 overexpression increased plant tolerance against methyl viologen and excess iron which was quantified in terms of photosynthetic efficiency and malondialdehyde content. Thus, the study not only broadens our understanding about iron metabolism but also highlights MusaFer1 as a suitable candidate gene for iron fortification in banana.
Collapse
Affiliation(s)
- Karuna Yadav
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Prashanti Patel
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Ashish Kumar Srivastava
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - T. R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
26
|
Shivani, Awasthi P, Sharma V, Kaur N, Kaur N, Pandey P, Tiwari S. Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp.) cv. Grand Naine. PLoS One 2017; 12:e0182242. [PMID: 28797040 PMCID: PMC5552287 DOI: 10.1371/journal.pone.0182242] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/14/2017] [Indexed: 11/22/2022] Open
Abstract
Transcription factors BABY BOOM (BBM), WUSCHEL (WUS), BSD, LEAFY COTYLEDON (LEC), LEAFY COTYLEDON LIKE (LIL), VIVIPAROUS1 (VP1), CUP SHAPED COTYLEDONS (CUC), BOLITA (BOL), and AGAMOUS LIKE (AGL) play a crucial role in somatic embryogenesis. In this study, we identified eighteen genes of these nine transcription factors families from the banana genome database. All genes were analyzed for their structural features, subcellular, and chromosomal localization. Protein sequence analysis indicated the presence of characteristic conserved domains in these transcription factors. Phylogenetic analysis revealed close evolutionary relationship among most transcription factors of various monocots. The expression patterns of eighteen genes in embryogenic callus containing somatic embryos (precisely isolated by Laser Capture Microdissection), non-embryogenic callus, and cell suspension cultures of banana cultivar Grand Naine were analyzed. The application of 2, 4-dichlorophenoxyacetic acid (2, 4-D) in the callus induction medium enhanced the expression of MaBBM1, MaBBM2, MaWUS2, and MaVP1 in the embryogenic callus. It suggested 2, 4-D acts as an inducer for the expression of these genes. The higher expression of MaBBM2 and MaWUS2 in embryogenic cell suspension (ECS) as compared to non-embryogenic cells suspension (NECS), suggested that these genes may play a crucial role in banana somatic embryogenesis. MaVP1 showed higher expression in both ECS and NECS, whereas MaLEC2 expression was significantly higher in NECS. It suggests that MaLEC2 has a role in the development of non-embryogenic cells. We postulate that MaBBM2 and MaWUS2 can be served as promising molecular markers for the embryogencity in banana.
Collapse
Affiliation(s)
- Shivani
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Knowledge City, Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Praveen Awasthi
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Knowledge City, Mohali, Punjab, India
| | - Vikrant Sharma
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Knowledge City, Mohali, Punjab, India
| | - Navjot Kaur
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Knowledge City, Mohali, Punjab, India
| | - Navneet Kaur
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Knowledge City, Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Pankaj Pandey
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Knowledge City, Mohali, Punjab, India
| | - Siddharth Tiwari
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Knowledge City, Mohali, Punjab, India
| |
Collapse
|
27
|
Tak H, Negi S, Ganapathi TR. Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance. PROTOPLASMA 2017; 254:803-816. [PMID: 27352311 DOI: 10.1007/s00709-016-0991-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/06/2016] [Indexed: 05/18/2023]
Abstract
Banana is an important fruit crop and its yield is hampered by multiple abiotic stress conditions encountered during its growth. The NAC (NAM, ATAF, and CUC) transcription factors are involved in plant response to biotic and abiotic stresses. In the present study, we studied the induction of banana NAC042 transcription factor in drought and high salinity conditions and its overexpression in transgenic banana to improve drought and salinity tolerance. MusaNAC042 expression was positively associated with stress conditions like salinity and drought and it encoded a nuclear localized protein. Transgenic lines of banana cultivar Rasthali overexpressing MusaNAC042 were generated by Agrobacterium-mediated transformation of banana embryogenic cells and T-DNA insertion was confirmed by PCR and Southern blot analysis. Our results using leaf disc assay indicated that transgenic banana lines were able to tolerate drought and high salinity stress better than the control plants and retained higher level of total chlorophyll and lower level of MDA content (malondialdehyde). Transgenic lines analyzed for salinity (250 mM NaCl) and drought (Soil gravimetric water content 0.15) tolerance showed higher proline content, better Fv/Fm ratio, and lower levels of MDA content than control suggesting that MusaNAC042 may be involved in responses to higher salinity and drought stresses in banana. Expression of several abiotic stress-related genes like those coding for CBF/DREB, LEA, and WRKY factors was altered in transgenic lines indicating that MusaNAC042 is an efficient modulator of abiotic stress response in banana.
Collapse
Affiliation(s)
- Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Sanjana Negi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - T R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India.
| |
Collapse
|
28
|
Tak H, Negi S, Ganapathi TR. Overexpression of MusaMYB31, a R2R3 type MYB transcription factor gene indicate its role as a negative regulator of lignin biosynthesis in banana. PLoS One 2017; 12:e0172695. [PMID: 28234982 PMCID: PMC5325293 DOI: 10.1371/journal.pone.0172695] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/08/2017] [Indexed: 12/03/2022] Open
Abstract
Lignin and polyphenols are important cellular components biosynthesized through phenylpropanoid pathway. Phenylpropanoid pathway in plants is regulated by some important transcription factors including R2R3 MYB transcription factors. In this study, we report the cloning and functional characterization of a banana R2R3-MYB transcription factor (MusaMYB31) by overexpression in transgenic banana plants and evaluated its potential role in regulating biosynthesis of lignin and polyphenols. Sequence analysis of MusaMYB31 indicated its clustering with members of subgroup 4 (Sg4) of R2R3MYB family which are well known for their role as repressors of lignin biosynthesis. Expression analysis indicated higher expression of MusaMYB31 in corm and root tissue, known for presence of highly lignified tissue than other organs of banana. Overexpression of MusaMYB31 in banana cultivar Rasthali was carried out and four transgenic lines were confirmed by GUS histochemical staining, PCR analysis and Southern blot. Histological and biochemical analysis suggested reduction of cell wall lignin in vascular elements of banana. Transgenic lines showed alteration in transcript levels of general phenylpropanoid pathway genes including lignin biosynthesis pathway genes. Reduction of total polyphenols content in transgenic lines was in line with the observation related to repression of general phenylpropanoid pathway genes. This study suggested the potential role of MusaMYB31 as repressor of lignin and polyphenols biosynthesis in banana.
Collapse
Affiliation(s)
- Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Sanjana Negi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - T. R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
29
|
Liu J, Gao P, Sun X, Zhang J, Sun P, Wang J, Jia C, Zhang J, Hu W, Xu B, Jin Z. Efficient regeneration and genetic transformation platform applicable to five Musa varieties. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2016.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
30
|
Chu M, Quiñonero C, Akdemir H, Alburquerque N, Pedreño MÁ, Burgos L. Agrobacterium-mediated transformation ofVitisCv. Monastrell suspension-cultured cells: Determination of critical parameters. Biotechnol Prog 2016; 32:725-34. [DOI: 10.1002/btpr.2246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/08/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Mingyu Chu
- Grupo de Biotecnología de Frutales, Dept. de Mejora Vegetal; CEBAS-CSIC; Murcia Spain
| | - Carmen Quiñonero
- Grupo de Biotecnología de Frutales, Dept. de Mejora Vegetal; CEBAS-CSIC; Murcia Spain
| | - Hülya Akdemir
- Grupo de Biotecnología de Frutales, Dept. de Mejora Vegetal; CEBAS-CSIC; Murcia Spain
| | - Nuria Alburquerque
- Grupo de Biotecnología de Frutales, Dept. de Mejora Vegetal; CEBAS-CSIC; Murcia Spain
| | - María Ángeles Pedreño
- Grupo de Biotecnología de Frutales, Dept. de Mejora Vegetal; CEBAS-CSIC; Murcia Spain
| | - Lorenzo Burgos
- Grupo de Biotecnología de Frutales, Dept. de Mejora Vegetal; CEBAS-CSIC; Murcia Spain
| |
Collapse
|
31
|
Negi S, Tak H, Ganapathi TR. Functional characterization of secondary wall deposition regulating transcription factors MusaVND2 and MusaVND3 in transgenic banana plants. PROTOPLASMA 2016; 253:431-446. [PMID: 25952082 DOI: 10.1007/s00709-015-0822-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
NAM, ATAF, and CUC (NAC) domain-containing proteins are plant-specific transcription factors involved in stress responses and developmental regulation. MusaVND2 and MusaVND3 are vascular-related NAC domain-containing genes encoding for nuclear-localized proteins. The transcript level of MusaVND2 and MusaVND3 are gradually induced after induction of lignification conditions in banana embryogenic cells. Banana embryogenic cells differentiated to tracheary element-like cells after overexpression of MusaVND2 and MusaVND3 with a differentiation frequency of 63.5 and 23.4 %, respectively, after ninth day. Transgenic banana plants overexpressing either of MusaVND2 or MusaVND3 showed ectopic secondary wall deposition as well as transdifferentiation of cells into tracheary elements. Transdifferentiation to tracheary element-like cells was observed in cortical cells of corm and in epidermal and mesophyll cells of leaves of transgenic plants. Elevated levels of lignin and crystalline cellulose were detected in the transgenic banana lines than control plants. The results obtained are useful for understanding the molecular regulation of secondary wall development in banana.
Collapse
Affiliation(s)
- Sanjana Negi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - T R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India.
| |
Collapse
|
32
|
Tripathi JN, Oduor RO, Tripathi L. A High-Throughput Regeneration and Transformation Platform for Production of Genetically Modified Banana. FRONTIERS IN PLANT SCIENCE 2015; 6:1025. [PMID: 26635849 PMCID: PMC4659906 DOI: 10.3389/fpls.2015.01025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/05/2015] [Indexed: 05/21/2023]
Abstract
Banana (Musa spp.) is an important staple food as well as cash crop in tropical and subtropical countries. Various bacterial, fungal, and viral diseases and pests such as nematodes are major constraints in its production and are currently destabilizing the banana production in sub-Saharan Africa. Genetic engineering is a complementary option used for incorporating useful traits in banana to bypass the long generation time, polyploidy, and sterility of most of the cultivated varieties. A robust transformation protocol for farmer preferred varieties is crucial for banana genomics and improvement. A robust and reproducible system for genetic transformation of banana using embryogenic cell suspensions (ECS) has been developed in this study. Two different types of explants (immature male flowers and multiple buds) were tested for their ability to develop ECS in several varieties of banana locally grown in Africa. ECS of banana varieties "Cavendish Williams" and "Gros Michel" were developed using multiple buds, whereas ECS of "Sukali Ndiizi" was developed using immature male flowers. Regeneration efficiency of ECS was about 20,000-50,000 plantlets per ml of settled cell volume (SCV) depending on variety. ECS of three different varieties were transformed through Agrobacterium-mediated transformation using gusA reporter gene and 20-70 independent transgenic events per ml SCV of ECS were regenerated on selective medium. The presence and integration of gusA gene in transgenic plants was confirmed by PCR, dot blot, and Southern blot analysis and expression by histochemical GUS assays. The robust transformation platform was successfully used to generate hundreds of transgenic lines with disease resistance. Such a platform will facilitate the transfer of technologies to national agricultural research systems (NARS) in Africa.
Collapse
Affiliation(s)
- Jaindra N. Tripathi
- Bioscience Centre, International Institute of Tropical AgricultureNairobi, Kenya
- Department of Biochemistry and Biotechnology, Kenyatta UniversityNairobi, Kenya
| | - Richard O. Oduor
- Department of Biochemistry and Biotechnology, Kenyatta UniversityNairobi, Kenya
| | - Leena Tripathi
- Bioscience Centre, International Institute of Tropical AgricultureNairobi, Kenya
| |
Collapse
|
33
|
Ghag SB, Shekhawat UKS, Ganapathi TR. Small RNA Profiling of Two Important Cultivars of Banana and Overexpression of miRNA156 in Transgenic Banana Plants. PLoS One 2015; 10:e0127179. [PMID: 25962076 PMCID: PMC4427177 DOI: 10.1371/journal.pone.0127179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/13/2015] [Indexed: 11/17/2022] Open
Abstract
Micro RNAs (miRNAs) are a class of non-coding, short RNAs having important roles in regulation of gene expression. Although plant miRNAs have been studied in detail in some model plants, less is known about these miRNAs in important fruit plants like banana. miRNAs have pivotal roles in plant growth and development, and in responses to diverse biotic and abiotic stress stimuli. Here, we have analyzed the small RNA expression profiles of two different economically significant banana cultivars by using high-throughput sequencing technology. We identified a total of 170 and 244 miRNAs in the two libraries respectively derived from cv. Grand Naine and cv. Rasthali leaves. In addition, several cultivar specific microRNAs along with their putative target transcripts were also detected in our studies. To validate our findings regarding the small RNA profiles, we also undertook overexpression of a common microRNA, MusamiRNA156 in transgenic banana plants. The transgenic plants overexpressing the stem-loop sequence derived from MusamiRNA156 gene were stunted in their growth together with peculiar changes in leaf anatomy. These results provide a foundation for further investigations into important physiological and metabolic pathways operational in banana in general and cultivar specific traits in particular.
Collapse
Affiliation(s)
- Siddhesh B Ghag
- Plant Cell Culture Technology section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Upendra K S Shekhawat
- Plant Cell Culture Technology section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Thumballi R Ganapathi
- Plant Cell Culture Technology section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
34
|
Sreedharan S, Shekhawat UKS, Ganapathi TR. Constitutive and stress-inducible overexpression of a native aquaporin gene (MusaPIP2;6) in transgenic banana plants signals its pivotal role in salt tolerance. PLANT MOLECULAR BIOLOGY 2015; 88:41-52. [PMID: 25757388 DOI: 10.1007/s11103-015-0305-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/28/2015] [Indexed: 06/04/2023]
Abstract
High soil salinity constitutes a major abiotic stress and an important limiting factor in cultivation of crop plants worldwide. Here, we report the identification and characterization of a aquaporin gene, MusaPIP2;6 which is involved in salt stress signaling in banana. MusaPIP2;6 was firstly identified based on comparative analysis of stressed and non-stressed banana tissue derived EST data sets and later overexpression in transgenic banana plants was performed to study its tangible functions in banana plants. The overexpression of MusaPIP2;6 in transgenic banana plants using constitutive or inducible promoter led to higher salt tolerance as compared to equivalent untransformed control plants. Cellular localization assay performed using transiently transformed onion peel cells indicated that MusaPIP2;6 protein tagged with green fluorescent protein was translocated to the plasma membrane. MusaPIP2;6-overexpressing banana plants displayed better photosynthetic efficiency and lower membrane damage under salt stress conditions. Our results suggest that MusaPIP2;6 is involved in salt stress signaling and tolerance in banana.
Collapse
Affiliation(s)
- Shareena Sreedharan
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | | | | |
Collapse
|
35
|
Negi S, Tak H, Ganapathi TR. Cloning and functional characterization of MusaVND1 using transgenic banana plants. Transgenic Res 2014; 24:571-85. [PMID: 25523085 DOI: 10.1007/s11248-014-9860-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/12/2014] [Indexed: 01/06/2023]
Abstract
Vascular related NAC (NAM, ATAF and CUC) domain-containing genes regulate secondary wall deposition and differentiation of xylem vessel elements. MusaVND1 is an ortholog of Arabidopsis VND1 and contains the highly conserved NAC domain. The expression of MusaVND1 is highest in developing corm and during lignification conditions, the increase in expression of MusaVND1 coincides with the expression of PAL, COMT and C4H genes. MusaVND1 encodes a nuclear localized protein as MusaVND1-GFP fusion protein gets localized to nucleus. Transient overexpression of MusaVND1 converts banana embryogenic cells to xylem vessel elements, with a final differentiation frequency of 33.54% at the end of tenth day. Transgenic banana plants overexpressing MusaVND1 showed stunted growth and were characterized by PCR and Southern blot analysis. Transgenic banana plants showed transdifferentiation of various types of cells into xylem vessel elements and ectopic deposition of lignin in cells of various plant organs such as leaf and corm. Tracheary element formation was seen in the cortical region of transgenic corm as well as in epidermal cells of leaves. Biochemical analysis indicates significantly higher levels of lignin and cellulose content in transgenic banana lines than control plants. MusaVND1 overexpressing transgenic banana plants showed elevated expression levels of genes involved in lignin and cellulose biosynthesis pathway. Further expression of different MYB transcription factors positively regulating secondary wall deposition was also up regulated in MusaVND1 transgenic lines.
Collapse
Affiliation(s)
- Sanjana Negi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | | | |
Collapse
|
36
|
Ghag SB, Shekhawat UKS, Ganapathi TR. Characterization of Fusarium wilt resistant somaclonal variants of banana cv. Rasthali by cDNA-RAPD. Mol Biol Rep 2014; 41:7929-35. [PMID: 25160909 DOI: 10.1007/s11033-014-3687-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/20/2014] [Indexed: 11/25/2022]
Abstract
Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense (Foc), is counted among the most destructive diseases of crop plants in India. In the absence of any credible control measure to manage this disease, development of resistant cultivars is the best option. Somaclonal variations arising out of long term in vitro culture of plant tissues is an important source of genetic variability and the selection of somaclones having desired characteristics is a promising strategy to develop plants with improved characters. In the present study, we isolated a group of somaclonal variants of banana cv. Rasthali which showed efficient resistance towards Foc race 1 infection in repeated bioassays. cDNA-RAPD methodology using 96 decamer primers was used to characterize these somaclonal variants. Among the four differentially amplified bands obtained, one mapping to the coding region of a lipoxygenase gene was confirmed to be down regulated in the somaclones as compared to controls by real-time quantitative RT-PCR. Our results correlated well with earlier studies with lipoxygenase mutants in maize wherein reduced expression of lipoxygenase led to enhanced resistance towards Fusarium infection.
Collapse
Affiliation(s)
- Siddhesh B Ghag
- Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | | | | |
Collapse
|
37
|
Ghag SB, Shekhawat UKS, Ganapathi TR. Native cell-death genes as candidates for developing wilt resistance in transgenic banana plants. AOB PLANTS 2014; 6:plu037. [PMID: 24996429 PMCID: PMC4122335 DOI: 10.1093/aobpla/plu037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/24/2014] [Indexed: 05/19/2023]
Abstract
In order to feed an ever-increasing world population, there is an urgent need to improve the production of staple food and fruit crops. The productivity of important food and fruit crops is constrained by numerous biotic and abiotic factors. The cultivation of banana, which is an important fruit crop, is severely threatened by Fusarium wilt disease caused by infestation by an ascomycetes fungus Fusarium oxysporum f. sp. cubense (Foc). Since there are no established edible cultivars of banana resistant to all the pathogenic races of Foc, genetic engineering is the only option for the generation of resistant cultivars. Since Foc is a hemibiotrophic fungus, investigations into the roles played by different cell-death-related genes in the progression of Foc infection on host banana plants are important. Towards this goal, three such genes namely MusaDAD1, MusaBAG1 and MusaBI1 were identified in banana. The study of their expression pattern in banana cells in response to Foc inoculation (using Foc cultures or fungal toxins like fusaric acid and beauvericin) indicated that they were indeed differentially regulated by fungal inoculation. Among the three genes studied, MusaBAG1 showed the highest up-regulation upon Foc inoculation. Further, in order to characterize these genes in the context of Foc infection in banana, we generated transgenic banana plants constitutively overexpressing the three genes that were later subjected to Foc bioassays in a contained greenhouse. Among the three groups of transgenics tested, transformed banana plants overexpressing MusaBAG1 demonstrated the best resistance towards Foc infection. Further, these plants also showed the highest relative overexpression of the transgene (MusaBAG1) among the three groups of transformed plants generated. Our study showed for the first time that native genes like MusaBAG1 can be used to develop transgenic banana plants with efficient resistance towards pathogens like Foc.
Collapse
Affiliation(s)
- Siddhesh B Ghag
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Upendra K Singh Shekhawat
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Thumballi R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
38
|
Ghag SB, Shekhawat UKS, Ganapathi TR. Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:541-53. [PMID: 24476152 DOI: 10.1111/pbi.12158] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/18/2013] [Accepted: 12/01/2013] [Indexed: 05/22/2023]
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is among the most destructive diseases of banana (Musa spp.). Because no credible control measures are available, development of resistant cultivars through genetic engineering is the only option. We investigated whether intron hairpin RNA (ihpRNA)-mediated expression of small interfering RNAs (siRNAs) targeted against vital fungal genes (velvet and Fusarium transcription factor 1) in transgenic banana could achieve effective resistance against Foc. Partial sequences of these two genes were assembled as ihpRNAs in suitable binary vectors (ihpRNA-VEL and ihpRNA-FTF1) and transformed into embryogenic cell suspensions of banana cv. Rasthali by Agrobacterium-mediated genetic transformation. Eleven transformed lines derived from ihpRNA-VEL and twelve lines derived from ihpRNA-FTF1 were found to be free of external and internal symptoms of Foc after 6-week-long greenhouse bioassays. The five selected transgenic lines for each construct continued to resist Foc at 8 months postinoculation. Presence of specific siRNAs derived from the two ihpRNAs in transgenic banana plants was confirmed by Northern blotting and Illumina sequencing of small RNAs derived from the transgenic banana plants. The present study represents an important effort in proving that host-induced post-transcriptional ihpRNA-mediated gene silencing of vital fungal genes can confer efficient resistance against debilitating pathogens in crop plants.
Collapse
Affiliation(s)
- Siddhesh B Ghag
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | | |
Collapse
|
39
|
Shekhawat UKS, Ganapathi TR. MusaWRKY71 overexpression in banana plants leads to altered abiotic and biotic stress responses. PLoS One 2013; 8:e75506. [PMID: 24116051 PMCID: PMC3792942 DOI: 10.1371/journal.pone.0075506] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/13/2013] [Indexed: 11/18/2022] Open
Abstract
WRKY transcription factors are specifically involved in the transcriptional reprogramming following incidence of abiotic or biotic stress on plants. We have previously documented a novel WRKY gene from banana, MusaWRKY71, which was inducible in response to a wide array of abiotic or biotic stress stimuli. The present work details the effects of MusaWRKY71 overexpression in transgenic banana plants. Stable integration and overexpression of MusaWRKY71 in transgenic banana plants was proved by Southern blot analysis and quantitative real time PCR. Transgenic banana plants overexpressing MusaWRKY71 displayed enhanced tolerance towards oxidative and salt stress as indicated by better photosynthesis efficiency (Fv/Fm) and lower membrane damage of the assayed leaves. Further, differential regulation of putative downstream genes of MusaWRKY71 was investigated using real-time RT-PCR expression analysis. Out of a total of 122 genes belonging to WRKY, pathogenesis-related (PR) protein genes, non-expressor of pathogenesis-related genes 1 (NPR1) and chitinase families analyzed, 10 genes (six belonging to WRKY family, three belonging to PR proteins family and one belonging to chitinase family) showed significant differential regulation in MusaWRKY71 overexpressing lines. These results indicate that MusaWRKY71 is an important constituent in the transcriptional reprogramming involved in diverse stress responses in banana.
Collapse
Affiliation(s)
- Upendra K. S. Shekhawat
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Thumballi R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
40
|
Mumbanza FM, Kiggundu A, Tusiime G, Tushemereirwe WK, Niblett C, Bailey A. In vitro antifungal activity of synthetic dsRNA molecules against two pathogens of banana, Fusarium oxysporum f. sp. cubense and Mycosphaerella fijiensis. PEST MANAGEMENT SCIENCE 2013; 69:1155-62. [PMID: 23471899 DOI: 10.1002/ps.3480] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 11/14/2012] [Accepted: 01/03/2013] [Indexed: 05/25/2023]
Abstract
BACKGROUND A key challenge for designing RNAi-based crop protection strategies is the identification of effective target genes in the pathogenic organism. In this study, in vitro antifungal activities of a set of synthetic double-stranded RNA molecules on spore germination of two major pathogenic fungi of banana, Fusarium oxysporum Schlecht f. sp. cubense WC Snyder & HN Hans (Foc) and Mycosphaerella fijiensis Morelet (Mf) were evaluated. RESULTS All the tested synthetic dsRNAs successfully triggered the silencing of target genes and displayed varying degrees of potential to inhibit spore germination of both tested banana pathogens. When Foc dsRNAs were applied to Foc spores, inhibition ranged from 79.8 to 93.0%, and from 19.9 to 57.8% when Foc dsRNAs were applied to Mf spores. However, when Mf dsRNAs were applied on Mf spores, inhibition ranged from 34.4 to 72.3%, and from 89.7 to 95.9% when Mf dsRNAs were applied to Foc spores. CONCLUSION The dsRNAs for adenylate cyclase, DNA polymerase alpha subunit and DNA polymerase delta subunit showed high levels of spore germination inhibition during both self- and cross-species tests, making them the most promising targets for RNA-mediated resistance in banana against these fungal pathogens. © 2013 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francis M Mumbanza
- National Banana Research Programme, National Agriculture Research Organisation, Kampala, Uganda.
| | | | | | | | | | | |
Collapse
|
41
|
Sreedharan S, Shekhawat UKS, Ganapathi TR. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:942-52. [PMID: 23745761 DOI: 10.1111/pbi.12086] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/02/2013] [Accepted: 04/29/2013] [Indexed: 05/21/2023]
Abstract
Water transport across cellular membranes is regulated by a family of water channel proteins known as aquaporins (AQPs). As most abiotic stresses like suboptimal temperatures, drought or salinity result in cellular dehydration, it is imperative to study the cause-effect relationship between AQPs and the cellular consequences of abiotic stress stimuli. Although plant cells have a high isoform diversity of AQPs, the individual and integrated roles of individual AQPs in optimal and suboptimal physiological conditions remain unclear. Herein, we have identified a plasma membrane intrinsic protein gene (MusaPIP1;2) from banana and characterized it by overexpression in transgenic banana plants. Cellular localization assay performed using MusaPIP1;2::GFP fusion protein indicated that MusaPIP1;2 translocated to plasma membrane in transformed banana cells. Transgenic banana plants overexpressing MusaPIP1;2 constitutively displayed better abiotic stress survival characteristics. The transgenic lines had lower malondialdehyde levels, elevated proline and relative water content and higher photosynthetic efficiency as compared to equivalent controls under different abiotic stress conditions. Greenhouse-maintained hardened transgenic plants showed faster recovery towards normal growth and development after cessation of abiotic stress stimuli, thereby underlining the importance of these plants in actual environmental conditions wherein the stress stimuli is often transient but severe. Further, transgenic plants where the overexpression of MusaPIP1;2 was made conditional by tagging it with a stress-inducible native dehydrin promoter also showed similar stress tolerance characteristics in in vitro and in vivo assays. Plants developed in this study could potentially enable banana cultivation in areas where adverse environmental conditions hitherto preclude commercial banana cultivation.
Collapse
Affiliation(s)
- Shareena Sreedharan
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | | | |
Collapse
|
42
|
Chong-Pérez B, Reyes M, Rojas L, Ocaña B, Ramos A, Kosky RG, Angenon G. Excision of a selectable marker gene in transgenic banana using a Cre/lox system controlled by an embryo specific promoter. PLANT MOLECULAR BIOLOGY 2013; 83:143-152. [PMID: 23591693 DOI: 10.1007/s11103-013-0058-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
Antibiotic and herbicide resistance genes have been used in transgene technology as powerful selection tools. Nonetheless, once transgenic events have been obtained their presence is no longer needed and can even be undesirable. In this work, we have developed a system to excise the selectable marker and the cre recombinase genes from transgenic banana cv. 'Grande Naine' (Musa AAA). To achieve this, the embryo specific REG-2 promoter was isolated from rice and its expression pattern in banana cell clumps, somatic embryos and regenerated plantlets was characterized by using a pREG2::uidA fusion construct. Subsequently, the REG-2 promoter was placed upstream of the cre gene, conferring Cre functionality in somatic embryos and recombination of lox sites resulting in excision of the selectable marker and cre genes. PCR analysis revealed that 41.7 % of the analysed transgenic plants were completely marker free, results that were thereafter confirmed by Southern blot hybridization. These results demonstrate the feasibility of using developmentally controlled promoters to mediate marker excision in banana. This system does not require any extra handling compared to the conventional transformation procedure and might be useful in other species regenerating through somatic embryogenesis.
Collapse
Affiliation(s)
- Borys Chong-Pérez
- Instituto de Biotecnología de Las Plantas, Universidad Central Marta Abreu de Las Villas, Carretera A Camajuaní Km 5.5, Santa Clara, Villa Clara, Cuba
| | | | | | | | | | | | | |
Collapse
|
43
|
Development of Agrobacterium-mediated transformation of highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease. World J Microbiol Biotechnol 2012. [DOI: 10.1007/s11274-012-1214-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Sreedharan S, Shekhawat UKS, Ganapathi TR. MusaSAP1, a A20/AN1 zinc finger gene from banana functions as a positive regulator in different stress responses. PLANT MOLECULAR BIOLOGY 2012; 80:503-17. [PMID: 22961664 DOI: 10.1007/s11103-012-9964-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/25/2012] [Indexed: 05/19/2023]
Abstract
A20/AN1 zinc finger domain containing Stress Associated Proteins (SAP) are involved in diverse stress response pathways in plants. In the present study, a novel banana SAP gene, MusaSAP1, was identified from banana EST database and was subsequently characterized by overexpression in transgenic banana plants. Expression profiling in native banana plants showed that MusaSAP1 was up-regulated by drought, salt, cold, heat and oxidative stress as well as by treatment with abscisic acid. Cellular localization assay carried out by making a MusaSAP1::GFP fusion protein indicated that MusaSAP1 is incompletely translocated to nucleus. Copy number analysis performed using real time PCR and Southern blotting indicated that MusaSAP1 occurs in the banana genome in a single copy per 11 chromosome set. Transgenic banana plants constitutively overexpressing MusaSAP1 displayed better stress endurance characteristics as compared to controls in both in vitro and ex vivo assays. Lesser membrane damage as indicated by reduced malondialdehyde levels in transgenic leaves subjected to drought, salt or oxidative stress pointed towards significant role for MusaSAP1 in stress amelioration pathways of banana. Strong up-regulation of a polyphenol oxidase (PPO) coding transcript in MusaSAP1 overexpressing plants together with induction of MusaSAP1 by wounding and methyl jasmonate treatment indicated possible involvement of MusaSAP1 in biotic stress responses where PPOs perform major functions in multiple defense pathways.
Collapse
Affiliation(s)
- Shareena Sreedharan
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | | | |
Collapse
|
45
|
Roderick H, Tripathi L, Babirye A, Wang D, Tripathi J, Urwin PE, Atkinson HJ. Generation of transgenic plantain (Musa spp.) with resistance to plant pathogenic nematodes. MOLECULAR PLANT PATHOLOGY 2012; 13:842-851. [PMID: 22435592 PMCID: PMC6638790 DOI: 10.1111/j.1364-3703.2012.00792.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plant parasitic nematodes impose a severe constraint on plantain and banana productivity; however, the sterile nature of many cultivars precludes conventional breeding for resistance. Transgenic plantain cv. Gonja manjaya (Musa AAB) plants, expressing a maize cystatin that inhibits nematode digestive cysteine proteinases and a synthetic peptide that disrupts nematode chemoreception, were assessed for their ability to resist nematode infection. Lines were generated that expressed each gene singly or both together in a stacked defence. Nematode challenge with a single species or a mixed population identified 10 lines with significant resistance. The best level of resistance achieved against the major pest species Radopholus similis was 84% ± 8% for the cystatin, 66% ± 14% for the peptide and 70% ± 6% for the dual defence. In the mixed population, trial resistance was also demonstrated to Helicotylenchus multicinctus. A fluorescently labelled form of the chemodisruptive peptide underwent retrograde transport along certain sensory dendrites of R. similis as required to disrupt chemoreception. The peptide was degraded after 30 min in simulated intestinal fluid or boiling water and after 1 h in nonsterile soil. In silico sequence analysis suggests that the peptide is not a mammalian antigen. This work establishes the mode of action of a novel nematode defence, develops the evidence for its safe and effective deployment against multiple nematode species and identifies transgenic plantain lines with a high level of resistance for a proposed field trial.
Collapse
Affiliation(s)
- Hugh Roderick
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Shekhawat UKS, Ganapathi TR, Hadapad AB. Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection. J Gen Virol 2012; 93:1804-1813. [DOI: 10.1099/vir.0.041871-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The banana aphid-transmitted Banana bunchy top virus (BBTV) is the most destructive viral pathogen of bananas and plantains worldwide. Lack of natural sources of resistance to BBTV has necessitated the exploitation of proven transgenic technologies for obtaining BBTV-resistant banana cultivars. In this study, we have explored the concept of using intron-hairpin-RNA (ihpRNA) transcripts corresponding to viral master replication initiation protein (Rep) to generate BBTV-resistant transgenic banana plants. Two ihpRNA constructs namely ihpRNA-Rep and ihpRNA-ProRep generated using Rep full coding sequence or Rep partial coding sequence together with its 5′ upstream regulatory region, respectively, and castor bean catalase intron were successfully transformed into banana embryogenic cells. ihpRNA-Rep- and ihpRNA-ProRep-derived transgenic banana plants, selected based on preliminary screening for efficient reporter gene expression, were completely resistant to BBTV infection as indicated by the absence of disease symptoms after 6 months of viruliferous aphid inoculation. The resistance to BBTV infection was also evident by the inability to detect cDNAs coding for viral coat protein, movement protein and Rep protein by RT-PCR from inoculated transgenic leaf extracts. Southern analysis of the two groups of transgenics showed that ihpRNA transgene was stably integrated into the banana genome. The detection of small interfering RNAs (siRNAs) derived from the ihpRNA transgene sequence in transformed BBTV-resistant plants positively established RNA interference as the mechanism underlying the observed resistance to BBTV. Efficient screening of optimal transformants in this vegetatively propagated non-segregating fruit crop ensured that all the transgenic plants assayed were resistant to BBTV infection.
Collapse
Affiliation(s)
- Upendra K. S. Shekhawat
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Thumballi R. Ganapathi
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Ashok B. Hadapad
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
47
|
Ghag SB, Shekhawat UKS, Ganapathi TR. Petunia floral defensins with unique prodomains as novel candidates for development of fusarium wilt resistance in transgenic banana plants. PLoS One 2012; 7:e39557. [PMID: 22745785 PMCID: PMC3382125 DOI: 10.1371/journal.pone.0039557] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/27/2012] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides are a potent group of defense active molecules that have been utilized in developing resistance against a multitude of plant pathogens. Floral defensins constitute a group of cysteine-rich peptides showing potent growth inhibition of pathogenic filamentous fungi especially Fusarium oxysporum in vitro. Full length genes coding for two Petunia floral defensins, PhDef1 and PhDef2 having unique C-terminal 31 and 27 amino acid long predicted prodomains, were overexpressed in transgenic banana plants using embryogenic cells as explants for Agrobacterium-mediated genetic transformation. High level constitutive expression of these defensins in elite banana cv. Rasthali led to significant resistance against infection of Fusarium oxysporum f. sp. cubense as shown by in vitro and ex vivo bioassay studies. Transgenic banana lines expressing either of the two defensins were clearly less chlorotic and had significantly less infestation and discoloration in the vital corm region of the plant as compared to untransformed controls. Transgenic banana plants expressing high level of full-length PhDef1 and PhDef2 were phenotypically normal and no stunting was observed. In conclusion, our results suggest that high-level constitutive expression of floral defensins having distinctive prodomains is an efficient strategy for development of fungal resistance in economically important fruit crops like banana.
Collapse
Affiliation(s)
- Siddhesh B. Ghag
- Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Upendra K. Singh Shekhawat
- Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Thumballi R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
48
|
Heat shock induced excision of selectable marker genes in transgenic banana by the Cre-lox site-specific recombination system. J Biotechnol 2012; 159:265-73. [DOI: 10.1016/j.jbiotec.2011.07.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/26/2011] [Accepted: 07/27/2011] [Indexed: 11/19/2022]
|
49
|
Cruz-Hernández A, Paredes-lópez O. Fruit Quality: New Insights for Biotechnology. Crit Rev Food Sci Nutr 2012; 52:272-89. [DOI: 10.1080/10408398.2010.499844] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Shekhawat UKS, Srinivas L, Ganapathi TR. MusaDHN-1, a novel multiple stress-inducible SK(3)-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. PLANTA 2011; 234:915-32. [PMID: 21671068 DOI: 10.1007/s00425-011-1455-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/27/2011] [Indexed: 05/18/2023]
Abstract
Dehydrins are highly hydrophilic proteins involved in playing key adaptive roles in response to abiotic stress conditions having dehydration as a common component. In the present study, a novel banana SK(3)-type dehydrin, MusaDHN-1, was identified and later characterized using transgenic banana plants to investigate its functions in abiotic stress tolerance. Expression profiling in native banana plants demonstrated that MusaDHN-1 was induced in leaves by drought, salinity, cold, oxidative and heavy metal stress as well as by treatment with signalling molecules like abscisic acid, ethylene and methyl jasmonate. Promoter analysis carried out by making a MusaDHN-1 promoter: β-glucuronidase fusion construct reconfirmed the abiotic stress inducibility of MusaDHN-1. Transgenic banana plants constitutively overexpressing MusaDHN-1 were phenotypically normal and displayed improved tolerance to drought and salt-stress treatments in both in vitro and ex vitro assays. Enhanced accumulation of proline and reduced malondialdehyde levels in drought and salt-stressed MusaDHN-1 overexpressing plants further established their superior performance in stressed conditions. This study is the first to report generation of transgenic banana plants engineered for improved drought and salt-stress tolerance.
Collapse
Affiliation(s)
- Upendra K Singh Shekhawat
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | | | | |
Collapse
|