1
|
Zhong BY, Fan W, Guan JJ, Peng Z, Jia Z, Jin H, Jin ZC, Chen JJ, Zhu HD, Teng GJ. Combination locoregional and systemic therapies in hepatocellular carcinoma. Lancet Gastroenterol Hepatol 2025; 10:369-386. [PMID: 39993404 DOI: 10.1016/s2468-1253(24)00247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 02/26/2025]
Abstract
Locoregional therapies play a fundamental role in the treatment of patients with early and intermediate and locally advanced hepatocellular carcinomas. With encouraging recent advances in immunotherapy-based systemic therapies, locoregional therapies are being both promoted and challenged by new systemic therapy options. Combined locoregional and systemic therapies might enhance treatment outcomes compared with either option alone. This Series paper summarises the existing data on locoregional and systemic therapies for hepatocellular carcinoma, and discusses evidence from studies investigating their combination with a focus on their synergistic efficacy and safety.
Collapse
Affiliation(s)
- Bin-Yan Zhong
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China; Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenzhe Fan
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Justin J Guan
- Division of Interventional Radiology, Department of Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Zhenwei Peng
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhongzhi Jia
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Haojie Jin
- Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Cheng Jin
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Jian-Jian Chen
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Hai-Dong Zhu
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Gao-Jun Teng
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Caliskan Yildirim E, Ergun Y. Advancing hepatocellular carcinoma treatment with hepatic arterial infusion chemotherapy. World J Gastrointest Oncol 2024; 16:4757-4761. [PMID: 39678807 PMCID: PMC11577366 DOI: 10.4251/wjgo.v16.i12.4757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a major challenge in oncology, being a leading cause of cancer-related mortality worldwide. Early-stage HCC is typically treated with surgical resection, transplantation, or ablation, while advanced-stage HCC relies on systemic therapies like sorafenib and newer combinations such as atezolizumab-bevacizumab. Despite these advancements, there is still a need for effective treatments for unresectable HCC, especially in cases with macroscopic vascular invasion. Hepatic arterial infusion chemotherapy (HAIC) has demonstrated promising outcomes in Asia for the treatment of unresectable HCC, yet its application in Western countries has been relatively limited. This letter reviews the recent meta-analysis by Zhou et al published in the World Journal of Gastrointestinal Oncology, which demonstrates the efficacy and safety of HAIC vs sorafenib. The analysis includes 9 randomized controlled trials and 35 cohort studies, highlighting significant improvements in overall survival, progression-free survival, and objective response rates with HAIC and its combinations. The editorial explores the reasons behind the limited use of HAIC in Western countries. It underscores the potential of HAIC to enhance treatment outcomes for advanced HCC and calls for more research and broader adoption of HAIC in clinical practice globally.
Collapse
Affiliation(s)
- Eda Caliskan Yildirim
- Department of Medical Oncology, Sincan Training and Research Hospital, Ankara 06100, Türkiye
| | - Yakup Ergun
- Department of Medical Oncology, Bower Hospital, Diyarbakır 21100, Türkiye
| |
Collapse
|
3
|
Wang Q, Yu G, Qiu J, Lu W. Application of Intravoxel Incoherent Motion in Clinical Liver Imaging: A Literature Review. J Magn Reson Imaging 2024; 60:417-440. [PMID: 37908165 DOI: 10.1002/jmri.29086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Intravoxel incoherent motion (IVIM) modeling is a widely used double-exponential model for describing diffusion-weighted imaging (DWI) signal, with a slow component related to pure molecular diffusion and a fast component associated with microcirculatory perfusion, which compensates for the limitations of traditional DWI. IVIM is a noninvasive technique for obtaining liver pathological information and characterizing liver lesions, and has potential applications in the initial diagnosis and treatment monitoring of liver diseases. Recent studies have demonstrated that IVIM-derived parameters are useful for evaluating liver lesions, including nonalcoholic fatty liver disease (NAFLD), liver fibrosis and liver tumors. However, the results are not stable. Therefore, it is necessary to summarize the current applications of IVIM in liver disease research, identify existing shortcomings, and point out the future development direction. In this review, we searched for studies related to hepatic IVIM-DWI applications over the past two decades in the PubMed database. We first introduce the fundamental principles and influential factors of IVIM, and then discuss its application in NAFLD, liver fibrosis, and focal hepatic lesions. It has been found that IVIM is still unstable in ensuring the robustness and reproducibility of measurements in the assessment of liver fibrosis grade and liver tumors differentiation, due to inconsistent and substantial overlap in the range of IVIM-derived parameters for different fibrotic stages. In the end, the future direction of IVIM-DWI in the assessment of liver diseases is discussed, emphasizing the need for further research on the stability of IVIM-derived parameters, particularly perfusion-related parameters, in order to promote the clinical practice of IVIM-DWI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Qi Wang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Guanghui Yu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Weizhao Lu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
4
|
Maruyama M, Yoshizako T, Aso H, Maruyama M, Araki H, Yoshida R, Ando S, Nakamura M, Kaji Y. Evaluation of Local Vascular Perfusion in the Lower Extremities on Intravoxel Incoherent Motion Imaging before and after Endovascular Therapy. Cardiovasc Intervent Radiol 2024; 47:494-502. [PMID: 38446209 DOI: 10.1007/s00270-024-03672-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE To evaluate improvement in local vascular perfusion of the lower limbs on intravoxel incoherent motion (IVIM) imaging after endovascular therapy (EVT). MATERIALS AND METHODS IVIM imaging was performed on 20 lower limbs of 16 patients with lower extremity arterial diseases before and after EVT. To estimate IVIM, diffusion-weighted lower-limb axial images (number of slices = 25 and slice thickness = 3.5 mm) were acquired using different b values (0, 300, and 1000 s/mm2). IVIM imaging with the simplified IVIM techniques was performed. The perfusion-related coefficient (D* [10-3 mm2/s]), perfusion fraction (f [%]), and D*f product (10-3 mm2/s %) were calculated before and 2-3 days after EVT. The ankle brachial index (ABI), mean D* (10-3 mm2/s), mean f (%), and mean D*f product (10-3 mm2/s %) before and after EVT were compared. RESULTS Successful revascularization was achieved in all cases. After EVT, the mean ABI significantly increased from 0.59 ± 0.19 to 0.87 ± 0.15 (p < 0.001, paired t test). The mean D* (10-3 mm2/s) (22.08 ± 3.26 versus 24.87 ± 2.65, p = 0.005, paired t test), and D*f product (10-3 mm2/s%) (551.03 ± 79.02 versus 634.55 ± 76.96, p = 0.002, paired t-test) of the lower limbs significantly increased after EVT, whereas f (%) (25.00 ± 1.28 versus 25.52 ± 1.61, p = 0.261, paired t-test) did not significantly increased after EVT. CONCLUSION D* (10-3 mm2/s) and D*f product (10-3 mm2/s %) on IVIM imaging could evaluate improvement in local vascular perfusion of the lower limbs after EVT. LEVEL OF EVIDENCE Level 4, Case Series.
Collapse
Affiliation(s)
- Mitsunari Maruyama
- Department of Radiology, Shimane University Faculty of Medicine, 89-1 Enya Cho, P.O. Box 00693-8501, Izumo, Japan.
| | - Takeshi Yoshizako
- Department of Radiology, Shimane University Faculty of Medicine, 89-1 Enya Cho, P.O. Box 00693-8501, Izumo, Japan
| | - Hiroya Aso
- Department of Radiology, Shimane University Faculty of Medicine, 89-1 Enya Cho, P.O. Box 00693-8501, Izumo, Japan
| | - Minako Maruyama
- Department of Radiology, Shimane University Faculty of Medicine, 89-1 Enya Cho, P.O. Box 00693-8501, Izumo, Japan
| | - Hisatoshi Araki
- Department of Radiology, Shimane University Faculty of Medicine, 89-1 Enya Cho, P.O. Box 00693-8501, Izumo, Japan
| | - Rika Yoshida
- Department of Radiology, Shimane University Faculty of Medicine, 89-1 Enya Cho, P.O. Box 00693-8501, Izumo, Japan
| | - Shinji Ando
- Department of Radiology, Shimane University Faculty of Medicine, 89-1 Enya Cho, P.O. Box 00693-8501, Izumo, Japan
| | - Megumi Nakamura
- Department of Radiology, Shimane University Faculty of Medicine, 89-1 Enya Cho, P.O. Box 00693-8501, Izumo, Japan
| | - Yasushi Kaji
- Department of Radiology, Shimane University Faculty of Medicine, 89-1 Enya Cho, P.O. Box 00693-8501, Izumo, Japan
| |
Collapse
|
5
|
Zhao M, Guo Z, Zou YH, Li X, Yan ZP, Chen MS, Fan WJ, Li HL, Yang JJ, Chen XM, Xu LF, Zhang YW, Zhu KS, Sun JH, Li JP, Jin Y, Yu HP, Duan F, Xiong B, Yin GW, Lin HL, Ma YL, Wang HM, Gu SZ, Si TG, Wang XD, Zhao C, Yu WC, Guo JH, Zhai J, Huang YH, Wang WY, Lin HF, Gu YK, Chen JZ, Wang JP, Zhang YM, Yi JZ, Lyu N. Arterial chemotherapy for hepatocellular carcinoma in China: consensus recommendations. Hepatol Int 2024; 18:4-31. [PMID: 37864725 DOI: 10.1007/s12072-023-10599-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/17/2023] [Indexed: 10/23/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and the third leading cause of cancer-related deaths globally. Hepatic arterial infusion chemotherapy (HAIC) treatment is widely accepted as one of the alternative therapeutic modalities for HCC owing to its local control effect and low systemic toxicity. Nevertheless, although accumulating high-quality evidence has displayed the superior survival advantages of HAIC of oxaliplatin, fluorouracil, and leucovorin (HAIC-FOLFOX) compared with standard first-line treatment in different scenarios, the lack of standardization for HAIC procedure and remained controversy limited the proper and safe performance of HAIC treatment in HCC. Therefore, an expert consensus conference was held on March 2023 in Guangzhou, China to review current practices regarding HAIC treatment in patients with HCC and develop widely accepted statements and recommendations. In this article, the latest evidence of HAIC was systematically summarized and the final 22 expert recommendations were proposed, which incorporate the assessment of candidates for HAIC treatment, procedural technique details, therapeutic outcomes, the HAIC-related complications and corresponding treatments, and therapeutic scheme management.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China.
- Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China.
| | - Zhi Guo
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Ying-Hua Zou
- Department of Interventional and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Ping Yan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min-Shan Chen
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei-Jun Fan
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hai-Liang Li
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Ji-Jin Yang
- Department of Interventional Radiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Ming Chen
- Department of Interventional Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lin-Feng Xu
- Department of Interventional Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yue-Wei Zhang
- Hepatopancreatbiliary Center, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Kang-Shun Zhu
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun-Hui Sun
- Division of Hepatobiliary and Pancreatic Surgery, Hepatobiliary and Pancreatic Interventional Treatment Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Ping Li
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yong Jin
- The Interventional Therapy Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hai-Peng Yu
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Feng Duan
- Department of Interventional Radiology, The General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Bin Xiong
- Department of Interventional Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guo-Wen Yin
- Department of Interventional Radiology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Hai-Lan Lin
- Department of Interventional Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Yi-Long Ma
- Department of Interventional Therapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Hua-Ming Wang
- Department of Interventional Therapy, The Fifth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Shan-Zhi Gu
- Department of Interventional Therapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Tong-Guo Si
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Xiao-Dong Wang
- Departments of Interventional Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Chang Zhao
- Department of Interventional Therapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Wen-Chang Yu
- Department of Interventional Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Jian-Hai Guo
- Departments of Interventional Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jian Zhai
- Department of Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yong-Hui Huang
- Department of Interventional Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wei-Yu Wang
- Department of Interventional Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hai-Feng Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yang-Kui Gu
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jin-Zhang Chen
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Peng Wang
- Department of Oncology, First People's Hospital of Foshan, Foshan Hospital of Sun Yat-Sen University, Foshan, China
| | - Yi-Min Zhang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jun-Zhe Yi
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ning Lyu
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| |
Collapse
|
6
|
Long Y, Song X, Guan Y, Lan R, Huang Z, Li S, Zhang L. Sorafenib plus hepatic arterial infusion chemotherapy versus sorafenib alone for advanced hepatocellular carcinoma: A systematic review and meta-analysis. J Gastroenterol Hepatol 2022; 38:486-495. [PMID: 36516040 DOI: 10.1111/jgh.16088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/12/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The combination of sorafenib and hepatic arterial infusion chemotherapy (HAIC) is expected to exert a synergistic anticancer effect. We conducted this systematic review to examine the efficacy and safety of sorafenib plus HAIC vs sorafenib alone for advanced hepatocellular carcinoma (HCC). METHODS We systematically searched the PubMed, Embase, and Cochrane Library with the following search terms: "sorafenib," "hepatic arterial infusion chemotherapy," "HAIC," "advanced," "hepatocellular carcinoma," and "HCC." Pooled hazard ratios (HRs) and 95% CIs were calculated for overall survival (OS) and progression-free survival (PFS), and we calculated the pooled risk ratios (RRs) and 95% CIs for objective response rate (ORR) and adverse events (AEs). RESULTS We found that sorafenib plus HAIC was associated with significantly better OS (HR, 0.56; 95% CI, 0.37-0.83; P < 0.01), PFS (HR, 0.44; 95% CI, 0.27-0.72; P < 0.01), and ORR (RR, 3.77; 95% CI, 1.87-7.58; P < 0.01) than sorafenib alone in advanced HCC. Grade 3/4 AEs were more frequent in the sorafenib plus HAIC group, including leukopenia (RR, 4.54; 95% CI, 1.77-11.64; P < 0.01), neutropenia (RR, 7.81; 95% CI, 3.36-18.16; P < 0.01), thrombocytopenia (RR, 2.97; 95% CI, 1.98-4.46; P < 0.01), anemia (RR, 2.24; 95% CI, 1.22-4.09; P < 0.01), anorexia (RR, 2.37; 95% CI, 1.07-5.27; P = 0.03), nausea (RR, 2.98; 95% CI, 1.19-7.42; P = 0.02), and vomiting (RR, 3.99; 95% CI, 1.14-14.01; P = 0.03). CONCLUSION Sorafenib plus HAIC improved OS, PFS, and ORR compared with sorafenib alone in advanced HCC, with acceptable safety profile.
Collapse
Affiliation(s)
- Yin Long
- Department of Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingdong Song
- Department of Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Guan
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ran Lan
- Department of Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziqi Huang
- Department of Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Senlin Li
- Department of Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhang
- Department of Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Yue X, Lu Y, Jiang Q, Dong X, Kan X, Wu J, Kong X, Han P, Yu J, Li Q. Application of Intravoxel Incoherent Motion in the Evaluation of Hepatocellular Carcinoma after Transarterial Chemoembolization. Curr Oncol 2022; 29:9855-9866. [PMID: 36547188 PMCID: PMC9776688 DOI: 10.3390/curroncol29120774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
(1) Background: To assess the efficacy of the quantitative parameters of intravoxel incoherent motion (IVIM) diffusion-weighted imaging for hepatocellular carcinoma (HCC) diagnosis after transarterial chemoembolization (TACE). (2) Methods: Fifty HCC patients after TACE were included and underwent MRI. All of the patients were scanned with the IVIM-DWI sequence and underwent TACE retreatment within 1 week. Referring to digital subtraction angiography (DSA) and MR enhanced images, two readers measured the f, D, and D* values of the tumor active area (TAA), tumor necrotic area (TNA), and adjacent normal hepatic parenchyma (ANHP). Then, the distinctions of the TAA, TNA, and ANHP were compared and we analyzed the differential diagnosis of the parameters in three tissues. (3) Results: For values of f and D, there were significant differences between any of the TAA, TNA, and ANHP (p < 0.05). The values of f and D were the best indicators for identifying the TAA and TNA, with AUC values of 0.959 and 0.955, respectively. The values of f and D performed well for distinguishing TAA from ANHP, with AUC values of 0.835 and 0.753, respectively. (4) Conclusions: Quantitative IVIM-DWI was effective for evaluating tumor viability in HCC patients treated with TACE and may be helpful for non-invasive monitoring of the tumor viability.
Collapse
Affiliation(s)
- Xiaofei Yue
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yuting Lu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qiqi Jiang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiangjun Dong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xuefeng Kan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jiawei Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiangchuang Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jie Yu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Correspondence: (J.Y.); (Q.L.); Tel.: +86-139-9561-0820 (J.Y.); +86-134-0719-3751 (Q.L.)
| | - Qian Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Correspondence: (J.Y.); (Q.L.); Tel.: +86-139-9561-0820 (J.Y.); +86-134-0719-3751 (Q.L.)
| |
Collapse
|
8
|
Maruyama M, Aso H, Araki H, Yoshida R, Ando S, Nakamura M, Yoshizako T. Improvement in local vascular perfusion of the lower extremities on intravoxel incoherent motion imaging: A case report. Radiol Case Rep 2022; 17:4319-4322. [PMID: 36132059 PMCID: PMC9483734 DOI: 10.1016/j.radcr.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/07/2022] Open
Abstract
Intravoxel incoherent motion imaging has its improvement-evaluating ability in lower limb perfusion after endovascular therapy in individuals with lower extremity arterial disease. Here, we present a 70-year-old man with intermittent claudication of the left lower limb, whose microperfusion on intravoxel incoherent motion imaging improved after endovascular therapy. The patient underwent intravoxel incoherent motion imaging of the lower extremities pre- and postendovascular therapy. After endovascular therapy, the left ankle brachial index increased from 0.46 to 1.06. The mean perfusion-related coefficient (10−3 mm2/s) of the left lower limb increased from 19.70 ± 3.17 to 24.81 ± 3.41, and mean perfusion fraction (%) of the left lower limb slightly increased from 24.41 ± 0.96% to 25.20 ± 1.89% after endovascular therapy. Therefore, successful revascularization can improve microperfusion on intravoxel incoherent motion imaging in a patient with lower extremity arterial disease.
Collapse
|
9
|
Qu C, Zeng P, Wang H, Guo L, Zhang L, Yuan C, Yuan H, Xiu D. Preoperative Multiparametric Quantitative Magnetic Resonance Imaging Correlates with Prognosis and Recurrence Patterns in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14174243. [PMID: 36077777 PMCID: PMC9454581 DOI: 10.3390/cancers14174243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Magnetic resonance imaging (MRI) has been considered a noninvasive prognostic biomarker in some cancers; however, the correlation with pancreatic ductal adenocarcinoma (PDAC) remains inconclusive. The aim of our study was to identify quantitative MRI parameters associated with prognosis and recurrence patterns. In an analysis of data from the 136 patients ultimately included in this study, we found that the value of the pure diffusion coefficient D in intravoxel incoherent MRI is an independent risk factor for overall survival (OS) and recurrence-free survival (RFS), while a low value of D is significantly associated with a higher risk of local recurrence. All the patients have been operated on with histopathology for further evaluation. Based on the results of our research, we believe that it is possible in clinical practice to stratify patients based on quantitative MRI data in order to guide treatment strategies, reduce the risk of local tumor recurrence, and improve patients’ prognosis. Abstract Magnetic resonance imaging (MRI) has been shown to be associated with prognosis in some tumors; however, the correlation in pancreatic ductal adenocarcinoma (PDAC) remains inconclusive. In this retrospective study, we ultimately included 136 patients and analyzed quantitative MRI parameters that are associated with prognosis and recurrence patterns in PDAC using survival analysis and competing risks models; all the patients have been operated on with histopathology and immunohistochemical staining for further evaluation. In intravoxel incoherent motion diffusion-weighted imaging (DWI), we found that pure-diffusion coefficient D value was an independent risk factor for overall survival (OS) (HR: 1.696, 95% CI: 1.003–2.869, p = 0.049) and recurrence-free survival (RFS) (HR: 2.066, 95% CI: 1.252–3.409, p = 0.005). A low D value (≤1.08 × 10−3 mm2/s) was significantly associated with a higher risk of local recurrence (SHR: 5.905, 95% CI: 2.107–16.458, p = 0.001). Subgroup analysis revealed that patients with high D and f values had significantly better outcomes with adjuvant chemotherapy. Distant recurrence patients in the high-D value group who received chemotherapy may significantly improve their OS and RFS. It was found that preoperative multiparametric quantitative MRI correlates with prognosis and recurrence patterns in PDAC. Diffusion coefficient D value can be used as a noninvasive biomarker for predicting prognosis and recurrence patterns in PDAC.
Collapse
Affiliation(s)
- Chao Qu
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Piaoe Zeng
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Hangyan Wang
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Limei Guo
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Lingfu Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Chunhui Yuan
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
- Correspondence: (H.Y.); (D.X.)
| | - Dianrong Xiu
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
- Correspondence: (H.Y.); (D.X.)
| |
Collapse
|
10
|
Zhou Y, Zheng J, Yang C, Peng J, Liu N, Yang L, Zhang XM. Application of intravoxel incoherent motion diffusion-weighted imaging in hepatocellular carcinoma. World J Gastroenterol 2022; 28:3334-3345. [PMID: 36158259 PMCID: PMC9346463 DOI: 10.3748/wjg.v28.i27.3334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/26/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
The morbidity and mortality of hepatocellular carcinoma (HCC) rank 6th and 4th, respectively, among malignant tumors worldwide. Traditional diffusion-weighted imaging (DWI) uses the apparent diffusion coefficient (ADC) obtained by applying the monoexponential model to reflect water molecule diffusion in active tissue; however, the value of ADC is affected by microcirculation perfusion. Using a biexponential model, intravoxel incoherent motion (IVIM)-DWI quantitatively measures information related to pure water molecule diffusion and microcirculation perfusion, thus compensating for the shortcomings of DWI. The number of studies examining the application of IVIM-DWI in patients with HCC has gradually increased over the last few years, and many results show that IVIM-DWI has vital value for HCC differentiation, pathological grading, and predicting and evaluating the treatment response. The present study principally reviews the principle of IVIM-DWI and its research progress in HCC differentiation, pathological grading, predicting and evaluating the treatment response, predicting postoperative recurrence and predicting gene expression prediction.
Collapse
Affiliation(s)
- Yi Zhou
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Radiology, People's Hospital of Deyang City, Deyang 618000, Sichuan Province, China
| | - Jing Zheng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Cui Yang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Radiology, Panzhihua Central Hospital, Panzhihua 617000, Sichuan Province, China
| | - Juan Peng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Radiology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu 610007, Sichuan Province, China
| | - Ning Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Ming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
11
|
McGarry SD, Brehler M, Bukowy JD, Lowman AK, Bobholz SA, Duenweg SR, Banerjee A, Hurrell SL, Malyarenko D, Chenevert TL, Cao Y, Li Y, You D, Fedorov A, Bell LC, Quarles CC, Prah MA, Schmainda KM, Taouli B, LoCastro E, Mazaheri Y, Shukla‐Dave A, Yankeelov TE, Hormuth DA, Madhuranthakam AJ, Hulsey K, Li K, Huang W, Huang W, Muzi M, Jacobs MA, Solaiyappan M, Hectors S, Antic T, Paner GP, Palangmonthip W, Jacobsohn K, Hohenwalter M, Duvnjak P, Griffin M, See W, Nevalainen MT, Iczkowski KA, LaViolette PS. Multi-Site Concordance of Diffusion-Weighted Imaging Quantification for Assessing Prostate Cancer Aggressiveness. J Magn Reson Imaging 2022; 55:1745-1758. [PMID: 34767682 PMCID: PMC9095769 DOI: 10.1002/jmri.27983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Diffusion-weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease. PURPOSE To compare 14 site-specific parametric fitting implementations applied to the same dataset of whole-mount pathologically validated DWI to test the hypothesis that cancer differentiation varies with different fitting algorithms. STUDY TYPE Prospective. POPULATION Thirty-three patients prospectively imaged prior to prostatectomy. FIELD STRENGTH/SEQUENCE 3 T, field-of-view optimized and constrained undistorted single-shot DWI sequence. ASSESSMENT Datasets, including a noise-free digital reference object (DRO), were distributed to the 14 teams, where locally implemented DWI parameter maps were calculated, including mono-exponential apparent diffusion coefficient (MEADC), kurtosis (K), diffusion kurtosis (DK), bi-exponential diffusion (BID), pseudo-diffusion (BID*), and perfusion fraction (F). The resulting parametric maps were centrally analyzed, where differentiation of benign from cancerous tissue was compared between DWI parameters and the fitting algorithms with a receiver operating characteristic area under the curve (ROC AUC). STATISTICAL TEST Levene's test, P < 0.05 corrected for multiple comparisons was considered statistically significant. RESULTS The DRO results indicated minimal discordance between sites. Comparison across sites indicated that K, DK, and MEADC had significantly higher prostate cancer detection capability (AUC range = 0.72-0.76, 0.76-0.81, and 0.76-0.80 respectively) as compared to bi-exponential parameters (BID, BID*, F) which had lower AUC and greater between site variation (AUC range = 0.53-0.80, 0.51-0.81, and 0.52-0.80 respectively). Post-processing parameters also affected the resulting AUC, moving from, for example, 0.75 to 0.87 for MEADC varying cluster size. DATA CONCLUSION We found that conventional diffusion models had consistent performance at differentiating prostate cancer from benign tissue. Our results also indicated that post-processing decisions on DWI data can affect sensitivity and specificity when applied to radiological-pathological studies in prostate cancer. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Sean D. McGarry
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Michael Brehler
- Department of RadiologyMedical College of WisconsinMilwaukeeWIUSA
| | - John D. Bukowy
- Department of Electrical Engineering and Computer ScienceMilwaukee School of EngineeringMilwaukeeWIUSA
| | | | - Samuel A. Bobholz
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | | | - Anjishnu Banerjee
- Division of BiostatisticsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Sarah L. Hurrell
- Department of RadiologyMedical College of WisconsinMilwaukeeWIUSA
| | | | | | - Yue Cao
- Department of RadiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Radiation OncologyUniversity of MichiganAnn ArborMichiganUSA
| | - Yuan Li
- Department of Radiation OncologyUniversity of MichiganAnn ArborMichiganUSA
| | - Daekeun You
- Department of Radiation OncologyUniversity of MichiganAnn ArborMichiganUSA
| | - Andrey Fedorov
- Department of RadiologyBrigham and Women's HospitalBostonMassachusettsUSA
| | - Laura C. Bell
- Division of Neuroimaging ResearchBarrow Neurological InstitutePhoenixArizonaUSA
| | - C. Chad Quarles
- Division of Neuroimaging ResearchBarrow Neurological InstitutePhoenixArizonaUSA
| | - Melissa A. Prah
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | | | - Bachir Taouli
- Department of RadiologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Eve LoCastro
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Yousef Mazaheri
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Department of RadiologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Amita Shukla‐Dave
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Department of RadiologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, Diagnostic Medicine, Oncology, Oden Institute for Computational Engineering and Sciences, Livestrong Cancer InstitutesThe University of TexasAustinTexasUSA
| | - David A. Hormuth
- Department of Biomedical Engineering, Diagnostic Medicine, Oncology, Oden Institute for Computational Engineering and Sciences, Livestrong Cancer InstitutesThe University of TexasAustinTexasUSA
| | | | - Keith Hulsey
- Department of RadiologyThe University of Texas Southwestern Medical CenterDallasTexasUSA
| | - Kurt Li
- International School of BeavertonAlohaOregonUSA
| | - Wei Huang
- Advanced Imaging Research CenterOregon Health Sciences UniversityPortlandOregonUSA
| | - Wei Huang
- Department of PathologyOregon Health and Science UniversityMadisonWisconsinUSA
| | - Mark Muzi
- Department of Radiology, Neurology, and Radiation OncologyUniversity of WashingtonSeattleWashingtonUSA
| | - Michael A. Jacobs
- The Russell H. Morgan Department of Radiology and Radiological Science and Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Meiyappan Solaiyappan
- The Russell H. Morgan Department of Radiology and Radiological Science and Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Stefanie Hectors
- Department of biomedical engineering and imaging instituteWeill Cornell Medical CollegeNew York CityNew YorkUSA
| | - Tatjana Antic
- Department of PathologyUniversity of ChicagoChicagoIllinoisUSA
| | | | - Watchareepohn Palangmonthip
- Department of PathologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of PathologyChiang Mai UniversityChiang MaiThailand
| | - Kenneth Jacobsohn
- Department of UrologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Mark Hohenwalter
- Department of RadiologyMedical College of WisconsinMilwaukeeWIUSA
| | - Petar Duvnjak
- Department of RadiologyMedical College of WisconsinMilwaukeeWIUSA
| | - Michael Griffin
- Department of RadiologyMedical College of WisconsinMilwaukeeWIUSA
| | - William See
- Department of UrologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | | | | | - Peter S. LaViolette
- Department of RadiologyMedical College of WisconsinMilwaukeeWIUSA
- Department of Biomedical EngineeringMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
12
|
Kong X, Zhang Q, Wu X, Zou T, Duan J, Song S, Nie J, Tao C, Tang M, Wang M, Zou J, Xie Y, Li Z, Li Z. Advances in Imaging in Evaluating the Efficacy of Neoadjuvant Chemotherapy for Breast Cancer. Front Oncol 2022; 12:816297. [PMID: 35669440 PMCID: PMC9163342 DOI: 10.3389/fonc.2022.816297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Neoadjuvant chemotherapy (NAC) is increasingly widely used in breast cancer treatment, and accurate evaluation of its response provides essential information for treatment and prognosis. Thus, the imaging tools used to quantify the disease response are critical in evaluating and managing patients treated with NAC. We discussed the recent progress, advantages, and disadvantages of common imaging methods in assessing the efficacy of NAC for breast cancer.
Collapse
Affiliation(s)
- Xianshu Kong
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Qian Zhang
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Xuemei Wu
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Tianning Zou
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Jiajun Duan
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Shujie Song
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Jianyun Nie
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Chu Tao
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Mi Tang
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Maohua Wang
- First Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Jieya Zou
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Yu Xie
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Zhenhui Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Zhen Li
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| |
Collapse
|
13
|
Borgheresi A, De Muzio F, Agostini A, Ottaviani L, Bruno A, Granata V, Fusco R, Danti G, Flammia F, Grassi R, Grassi F, Bruno F, Palumbo P, Barile A, Miele V, Giovagnoni A. Lymph Nodes Evaluation in Rectal Cancer: Where Do We Stand and Future Perspective. J Clin Med 2022; 11:2599. [PMID: 35566723 PMCID: PMC9104021 DOI: 10.3390/jcm11092599] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
The assessment of nodal involvement in patients with rectal cancer (RC) is fundamental in disease management. Magnetic Resonance Imaging (MRI) is routinely used for local and nodal staging of RC by using morphological criteria. The actual dimensional and morphological criteria for nodal assessment present several limitations in terms of sensitivity and specificity. For these reasons, several different techniques, such as Diffusion Weighted Imaging (DWI), Intravoxel Incoherent Motion (IVIM), Diffusion Kurtosis Imaging (DKI), and Dynamic Contrast Enhancement (DCE) in MRI have been introduced but still not fully validated. Positron Emission Tomography (PET)/CT plays a pivotal role in the assessment of LNs; more recently PET/MRI has been introduced. The advantages and limitations of these imaging modalities will be provided in this narrative review. The second part of the review includes experimental techniques, such as iron-oxide particles (SPIO), and dual-energy CT (DECT). Radiomics analysis is an active field of research, and the evidence about LNs in RC will be discussed. The review also discusses the different recommendations between the European and North American guidelines for the evaluation of LNs in RC, from anatomical considerations to structured reporting.
Collapse
Affiliation(s)
- Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
| | - Federica De Muzio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
| | - Letizia Ottaviani
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
| | - Alessandra Bruno
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale IRCCS di Napoli, 80131 Naples, Italy;
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy
| | - Ginevra Danti
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Federica Flammia
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Roberta Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Francesca Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Abruzzo Health Unit 1, Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, 67100 L’Aquila, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
| |
Collapse
|
14
|
Partridge SC, Steingrimsson J, Newitt DC, Gibbs JE, Marques HS, Bolan PJ, Boss MA, Chenevert TL, Rosen MA, Hylton NM. Impact of Alternate b-Value Combinations and Metrics on the Predictive Performance and Repeatability of Diffusion-Weighted MRI in Breast Cancer Treatment: Results from the ECOG-ACRIN A6698 Trial. Tomography 2022; 8:701-717. [PMID: 35314635 PMCID: PMC8938828 DOI: 10.3390/tomography8020058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/15/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
In diffusion-weighted MRI (DW-MRI), choice of b-value influences apparent diffusion coefficient (ADC) values by probing different aspects of the tissue microenvironment. As a secondary analysis of the multicenter ECOG-ACRIN A6698 trial, the purpose of this study was to investigate the impact of alternate b-value combinations on the performance and repeatability of tumor ADC as a predictive marker of breast cancer treatment response. The final analysis included 210 women who underwent standardized 4-b-value DW-MRI (b = 0/100/600/800 s/mm2) at multiple timepoints during neoadjuvant chemotherapy treatment and a subset (n = 71) who underwent test−retest scans. Centralized tumor ADC and perfusion fraction (fp) measures were performed using variable b-value combinations. Prediction of pathologic complete response (pCR) based on the mid-treatment/12-week percent change in each metric was estimated by area under the receiver operating characteristic curve (AUC). Repeatability was estimated by within-subject coefficient of variation (wCV). Results show that two-b-value ADC calculations provided non-inferior predictive value to four-b-value ADC calculations overall (AUCs = 0.60−0.61 versus AUC = 0.60) and for HR+/HER2− cancers where ADC was most predictive (AUCs = 0.75−0.78 versus AUC = 0.76), p < 0.05. Using two b-values (0/600 or 0/800 s/mm2) did not reduce ADC repeatability over the four-b-value calculation (wCVs = 4.9−5.2% versus 5.4%). The alternate metrics ADCfast (b ≤ 100 s/mm2), ADCslow (b ≥ 100 s/mm2), and fp did not improve predictive performance (AUCs = 0.54−0.60, p = 0.08−0.81), and ADCfast and fp demonstrated the lowest repeatability (wCVs = 6.71% and 12.4%, respectively). In conclusion, breast tumor ADC calculated using a simple two-b-value approach can provide comparable predictive value and repeatability to full four-b-value measurements as a marker of treatment response.
Collapse
Affiliation(s)
| | - Jon Steingrimsson
- Department of Biostatistics and Center for Statistical Sciences, Brown University, Providence, RI 02912, USA; (J.S.); (H.S.M.)
| | - David C. Newitt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (D.C.N.); (J.E.G.); (N.M.H.)
| | - Jessica E. Gibbs
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (D.C.N.); (J.E.G.); (N.M.H.)
| | - Helga S. Marques
- Department of Biostatistics and Center for Statistical Sciences, Brown University, Providence, RI 02912, USA; (J.S.); (H.S.M.)
| | - Patrick J. Bolan
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Michael A. Boss
- Center for Research and Innovation, American College of Radiology, Philadelphia, PA 19103, USA;
| | | | - Mark A. Rosen
- University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Nola M. Hylton
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (D.C.N.); (J.E.G.); (N.M.H.)
| |
Collapse
|
15
|
Wang Q, Xiao X, Liang Y, Wen H, Wen X, Gu M, Ren C, Li K, Yu L, Lu L. Diagnostic Performance of Diffusion MRI for differentiating Benign and Malignant Nonfatty Musculoskeletal Soft Tissue Tumors: A Systematic Review and Meta-analysis. J Cancer 2022; 12:7399-7412. [PMID: 35003360 PMCID: PMC8734420 DOI: 10.7150/jca.62131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/02/2021] [Indexed: 01/15/2023] Open
Abstract
Objective: To evaluate the diagnostic performance of standard diffusion-weighted imaging (DWI), intravoxel incoherent motion (IVIM), and diffusion kurtosis imaging (DKI), for differentiating benign and malignant soft tissue tumors (STTs). Materials and methods: A thorough search was carried out to identify suitable studies published up to September 2020. The quality of the studies involved was evaluated using Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). The pooled sensitivity (SEN), specificity (SPE), and summary receiver operating characteristic (SROC) curve were calculated using bivariate mixed effects models. A subgroup analysis was also performed to explore the heterogeneity. Results: Eighteen studies investigating 1319 patients with musculoskeletal STTs (malignant, n=623; benign, n=696) were enrolled. Thirteen standard DWI studies using the apparent diffusion coefficient (ADC) showed that the pooled SEN and SPE of ADC were 0.80 (95% CI: 0.77-0.82) and 0.63 (95% CI: 0.60-0.67), respectively. The area under the curve (AUC) calculated from the SROC curve was 0.806. The subgroup analysis indicated that the percentage of myxoid malignant tumors, magnet strength, study design, and ROI placement were significant factors affecting heterogeneity. Four IVIM studies showed that the AUCs calculated from the SROC curves of the parameters ADC and D were 0.859 and 0.874, respectively. The AUCs for the IVIM parameters pseudo diffusion coefficient (D*) and perfusion fraction (f) calculated from the SROC curve were 0.736 and 0.573, respectively. Two DKI studies showed that the AUCs of the DKI parameter mean kurtosis (MK) were 0.97 and 0.89, respectively. Conclusion: The DWI-derived ADC value and the IVIM DWI-derived D value might be accurate tools for discriminating musculoskeletal STTs, especially for non-myxoid SSTs, using more than two b values, with maximal b value ranging from 600 to 800 s/mm2, additionally, a high-field strength (3.0 T) optimizes the diagnostic performance.
Collapse
Affiliation(s)
- Qian Wang
- Department of Medical Imaging, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, 455007, Zhengzhou, China
| | - Xinguang Xiao
- Department of Medical Imaging, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, 455007, Zhengzhou, China
| | - Yanchang Liang
- Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Hao Wen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, China
| | - Xiaopeng Wen
- Department of neurological rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 450000, Zhengzhou, China
| | - Meilan Gu
- Department of Medical Imaging, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, 455007, Zhengzhou, China
| | - Cuiping Ren
- Department of Medical Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kunbin Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, China
| | - Liangwen Yu
- Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Liming Lu
- Clinical Research and Data Center, South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Mizumachi R, Hayano K, Hirata A, Ohira G, Imanishi S, Tochigi T, Isozaki T, Kurata Y, Ikeda Y, Urahama R, Toyozumi T, Murakami K, Uesato M, Matsubara H. Development of imaging biomarker for esophageal cancer using intravoxel incoherent motion MRI. Esophagus 2021; 18:844-850. [PMID: 34019200 DOI: 10.1007/s10388-021-00851-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/10/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Intravoxel incoherent motion MRI (IVIM-MRI) can quantify micro-perfusion at the capillary level in the tissue. The purpose of this study is to measure tumor perfusion using IVIM-MRI, and evaluate its value as a biomarker to predict prognosis in esophageal squamous cell carcinoma (ESCC) patients. METHODS 109 ESCC patients (93 men and 16 women; median age: 72) who underwent IVIM-MRI prior to treatment between February 2018 and August 2020 were retrospectively investigated. Both mean apparent diffusion coefficient (ADC) value and mean perfusion-related parameter (PP) value of the primary tumor were measured using three b values of 0, 400, and 1000 s/mm2 based on the IVIM model. We analyzed associations of these parameters with clinical stage and disease-specific survival (DSS). RESULTS Lower ADC and PP values of the tumor were significantly associated with the higher clinical T stage (p < 0.0001, p < 0.0001, respectively). In Kaplan-Meier analyses, patients with lower PP value tumors (< 18.94, median) had significantly worse DSS (p < 0.0001), while tumor ADC value did not show a significant correlation with DSS. In a multivariate analysis, PP value of the tumor was an independent prognostic factor for DSS (p = 0.0027). CONCLUSIONS Quantification of tumor perfusion using IVIM-MRI can be a non-invasive prognostic biomarker of ESCC, reflecting clinical stage and survival.
Collapse
Affiliation(s)
- Ryoya Mizumachi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Koichi Hayano
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan.
| | - Atsushi Hirata
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Gaku Ohira
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Shunsuke Imanishi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Toru Tochigi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Tetsuro Isozaki
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Yoshihiro Kurata
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Yuko Ikeda
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Ryoma Urahama
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Takeshi Toyozumi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Kentaro Murakami
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Masaya Uesato
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8677, Japan
| |
Collapse
|
17
|
Dynamic Contrast-Enhanced and Intravoxel Incoherent Motion MRI Biomarkers Are Correlated to Survival Outcome in Advanced Hepatocellular Carcinoma. Diagnostics (Basel) 2021; 11:diagnostics11081340. [PMID: 34441274 PMCID: PMC8391260 DOI: 10.3390/diagnostics11081340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Objective: This study assessed dynamic contrast-enhanced (DCE)-MRI and intravoxel incoherent motion diffusion-weighted imaging (IVIM DWI) parameters to prospectively predict survival outcomes in participants with advanced hepatocellular carcinoma (HCC) who received lenalidomide, a dual antiangiogenic and immunomodulatory agent, as second-line therapy in a Phase II clinical trial. Materials and methods: Forty-four participants with advanced HCC who had progression after sorafenib as first-line treatment were prospectively enrolled. Pretreatment MRI parameters—obtained from DCE-MRI (peak, slope, AUC, Ktrans, Kep, and Ve), apparent diffusion coefficient (ADC), and IVIM DWI (pure diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f))—were derived from the largest hepatic tumor. The Cox model was used to investigate the associations of the parameters with progression-free survival (PFS) and overall survival (OS). Results: Median PFS and OS were 2.3 and 8.0 months, respectively. Univariate analysis showed that participants with a high slope (p = 0.024), Kep (p < 0.001), and ADC (p = 0.018) values had longer PFS than those with low values; participants with a small tumor size (p = 0.006), high slope (p = 0.01), ADC (p = 0.015), and f (p = 0.012) values had longer OS than those with low values did. Cox multivariable analysis revealed that Kep (p < 0.001) and ADC (p = 0.009) remained independent predictors of PFS; slope (p = 0.003) and ADC (p = 0.009) remained independent predictors of OS. Moreover, Kep and slope were still significant after Bonferroni correction was performed (p < 0.005). Conclusion: Both pretreatment DCE-MRI and IVIM DWI parameters, especially slope and ADC, may predict PFS and OS in participants with HCC receiving lenalidomide as second-line therapy.
Collapse
|
18
|
Liu H, Zheng L, Shi G, Xu Q, Wang Q, Zhu H, Feng H, Wang L, Zhang N, Xue M, Dai Y. Pulmonary Functional Imaging for Lung Adenocarcinoma: Combined MRI Assessment Based on IVIM-DWI and OE-UTE-MRI. Front Oncol 2021; 11:677942. [PMID: 34307146 PMCID: PMC8292137 DOI: 10.3389/fonc.2021.677942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/11/2021] [Indexed: 01/11/2023] Open
Abstract
Purpose The goal of current study was to introduce noninvasive and reproducible MRI methods for in vivo functional assessment of lung adenocarcinoma (LUAD). Methods Forty-four patients with pathologically confirmed LUAD were included in this study. All the lesions were classified as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IA). The IA lesions were further divided into five subtype patterns, including acinar, lepidic, papillary, micropapillary and solid. Tumors were grouped depending on predominant subtype: low grade (AIS, MIA or lepidic predominant), intermediate grade (papillary or acinar predominant) and high grade (micropapillary, or solid predominant). Spirometry was performed according to American Thoracic Society guidelines. For each patient, Intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI) analysis and oxygen-enhanced MRI (OE-MRI) analysis were performed. Spearman's test was used to assess the relationship between a) whole lung mean percent signal enhancement (PSE) and pulmonary function tests (PFTs) parameters; b) IVIM-derived parameters and PFTs parameters; c) tumor mean PSE and IVIM-derived parameters. Kruskal -Wallis tests were applied to test the difference of tumor mean PSE and IVIM-derived parameters between different histological tumor grades. Receiver operating characteristics (ROC) analysis was used to evaluate the diagnostic performance. Results Whole lung mean PSE was significantly positively correlated with PFTs parameters (r = 0.40 ~ 0.44, P < 0.05). f value derived from IVIM-DWI was significantly negatively correlated with PFTs parameters (r = -0.38 ~ -0.47, P < 0.05). Both tumor mean PSE (P = 0.030 < 0.05) and f (P = 0.022 < 0.05) could differentiate different histological grades. f was negatively correlated with tumor mean PSE (r = -0.61, P < 0.001). For the diagnostic performance, the combination of tumor mean PSE and f outperformed than using tumor mean PSE or f alone in both sensitivity and area under the ROC curve. Conclusions The combined measurement of OE-MRI and IVIM-DWI may serve as a promising method for the noninvasive and non-radiation evaluation of pulmonary function. Quantitative analyses achieved by OE-MRI and IVIM-DWI offer an approach of the classification of LUAD subtypes.
Collapse
Affiliation(s)
- Hui Liu
- Department of Radiology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liyun Zheng
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Gaofeng Shi
- Department of Radiology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Xu
- Department of Radiology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qi Wang
- Department of Radiology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongshan Zhu
- Department of Radiology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Feng
- Department of Radiology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lijia Wang
- Department of Radiology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ning Zhang
- Department of Radiology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meng Xue
- Department of Radiology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yongming Dai
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| |
Collapse
|
19
|
Li M, Lin S, Wilson L, Huang P, Wang H, Lai S, Dong L, Xu X, Weng X. Cost-Effectiveness Analysis of Hepatic Arterial Infusion of FOLFOX Combined Sorafenib for Advanced Hepatocellular Carcinoma With Portal Vein Invasion. Front Oncol 2021; 11:562135. [PMID: 33767976 PMCID: PMC7985441 DOI: 10.3389/fonc.2021.562135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Background Hepatic arterial infusion (HAI) of oxaliplatin, leucovorin, and fluorouracil (FOLFOX) plus sorafenib has a more desirable effect versus sorafenib for hepatocellular carcinoma (HCC) patients with portal vein invasion. However, considering the high cost of hepatic arterial infusion of chemotherapy (HAIC), this study evaluated the cost-effectiveness of HAIC plus sorafenib (SoraHAIC) versus standard care for HCC patients from the Chinese health system perspective. Methods A Markov multi-state model was constructed to simulate the disease course and source consumption of SoraHAIC. Costs of primary therapeutic drugs were calculated based on the national bid price, and hepatic artery catheterization fee was collected from the Fujian Provincial Price Bureau. Clinical data, other costs, and utility values were extracted from references. Primary outcomes included life-years (LYs), quality-adjusted life years (QALYs) and incremental cost-effectiveness ratio (ICER). The robustness of model was verified by uncertainty sensitivity analyses. Results SoraHAIC gained 1.18 QALYs (1.68 LYs) at a cost of $65,254, while the effectiveness and cost of sorafenib were 0.52 QALYs (0.79 LYs) and $14,280, respectively. The ICER of SoraHAIC vs sorafenib was $77,132/QALY ($57,153/LY). Parameter that most influenced the ICER was utility of PFS state. The probabilistic sensitivity analysis (PSA) showed that SoraHAIC was not cost-effective in the WTP threshold of 3*Gross Domestic Product (GDP) per capita of China ($30,492/QALY). But about 38.8% of the simulations were favorable to SoraHAIC at the WTP threshold of 3*GDP per capita of Beijing ($72,000/QALY). When 3*GDP per capita of Fujian ($47,285/QALY) and Gansu Province ($14,595/QALY) were used as WTP threshold, the acceptability of SoraHAIC was 0.3% and 0%, respectively. Conclusions The study results indicated that SoraHAIC was not cost-effective in medium-, and low-income regions of China. In developed areas of China (Beijing), there was a 38.8% probability that the SoraHAIC regimen would be cost-effective.
Collapse
Affiliation(s)
- Meiyue Li
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shen Lin
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Leslie Wilson
- Departments of Medicine and Pharmacy, University of California San Francisco, San Francisco, CA, United States
| | - Pinfang Huang
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hang Wang
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shubin Lai
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Liangliang Dong
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiongwei Xu
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiuhua Weng
- Department of Pharmacy, First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Departments of Medicine and Pharmacy, University of California San Francisco, San Francisco, CA, United States.,Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
20
|
Sung PS, Choi MH, Yang H, Lee SK, Chun HJ, Jang JW, Choi JY, Yoon SK, Choi JI, Lee YJ, Bae SH. Diffusion-Weighted Magnetic Resonance Imaging in Hepatocellular Carcinoma as a Predictor of a Response to Cisplatin-Based Hepatic Arterial Infusion Chemotherapy. Front Oncol 2020; 10:600233. [PMID: 33330098 PMCID: PMC7711158 DOI: 10.3389/fonc.2020.600233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
This study aimed to identify the utility of diffusion-weighted magnetic resonance (MR) imaging with an apparent diffusion coefficient (ADC) map as a predictor of the response of hepatocellular carcinoma (HCC) to cisplatin-based hepatic arterial infusion chemotherapy (HAIC). We retrospectively evaluated 113 consecutive patients with Barcelona Clinical Liver Cancer (BCLC) stage B or C HCC, who underwent gadoxetic acid-enhanced and diffusion-weighted MR imaging. The appropriate cutoff for the pretreatment tumor-to-liver ADC ratio was determined to be 0.741. Of the 113 patients, 50 (44%) presented with a pretreatment tumor-to-liver ADC ratio < 0.741 (low group). Evaluation of the treatment response after 2-3 cycles of HAIC in these 50 patients revealed that 21 patients (42%) experienced an objective response to HAIC. On the other hand, only 11 of the 63 patients (17%) with a pretreatment tumor-to-liver ADC ratio ≥ 0.741 (high group) showed an objective response. Thus, the objective response rate was significantly higher in the low group than in the high group (P = 0.006). Multivariate logistic regression analysis using parameters including perfusion alteration, percentage of non-enhancing portions, and pretreatment tumor-to-liver ADC ratio revealed that a pretreatment tumor-to-liver ADC ratio < 0.741 (odds ratio 3.217; P = 0.014) was the sole predictor of an objective response to HAIC. Overall survival rates were significantly higher in patients with objective responses to HAIC than in those without objective responses (P = 0.001 by log-rank test). In conclusion, patients with BCLC stage C or C HCC with a pretreatment tumor-to-liver ADC ratio < 0.741 showed a favorable intrahepatic response to cisplatin-based HAIC. Therefore, diffusion-weighted MR imaging can play a critical role as a predictor of response to cisplatin-based HAIC in unresectable HCC.
Collapse
Affiliation(s)
- Pil Soo Sung
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Moon Hyung Choi
- Department of Radiology, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Yang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Soon Kyu Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Ho Jong Chun
- Department of Radiology, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Joon-Il Choi
- Department of Radiology, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Young Joon Lee
- Department of Radiology, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
21
|
An DA, Chen BH, He J, Suo ST, Fahmy LM, Han TT, Hu J, Xu JR, Wu LM, Pu J. Diagnostic Utility of the Simplified Perfusion Fraction for Identifying Myocardial Injury in Patients With Reperfused ST-segment Elevation Myocardial Infarction. J Magn Reson Imaging 2020; 53:516-526. [PMID: 32841481 DOI: 10.1002/jmri.27310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a disease with high morbidity and mortality worldwide and the evaluation of myocardial injury and perfusion status following myocardial ischemia and reperfusion is of clinical value. PURPOSE To assess the diagnostic utility of simplified perfusion fraction (SPF) in differentiating salvage and infarcted myocardium and its predictive value for left ventricular remodeling in patients with reperfusion ST-segment elevation myocardial infarction (STEMI). STUDY TYPE Prospective. POPULATION Forty-one reperfused STEMI patients and 20 healthy volunteers. FIELD STRENGTH/SEQUENCE 3.0T MRI. The MR examination included cine, T2 -short tau inversion recovery (T2 -STIR), first pass perfusiong (FPP),phase sensitive inversion recovery (PSIR), and diffusion-weighted imaging (DWI). ASSESSMENT SPF values among different myocardium regions (infarcted, salvaged, remote, and MVO) and stages of reperfused STEMI patients as well as normal controls were measured. The diagnostic utility of SPF values in differentiating salvaged and infarcted myocardium was assessed. STATISTICAL ANALYSIS Independent t-test and the Mann-Whitney U-test. Logistic regression. RESULTS SPF values in healthy controls were not significantly different than SPF values in the remote myocardium of patients (40.09 ± 1.47% vs. 40.28 ± 1.93%, P = 0.698). In reperfusion STEMI patients, SPF values were lower in infarcted myocardium compared to remote and salvaged myocardium (32.15 ± 2.36% vs. 40.28 ± 1.93%, P < 0.001; 32.15 ± 2.36% vs. 36.68 ± 2.71%, P < 0.001). SPF values of infarcted myocardium showed a rebound increase from acute to convalescent stages (32.15 ± 2.36% vs. 34.69 ± 3.69%, P < 0.001). When differentiating infarcted and salvaged myocardium, SPF values demonstrated an area under the curve (AUC) of 0.89 (sensitivity 85.4%, specificity 80.5%, cutoff 34.42%). Lower SPF values were associated with lower odds ratio (OR = 0.304) of left ventricular remodeling after adjusting for potential confounders with a confidence interval (CI) of 0.129-0.717, P = 0.007. DATA CONCLUSION SPF might be able to differentiate salvaged and infarcted myocardium and is a strong predictor of left ventricular remodeling in reperfused STEMI patients. Level of Evidence 2 Technical Efficacy Stage 2.
Collapse
Affiliation(s)
- Dong-Aolei An
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing-Hua Chen
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie He
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shi-Teng Suo
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lara M Fahmy
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Tong-Tong Han
- Circle Cardiovascular Imaging, Calgary, Alberta, Canada
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Jian-Rong Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lian-Ming Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Tao YY, Zhou Y, Wang R, Gong XQ, Zheng J, Yang C, Yang L, Zhang XM. Progress of intravoxel incoherent motion diffusion-weighted imaging in liver diseases. World J Clin Cases 2020; 8:3164-3176. [PMID: 32874971 PMCID: PMC7441263 DOI: 10.12998/wjcc.v8.i15.3164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 02/05/2023] Open
Abstract
Traditional magnetic resonance (MR) diffusion-weighted imaging (DWI) uses a single exponential model to obtain the apparent diffusion coefficient to quantitatively reflect the diffusion motion of water molecules in living tissues, but it is affected by blood perfusion. Intravoxel incoherent motion (IVIM)-DWI utilizes a double-exponential model to obtain information on pure water molecule diffusion and microcirculatory perfusion-related diffusion, which compensates for the insufficiency of traditional DWI. In recent years, research on the application of IVIM-DWI in the diagnosis and treatment of hepatic diseases has gradually increased and has achieved considerable progress. This study mainly reviews the basic principles of IVIM-DWI and related research progress in the diagnosis and treatment of hepatic diseases.
Collapse
Affiliation(s)
- Yun-Yun Tao
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yi Zhou
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Ran Wang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xue-Qin Gong
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Jing Zheng
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Cui Yang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Lin Yang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Ming Zhang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
23
|
Tan ET, Wilmes LJ, Joe BN, Onishi N, Arasu VA, Hylton NM, Marinelli L, Newitt DC. Denoising and Multiple Tissue Compartment Visualization of Multi-b-Valued Breast Diffusion MRI. J Magn Reson Imaging 2020; 53:271-282. [PMID: 32614125 DOI: 10.1002/jmri.27268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Multi-b-valued/multi-shell diffusion provides potentially valuable metrics in breast MRI but suffers from low signal-to-noise ratio and has potentially long scan times. PURPOSE To investigate the effects of model-based denoising with no loss of spatial resolution on multi-shell breast diffusion MRI; to determine the effects of downsampling on multi-shell diffusion; and to quantify these effects in multi-b-valued (three directions per b-value) acquisitions. STUDY TYPE Prospective ("fully-sampled" multi-shell) and retrospective longitudinal (multi-b). SUBJECTS One normal subject (multi-shell) and 10 breast cancer subjects imaging at four timepoints (multi-b). FIELD STRENGTH/SEQUENCE 3T multi-shell acquisition and 1.5T multi-b acquisition. ASSESSMENT The "fully-sampled" multi-shell acquisition was retrospectively downsampled to determine the bias and error from downsampling. Mean, axial/parallel, radial diffusivity, and fractional anisotropy (FA) were analyzed. Denoising was applied retrospectively to the multi-b-valued breast cancer subject dataset and assessed subjectively for image noise level and tumor conspicuity. STATISTICAL TESTS Parametric paired t-test (P < 0.05 considered statistically significant) on mean and coefficient of variation of each metric-the apparent diffusion coefficient (ADC) from all b-values, fast ADC, slow ADC, and perfusion fraction. Paired and two-sample t-tests for each metric comparing normal and tumor tissue. RESULTS In the multi-shell data, denoising effectively suppressed FA (-45% to -78%), with small biases in mean diffusivity (-5% in normal, +23% in tumor, and -4% in vascular compartments). In the multi-b data, denoising resulted in small biases to the ADC metrics in tumor and normal contralateral tissue (by -3% to +11%), but greatly reduced the coefficient of variation for every metric (by -1% to -24%). Denoising improved differentiation of tumor and normal tissue regions in most metrics and timepoints; subjectively, image noise level and tumor conspicuity were improved in the fast ADC maps. DATA CONCLUSION Model-based denoising effectively suppressed erroneously high FA and improved the accuracy of diffusivity metrics. EVIDENCE LEVEL 3 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Ek T Tan
- GE Global Research, Niskayuna, New York, USA.,Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA
| | - Lisa J Wilmes
- Department of Radiology, University of California, San Francisco, California, USA
| | - Bonnie N Joe
- Department of Radiology, University of California, San Francisco, California, USA
| | - Natsuko Onishi
- Department of Radiology, University of California, San Francisco, California, USA
| | - Vignesh A Arasu
- Department of Radiology, University of California, San Francisco, California, USA.,Department of Radiology, Kaiser Permanente Medical Center, Vallejo, California, USA.,Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Nola M Hylton
- Department of Radiology, University of California, San Francisco, California, USA
| | | | - David C Newitt
- Department of Radiology, University of California, San Francisco, California, USA
| |
Collapse
|
24
|
Long L, Zhang H, He X, Zhou J, Guo D, Liu X. Value of intravoxel incoherent motion magnetic resonance imaging for differentiating metastatic from nonmetastatic mesorectal lymph nodes with different short-axis diameters in rectal cancer. J Cancer Res Ther 2020; 15:1508-1515. [PMID: 31939430 DOI: 10.4103/jcrt.jcrt_76_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Conventional magnetic resonance imaging (MRI) does not accurately evaluate lymph node (LN) status, which is essential for the treatment and prognosis assessment in patients with rectal cancer. Objective The aim of this study is to evaluate the diagnostic value of intravoxel incoherent motion (IVIM) MRI in differentiating metastatic and nonmetastatic mesorectal LNs with different short-axis diameters in rectal cancer patients. Materials and Methods Forty patients (154 LNs) were divided into three groups based on short-axis diameter: 3 mm ≤ × ≤5 mm, 5 mm < × ≤7 mm, and × >7 mm. MRI characteristics and IVIM parameters were compared between the metastatic and nonmetastatic LNs to determine the diagnostic value for discriminating them. Results In the 3 mm ≤ × ≤ 5 mm group, mean D values were significantly lower in metastatic than in the nonmetastatic LNs (P < 0.001). In the 5 mm < × ≤7 mm group, mean f values were significantly lower in metastatic than nonmetastatic LNs (P < 0.05). In the × >7 mm group, only the short-axis diameter of metastatic LNs was significantly greater than that of nonmetastatic LNs (P < 0.05). The area under the curve, sensitivity, specificity, and cutoff values were used for differentiating the metastatic from the nonmetastatic LNs. Conclusion IVIM parameters can differentiate metastatic from nonmetastatic LNs with smaller short-axis diameters (× ≤7 mm) in rectal cancer, and the short-axis diameter is a significant factor in identifying metastatic and nonmetastatic LNs in larger short-axis diameter groups (× >7 mm).
Collapse
Affiliation(s)
- Ling Long
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Haiping Zhang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Xiaojing He
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Jun Zhou
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Dajing Guo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Xinjie Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| |
Collapse
|
25
|
Iima M. Perfusion-driven Intravoxel Incoherent Motion (IVIM) MRI in Oncology: Applications, Challenges, and Future Trends. Magn Reson Med Sci 2020; 20:125-138. [PMID: 32536681 PMCID: PMC8203481 DOI: 10.2463/mrms.rev.2019-0124] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent developments in MR hardware and software have allowed a surge of interest in intravoxel incoherent motion (IVIM) MRI in oncology. Beyond diffusion-weighted imaging (and the standard apparent diffusion coefficient mapping most commonly used clinically), IVIM provides information on tissue microcirculation without the need for contrast agents. In oncology, perfusion-driven IVIM MRI has already shown its potential for the differential diagnosis of malignant and benign tumors, as well as for detecting prognostic biomarkers and treatment monitoring. Current developments in IVIM data processing, and its use as a method of scanning patients who cannot receive contrast agents, are expected to increase further utilization. This paper reviews the current applications, challenges, and future trends of perfusion-driven IVIM in oncology.
Collapse
Affiliation(s)
- Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine.,Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital
| |
Collapse
|
26
|
Zhang Q, Ouyang H, Ye F, Chen S, Xie L, Zhao X, Yu X. Multiple mathematical models of diffusion-weighted imaging for endometrial cancer characterization: Correlation with prognosis-related risk factors. Eur J Radiol 2020; 130:109102. [PMID: 32673928 DOI: 10.1016/j.ejrad.2020.109102] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate mono-exponential, bi-exponential, and stretched-exponential models of diffusion-weighted imaging (DWI) for evaluation of prognosis-related risk factors of endometrial cancer (EC). METHOD Sixty-one consecutive patients with EC who preoperatively underwent pelvic MRI with multiple b value DWI between September 2016 and May 2018 were enrolled. The apparent-diffusion-coefficient (ADC), bi-exponential model parameters (D, D* and f) and stretched-exponential model parameters (DDC and α) were measured and compared to analyze the following prognosis-related risk factors confirmed by pathology: histological grade, depth of myometrial invasion, cervical stromal infiltration (CSI) and lymphovascular invasion (LVSI). A stepwise multilvariate logistic regression and the receiver operating characteristic (ROC) curves were performed for further statistical analysis. RESULTS Lower ADC, D, f, and DDC were observed in tumor with high grade compared with a low-grade group, and the largest area under curve (AUC) was obtained when combining f and DDC values. ADC, D, f, DDC, and α were significantly different in patients with deep myometrial invasion (DMI) compared to those without DMI; the combination of f, DDC and α showed the highest AUC. Significantly different ADC and f were found between patients' presence and absence CSI; the f values showed the highest diagnostic performance with an AUC of 0.825. Regarding the LVSI, ADC, D*, f, and DDC were significantly lower in tumors with LVSI compared to those without LVSI; the combination of f and DDC showed the largest AUC. CONCLUSION Multiple mathematical DWI models are a useful approach for the prediction of prognosis-related risk factors in EC.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, China Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Han Ouyang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, China Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Feng Ye
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, China Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuang Chen
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, China Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lizhi Xie
- GE Healthcare, MR Research China, Beijing, China
| | - Xinming Zhao
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, China Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xiaoduo Yu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, China Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
27
|
Ogura A, Sotome H, Asai A, Fuju A. Evaluation of capillary blood volume in the lower limb muscles after exercise by intravoxel incoherent motion. Radiol Med 2020; 125:474-480. [DOI: 10.1007/s11547-020-01163-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/02/2020] [Indexed: 12/22/2022]
|
28
|
He M, Li Q, Zou R, Shen J, Fang W, Tan G, Zhou Y, Wu X, Xu L, Wei W, Le Y, Zhou Z, Zhao M, Guo Y, Guo R, Chen M, Shi M. Sorafenib Plus Hepatic Arterial Infusion of Oxaliplatin, Fluorouracil, and Leucovorin vs Sorafenib Alone for Hepatocellular Carcinoma With Portal Vein Invasion: A Randomized Clinical Trial. JAMA Oncol 2020; 5:953-960. [PMID: 31070690 DOI: 10.1001/jamaoncol.2019.0250] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance Sorafenib is the first-line treatment for hepatocellular carcinoma with portal vein invasion; however, it has shown unsatisfactory survival benefit. Sorafenib plus hepatic arterial infusion chemotherapy (HAIC) of oxaliplatin, fluorouracil, and leucovorin (FOLFOX) has shown promising results for these patients in a previous phase 2 study. Objective To investigate the efficacy and safety of sorafenib plus HAIC compared with sorafenib for hepatocellular carcinoma with portal vein invasion. Design, Setting, and Participants This randomized, open-label clinical trial enrolled 818 screened patients. Of the 818 participants, 247 with hepatocellular carcinoma and portal vein invasion were randomly assigned (1:1) via a computer-generated sequence to receive sorafenib plus HAIC or sorafenib. This trial was conducted at 5 hospitals in China and enrolled patients from April 1, 2016, to October 10, 2017, with a follow-up period of 10 months. Interventions Randomization to receive 400 mg sorafenib twice daily (sorafenib group) or 400 mg sorafenib twice daily plus HAIC (SoraHAIC group) (oxaliplatin 85 mg/m2, leucovorin 400 mg/m2, fluorouracil bolus 400 mg/m2 on day 1, and fluorouracil infusion 2400 mg/m2 for 46 hours, every 3 weeks). Main Outcomes and Measures The primary endpoint was overall survival by intention-to-treat analysis. Safety was assessed in patients who received at least 1 dose of study treatment. Results For 247 patients (median age, 49 years; range, 18-75 years; 223 men and 24 women), median overall survival was 13.37 months (95% CI, 10.27-16.46) in the SoraHAIC group vs 7.13 months (95% CI, 6.28-7.98) in the sorafenib group (hazard ratio [HR], 0.35; 95% CI, 0.26-0.48; P < .001). The SoraHAIC group showed a higher response rate than the sorafenib group (51 [40.8%] vs 3 [2.46%]; P < .001), and a longer median progression-free survival (7.03 [95% CI, 6.05-8.02] vs 2.6 [95% CI, 2.15-3.05] months; P < .001). Grade 3/4 adverse events that were more frequent in the SoraHAIC group than in the sorafenib group included neutropenia (12 [9.68%] vs 3 [2.48%]), thrombocytopenia (16 [12.9%] vs 6 [4.96%]), and vomiting (8 [6.45%] vs 1 [0.83%]). Conclusions and Relevance Sorafenib plus HAIC of FOLFOX improved overall survival and had acceptable toxic effects compared with sorafenib in patients with hepatocellular carcinoma and portal vein invasion. Trial Registration ClinicalTrials.gov identifier: NCT02774187.
Collapse
Affiliation(s)
- MinKe He
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - QiJiong Li
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - RuHai Zou
- Department of Ultrasonography, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - JingXian Shen
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | | | - GuoSheng Tan
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - YuanMin Zhou
- Guangzhou No.12 People's Hospital, Guangzhou, China
| | - XiaoPing Wu
- The First Affiliated Hospital of the University of South China, HengYang, China
| | - Li Xu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wei Wei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yong Le
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - ZhongGuo Zhou
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ming Zhao
- Minimally Invasive Interventional Division, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Guo
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - RongPing Guo
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - MinShan Chen
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ming Shi
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
29
|
Xu C, Du S, Zhang S, Wang B, Dong C, Sun H. Value of integrated PET-IVIM MR in assessing metastases in hypermetabolic pelvic lymph nodes in cervical cancer: a multi-parameter study. Eur Radiol 2020; 30:2483-2492. [PMID: 32040728 DOI: 10.1007/s00330-019-06611-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/13/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE To evaluate the value of integrated multi-parameter positron emission tomography-intravoxel incoherent motion magnetic resonance (PET-IVIM MR) imaging for pelvic lymph nodes with high FDG uptake in cervical cancer, and to determine the best combination of parameters. METHODS A total of 38 patients with 59 lymph nodes with high FDG uptake were included. The imaging parameters of the lymph nodes were calculated by PET-IVIM MR, and the differences between lymph nodes diagnosed by postoperative pathology as metastasis versus non-metastasis were compared. We used the receiver operating characteristic (ROC) curve and logistic regression to construct a combination prediction model to filter low value and similar parameters, in order to search the optimal combination of PET/MR parameters for predicting pathologically confirmed metastatic lymph nodes. The correlation between diffusion parameters and metabolic parameters was analyzed by Spearman's rank correlation. RESULTS The maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), total metabolic tumor volume (MTV), total lesion glycolysis (TLG), apparent diffusion coefficient (ADC), diffusion-related coefficient (D), and perfusion-related parameter (F) showed significant differences between the metastatic and non-metastatic groups (p < 0.05). The combination of MTV, SUVmax, and D had the strongest predictive value (area under the ROC 0.983, p < 0.05). SUVmax, SUVmean, and TLG weakly correlated with F (R = - 0.306, - 0.290, and - 0.310; p < 0.05). CONCLUSIONS The combination of MTV, SUVmax, and D may have a better diagnostic performance than PET- or IVIM-derived parameters either in combination or individually. No strong correlation exists between diffusion parameters and metabolic parameters. KEY POINTS • Integrated PET-IVIM MR may assist to characterize lymph node status. • The combination of MTV, SUVmax, and D may have a better diagnostic performance than PET- or IVIM-derived parameters either in combination or individually for the assessment of pelvic lymph nodes with high FDG uptake. • No strong correlation exists between diffusion parameters and metabolic parameters in pelvic lymph nodes with high FDG uptake.
Collapse
Affiliation(s)
- Chen Xu
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No 36, Heping District, Shenyang, 110004, Liaoning, China.,Liaoning Provincial Key Laboratory of Medical Imaging, Sanhao Street No 36, Heping District, Shenyang, 110004, Liaoning, China
| | - Siyao Du
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No 36, Heping District, Shenyang, 110004, Liaoning, China
| | - Siyu Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No 36, Heping District, Shenyang, 110004, Liaoning, China
| | - Bo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No 36, Heping District, Shenyang, 110004, Liaoning, China
| | | | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No 36, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
30
|
Shan Q, Kuang S, Zhang Y, He B, Wu J, Zhang T, Wang J. A comparative study of monoexponential versus biexponential models of diffusion-weighted imaging in differentiating histologic grades of hepatitis B virus-related hepatocellular carcinoma. Abdom Radiol (NY) 2020; 45:90-100. [PMID: 31595327 DOI: 10.1007/s00261-019-02253-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To compare the diagnostic value of apparent diffusion coefficient (ADC) and intravoxel incoherent motion metrics in discriminating histologic grades of hepatocellular carcinoma (HCC) in patients with hepatitis B virus (HBV) infection. METHODS 117 chronic HBV patients with 120 pathologically confirmed HCCs after surgical resection or liver transplantation were enrolled in this retrospective study. Diffusion-weighted imaging was performed using eleven b values (0-1500 s/mm2) and two b values (0, 800 s/mm2) successively on a 3.0 T system. ADC0, 800, ADCtotal, diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) were calculated. The parameters of three histologically differentiated subtypes were investigated using Kruskal-Wallis test, Spearman rank correlation, and receiver-operating characteristic analysis. Interobserver agreement was assessed using the intraclass correlation coefficient. RESULTS There was excellent agreement for ADCtotal/D/f, good agreement for ADC0,800, and moderate agreement for D*. ADCtotal, ADC0, 800,D, and f were significantly different for well, moderately, and poorly differentiated HCCs (P < 0.001), and they were all inversely correlated with histologic grades: r = - 0.633, - 0.394, - 0.435, and - 0.358, respectively (P < 0.001). ADCtotal demonstrated higher performance than ADC0,800 in diagnosing both well and poorly differentiated HCCs (P < 0.001 and P = 0.04, respectively). ADCtotal showed higher performance than D and f in diagnosing well differentiated HCCs (P < 0.001) and similar performance in diagnosing poorly differentiated HCCs (P = 0.06 and 0.13, respectively). CONCLUSIONS ADCtotal showed better diagnostic performance than ADC0,800, D, and f to discriminate histologic grades of HCC.
Collapse
Affiliation(s)
- Qungang Shan
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, Guangdong, People's Republic of China
| | - Sichi Kuang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, Guangdong, People's Republic of China
| | - Yao Zhang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, Guangdong, People's Republic of China
| | - Bingjun He
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, Guangdong, People's Republic of China
| | - Jun Wu
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, Guangdong, People's Republic of China
| | - Tianhui Zhang
- Department of Radiology, MeiZhou People's Hospital, Meizhou Affiliated Hospital of Sun Yat-Sen University, Huangtang Road, Meizhou, 514031, Guangdong, People's Republic of China
| | - Jin Wang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, Guangdong, People's Republic of China.
| |
Collapse
|
31
|
Wáng YXJ, Wang X, Wu P, Wang Y, Chen W, Chen H, Li J. Topics on quantitative liver magnetic resonance imaging. Quant Imaging Med Surg 2019; 9:1840-1890. [PMID: 31867237 DOI: 10.21037/qims.2019.09.18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liver magnetic resonance imaging (MRI) is subject to continuous technical innovations through advances in hardware, sequence and novel contrast agent development. In order to utilize the abilities of liver MR to its full extent and perform high-quality efficient exams, it is mandatory to use the best imaging protocol, to minimize artifacts and to select the most adequate type of contrast agent. In this article, we review the routine clinical MR techniques applied currently and some latest developments of liver imaging techniques to help radiologists and technologists to better understand how to choose and optimize liver MRI protocols that can be used in clinical practice. This article covers topics on (I) fat signal suppression; (II) diffusion weighted imaging (DWI) and intravoxel incoherent motion (IVIM) analysis; (III) dynamic contrast-enhanced (DCE) MR imaging; (IV) liver fat quantification; (V) liver iron quantification; and (VI) scan speed acceleration.
Collapse
Affiliation(s)
- Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | | | - Peng Wu
- Philips Healthcare (Suzhou) Co., Ltd., Suzhou 215024, China
| | - Yajie Wang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Weibo Chen
- Philips Healthcare, Shanghai 200072, China.,Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
32
|
Prognostic Significance of Apparent Diffusion Coefficient in Hepatocellular Carcinoma Patients treated with Stereotactic Ablative Radiotherapy. Sci Rep 2019; 9:14157. [PMID: 31578433 PMCID: PMC6775098 DOI: 10.1038/s41598-019-50503-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/15/2019] [Indexed: 01/06/2023] Open
Abstract
The role of diffusion-weighted magnetic resonance imaging (DW MRI) in assessing durable tumor control for patients with hepatocellular carcinoma (HCC) treated with stereotactic ablative radiotherapy (SABR) was not defined. This retrospective study included 34 HCC patients with 45 lesions who had DW MRI data at baseline and within 6 months post-SABR. On the first post-SABR MRI, 13 lesions (28.9%) had a complete response (CR), 12 (26.7%) had a partial response (PR), 17 (37.8%) had stable disease, and 3 (6.7%) had progressive disease by modified Response Evaluation Criteria in Solid Tumors (mRECIST). On subsequent imaging, the response rate improved from 55.6% to 75.6%. The apparent diffusion coefficients (ADCs) (mean ± standard deviation) pre- and post-SABR were 1.43 ± 0.28 and 1.72 ± 0.34 (×10−3 mm2/s), respectively (p < 0.001). An ADC change ≥25% (DW[+]) was identified as a predictor of favorable in-field control (IFC) (1-year IFC, 93.3% vs. 50.0% for DW[−], p = 0.004), but an mRECIST-based positive response (CR and PR) at the first MRI was not (p = 0.130). In conclusion, ADC change on early MRI is closely related to IFC in HCCs treated with SABR. Standardization of the DW MRI protocol, as well as prospective validation studies, are warranted.
Collapse
|
33
|
Lee SY, Jee WH, Yoo IR, Jung JY, Im SA, Chung YG, Kang JH. Comparison of 3T diffusion-weighted MRI and 18F-FDG PET/CT in musculoskeletal tumours: quantitative analysis of apparent diffusion coefficients and standardized uptake values. Br J Radiol 2019; 92:20181051. [PMID: 31322913 DOI: 10.1259/bjr.20181051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To determine whether the apparent diffusion coefficient (ADC) on 3T MR imaging including diffusion-weighted MR imaging (DWI) correlate with the standardized uptake value (SUV) on 18F-FDG PET/CT in musculoskeletal tumours. METHODS This retrospective cohort study included 57 patients (36 males, 21 females, mean age 54 years, range 12-90 years) with pathologically confirmed soft tissue (n = 32) and bone (n = 25) tumours who underwent 3T MR imaging including DWI and whole-body 18F-FDG PET/CT before treatment. 14 patients had follow-up MR imaging and 18F-FDG PET/CT after treatment. The minimum (ADCmin) and mean (ADCmean) ADCs of musculoskeletal tumour, ADC of normal skeletal muscle (ADCmus), SUVmax and SUVmean of musculoskeletal tumour were obtained. Correlation between ADCs and SUVs was assessed using Pearson correlation coefficients (r). ADCmin and SUVmax were compared between pretreatment and posttreatment by t-test. RESULTS There was inverse correlation between SUVmax and the ratio ADCmin/ADCmus (r = - 0.505 to - 0.495, p ≤ 0.001) and between SUVmean and the ratio ADCmean/ADCmus (r = - 0.501 to - 0.493, p = 0.001). After treatment ADC was significantly increased whereas SUV was significantly decreased (p = 0.001). There was significant correlation in percent change between the initial and follow-up values of ADCmin and SUVmax (r = 0.750 to 0.773, p ≤ 0.005). The ADCmin was increased by 163% and SUVmax was decreased by 61% in 11 patients with treatment response. CONCLUSION ADC at 3T MR DWI and SUV at 18F-FDG PET/CT have an inverse correlation in musculoskeletal tumours. ADVANCES IN KNOWLEDGE Our study showed that ADC at 3T DWI and SUV at 18F-FDG PET/CT had an inverse correlation in musculoskeletal tumours.
Collapse
Affiliation(s)
- So-Yeon Lee
- Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Won-Hee Jee
- Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,Department of Radiology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Gyeonggi, Korea
| | - Ie Ryung Yoo
- Department of Nuclear Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Joon-Yong Jung
- Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Soo-A Im
- Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Yang-Guk Chung
- Department of Orthopedic Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Jin Hyoung Kang
- Department of Oncology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
34
|
Xiao Z, Tang Z, Zhang J, Yang G, Zeng W, Luo J, Song Y, Zhang Z. Whole-tumor histogram analysis of monoexponential and advanced diffusion-weighted imaging for sinonasal malignant tumors: Correlations with histopathologic features. J Magn Reson Imaging 2019; 51:273-285. [PMID: 31271488 DOI: 10.1002/jmri.26857] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The histopathological basis of monoexponential diffusion-weighted imaging (DWI), intravoxel incoherent motion (IVIM), and diffusion kurtosis imaging (DKI) in the characterization of sinonasal malignant tumors is still unclear. PURPOSE To explore the correlations of histogram metrics from monoexponential DWI, IVIM, and DKI with histopathologic features in sinonasal malignant tumors. STUDY TYPE Retrospective. SUBJECTS In all, 76 patients with sinonasal malignant tumors. FIELD STRENGTH/SEQUENCE Fourteen different b values (b = 0, 50, 100, 150, 200, 250, 300, 350, 400, 800, 1000, 1500, 2000, and 2500 sec/mm2 ) were used to perform different DWI models at 3.0T. ASSESSMENT The whole-tumor histogram metrics were calculated on the apparent diffusion coefficient (ADC), pure diffusion coefficient (D), pseudodiffusion coefficient (D*), perfusion fraction (f), diffusion kurtosis (K), and diffusion coefficient (Dk) maps. Histopathologic features, including nuclear, cytoplasmic, cellular, stromal fractions, and the nuclear-to-cytoplasmic (N/C) ratio, were measured. STATISTICAL TESTS Spearman correlations and stepwise multiple linear regression analyses were performed to determine the correlations between histogram metrics and histopathologic features. RESULTS ADC, Dk, and f histogram metrics showed significant correlations with investigated histopathologic features; D and K histogram metrics were significantly correlated with cellular, stromal, and nuclear fractions (all P < 0.05). Significant correlations between the 75th percentile of D and cytoplasmic fraction and between the kurtosis of K and the N/C ratio were observed (P < 0.05). The skewness of Dk, K, and the 75th percentile of D were independently associated with cellular and nuclear fractions; the skewness of Dk and K were independently associated with stromal fraction (P < 0.05). DATA CONCLUSION Monoexponential and advanced DWI histogram parameters were significantly correlated with histopathologic features in sinonasal malignancies. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:273-285.
Collapse
Affiliation(s)
- Zebin Xiao
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, P.R. China
| | - Zuohua Tang
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, P.R. China
| | - Jing Zhang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, P.R. China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, P.R. China
| | - Wenjiao Zeng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R. China
| | - Jianfeng Luo
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, P.R. China
| | - Yang Song
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, P.R. China
| | | |
Collapse
|
35
|
Zhao Y, Lai J, Liang R, He M, Shi M. Sorafenib plus hepatic arterial infusion chemotherapy with oxaliplatin versus sorafenib alone for advanced hepatocellular carcinoma. J Interv Med 2019; 2:78-83. [PMID: 34805877 PMCID: PMC8562173 DOI: 10.1016/j.jimed.2019.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Objective To compare the efficacy of sorafenib plus hepatic arterial infusion chemotherapy (HAIC) with oxaliplatin to that of sorafenib alone in patients with advanced hepatocellular carcinoma (HCC). Methods This was a retrospective, single-center trial. Between April 3, 2017 and July 2, 2018, 104 patients with Child-Pugh A and advanced HCC received either 400 mg of sorafenib orally twice daily plus HAIC with oxaliplatin (oxaliplatin 85 mg/m2, every 3 weeks via repetitive catheterization) (n = 46, soraOXA group) or 400 mg of only sorafenib orally twice daily (n = 58, sorafenib group). Overall survival, progression-free survival, objective response rate, and treatment-related adverse events were compared. Results The median overall survival was 9.37 months (95% CI, 7.05–11.68) in the soraOXA group versus 4.8 months (95% CI, 2.98–6.62) in the sorafenib group (HR 0.46 [95% CI, 0.29–0.72]; P < 0.001). The soraOXA group also showed a higher objective response rate (16 [34.8%] vs 1 [1.7%]; P < 0.001) and a longer progression-free survival rate (5.5 months [95% CI, 2.32–8.68] vs 2.4 months [95% CI, 1.65–3.15], HR 0.54 [95% CI, 0.36–0.81], P = 0.003) than the sorafenib group. There was no significant difference in the overall incidence of any grade adverse events, grade 3/4 adverse events, serious adverse events, or incidence of treatment termination due to adverse events between the two groups. Conclusion Compared with sorafenib alone, sorafenib plus HAIC with oxaliplatin showed favorable treatment outcomes in patients with advanced HCC. The merits of this approach need to be established with a prospective trial.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - JiaYing Lai
- HuiDong Senior Middle School, Huidong, Huizhou, China
| | - RunBin Liang
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - MinKe He
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ming Shi
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
36
|
Jin YN, Zhang Y, Cheng JL, Zheng DD, Hu Y. Monoexponential, Biexponential, and stretched-exponential models using diffusion-weighted imaging: A quantitative differentiation of breast lesions at 3.0T. J Magn Reson Imaging 2019; 50:1461-1467. [PMID: 30919518 DOI: 10.1002/jmri.26729] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Diffusion-weighted imaging (DWI) plays an important role in the differentiation of malignant and benign breast lesions. PURPOSE To investigate the utility of various diffusion parameters obtained from monoexponential, biexponential, and stretched-exponential DWI models in the differential diagnosis of breast lesions. STUDY TYPE Prospective. POPULATION Sixty-one patients (age range: 25-68 years old; mean age: 46 years old) with 31 malignant lesions, 42 benign lesions, and 28 normal breast tissues diagnosed initially by clinical palpation, ultrasonography, or conventional mammography were enrolled in the study from January to September 2016. FIELD STRENGTH 3.0T MR scanner, T1 WI, T2 WI, DWI (conventional and multi-b values), dynamic contrast-enhanced. ASSESSMENT The apparent diffusion coefficient (ADC) was calculated by monoexponential analysis. The diffusion coefficient (ADCslow ), pseudodiffusion coefficient (ADCfast ), and perfusion fraction (f) were calculated using the biexponential model. The distributed diffusion coefficient (DDC) and water molecular diffusion heterogeneity index (α) were obtained using a stretched-exponential model. All parameters were compared for malignant tumors, benign tumors, and normal breast tissues. A receiver operating characteristic curve was used to compare the ability of these parameters, in order to differentiate benign and malignant breast lesions. STATISTICAL TESTS All statistical analyses were performed using statistical software (SPSS). RESULTS ADC, ADCslow , f, DDC, and α values were significantly lower in malignant tumors when compared with normal breast tissues and benign tumors (P < 0.05). However, ADC and f had higher area under the receiver operating characteristic curve (AUC) values (0.889 and 0.919, respectively). DATA CONCLUSION The parameters derived from the biexponential and stretched-exponential DWI could provide additional information for differentiating between benign and malignant breast tumors when compared with conventional diffusion parameters. LEVEL OF EVIDENCE 4 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2019;50:1461-1467.
Collapse
Affiliation(s)
- Ya-Nan Jin
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing-Liang Cheng
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Ying Hu
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Clinical efficacy of simplified intravoxel incoherent motion imaging using three b-values for differentiating high- and low-grade gliomas. PLoS One 2018; 13:e0209796. [PMID: 30589912 PMCID: PMC6307720 DOI: 10.1371/journal.pone.0209796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/11/2018] [Indexed: 11/27/2022] Open
Abstract
In this study, we evaluated the efficacy of intravoxel incoherent motion (IVIM)-derived parameters calculated with three b-values in differentiating high-grade gliomas (HGGs) from low-grade gliomas (LGGs) by comparing those calculated with multiple b-values. Ten patients with LGG (ages 35.1±12.1 yrs; 4 males, 6 females) and 21 patients with HGG (ages 60.6±19.1 yrs; 10 males, 11 females) who underwent subsequent surgical resections were examined with both IVIM imaging and histopathological analysis. The IVIM diffusion-weighted imaging was conducted using a single-shot echo planar sequence with 13 b-factors (0, 10, 20, 30, 50, 80, 100, 200, 300, 400, 600, 800, and 1000 sec/mm2) at 3T. In the conventional IVIM analysis, the perfusion fraction (f) and true diffusion coefficient (D) were calculated by biexponential fitting model with 13 b-values. In the simplified method with the selected three b-values (0, 300, and 1000 sec/mm2), D simply corresponds to the slope of a straight line passing through two logarithmic signal intensities (SIs) at the b-values of 300 and 1000 s/mm2, and f corresponds to the difference between the intercept of this line and SI at the b-value of 0 sec/mm2. The maximum f (f-max) and minimum D (D-min) was measured in each tumor. The f-max values calculated with three b-values (12.8±5.9%) were significantly lower than those with 13 b-values (17.3±7.5%, p<0.0001), but a good correlation and agreement were observed between these sets of f-max values (r = 0.79, ICC = 0.87). In the IVIM imaging with both three and 13 b-values, the HGGs showed significantly higher f-max values compared to the LGGs (p<0.001, respectively). The D-min values calculated with three b-values (1.06±0.31 ×10−3 mm2/sec) was not different from those with 13 b-values (1.07±0.33 ×10−3 mm2/sec), and an excellent correlation and agreement were found between them (r = 0.99, ICC = 0.99). The simplified IVIM imaging using three b-values can efficiently differentiate HGGs and LGGs.
Collapse
|
38
|
Li-Ou Z, Hong-Zan S, Xiao-Xi B, Zhong-Wei C, Zai-Ming L, Jun X, Qi-Yong G. Correlation between tumor glucose metabolism and multiparametric functional MRI (IVIM and R2*) metrics in cervical carcinoma: Evidence from integrated 18 F-FDG PET/MR. J Magn Reson Imaging 2018; 49:1704-1712. [PMID: 30390401 DOI: 10.1002/jmri.26557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Multiparameter, multimodality 18 F-FDG PET/MRI holds great potential for the diagnosis of cervical cancer based on the correlation between tumor glucose metabolism and imaging parameters. PURPOSE To characterize the heterogeneity of tumor glucose metabolism by evaluating the correlation between 18 F-FDG uptake parameters and multiparametric functional MRI metrics in cervical carcinoma. STUDY TYPE Retrospective. POPULATION Fifty-four patients with cervical carcinoma. FIELD STRENGTH/SEQUENCE Hybrid PET/MR (3T), multi-b DWI, and R2* mapping. ASSESSMENT The maximum and mean standardized uptake values (SUVmax and SUVmean , respectively) from PET and functional MRI metrics (D, D*, f, and R2*) were obtained. Cervical carcinoma tissues also underwent HIF-1α, VEGF, and GLUT-1 immunohistochemical staining. STATISTICAL TESTS Single-factor Spearman rank and Pearson correlation analysis and multiple linear regression (MLR) analysis were applied. RESULTS R2*, D, and f have different degrees of correlation (moderate, weak, moderately strong correlation, respectively) with SUVmax and SUVmean (r = 0.530 and 0.527, and P < 0.001 for R2*; r = -0.292 and -0.291, and P < 0.05 for D; r = 0.539 and 0.520, and P < 0.001 for f, respectively). Immunohistochemical staining showed that HIF-1α expression has a moderate degree of correlation with R2* (r = 0.491; P < 0.001); GLUT-1 expression was significantly correlated with SUVmax and SUVmean (r = 0.633 and 0.622; P < 0.001), and VEGF expression had a moderately strong correlation with f (r = 0.457; P = 0.001). If SUVmax is the dependent variable, MLR yields an R-squared value after adjustment (adjusted R-squared) = 0.358, and F = 10.833 (P < 0.001), and the fitting linear equation is Y (SUVmax ) = 9.184 + 0.161X1 (R2*)+50.343X2 (f)-4.780 (D). Otherwise, MLR yields the adjusted R-squared = 0.342, and F = 10.187 (P < 0.001), and the linear regression equation is Y (SUVmean ) = 5.925 + 0.102X1 (R2*)+28.029X2 (f)-2.907X3 (D). DATA CONCLUSION The functional MRI sequence parameters R2*, f, and D can provide information on the hypoxic condition, blood perfusion, and molecular diffusion of the tumor. 18 F-FDG PET/MR multi-imaging technique can be adopted to evaluate the heterogeneity of glucose metabolism in cervical carcinoma. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;49:1704-1712.
Collapse
Affiliation(s)
- Zhang Li-Ou
- Department of Radiology, Shengjing Hospital of China Medical University, P.R. China
| | - Sun Hong-Zan
- Department of Radiology, Shengjing Hospital of China Medical University, P.R. China
| | - Bai Xiao-Xi
- Department of Radiology, Shengjing Hospital of China Medical University, P.R. China
| | - Chen Zhong-Wei
- Department of Radiology, Shengjing Hospital of China Medical University, P.R. China
| | - Lu Zai-Ming
- Department of Radiology, Shengjing Hospital of China Medical University, P.R. China
| | - Xin Jun
- Department of Radiology, Shengjing Hospital of China Medical University, P.R. China
| | - Guo Qi-Yong
- Department of Radiology, Shengjing Hospital of China Medical University, P.R. China
| |
Collapse
|
39
|
Zheng T, Jiang H, Wei Y, Huang Z, Chen J, Duan T, Song B. Imaging evaluation of sorafenib for treatment of advanced hepatocellular carcinoma. Chin J Cancer Res 2018; 30:382-394. [PMID: 30046232 DOI: 10.21147/j.issn.1000-9604.2018.03.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sorafenib, which is a novel targeted agent, plays an important role in treating advanced hepatocellular carcinoma (HCC) through its antiangiogenic and antiproliferative effects. However, conventional morphology-based radiographic evaluation systems may underestimate the efficacy of sorafenib in HCC due to a lack of apparent tumor shrinkage or altered tumor morphology in many cases. This calls for the development of more accurate imaging methods for evaluating sorafenib. The introduction of tumor burden measurements based on viability and other evolving imaging approaches for assessing therapeutic effects are promising for overcoming some of the limitations of the morphology-based criteria. In this review, we summarize various imaging methods that are used to assess treatment responses of advanced HCC to sorafenib. Imaging markers predictive of prognosis in advanced HCC after treatment with sorafenib are also included and discussed.
Collapse
Affiliation(s)
- Tianying Zheng
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, China
| | - Hanyu Jiang
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, China
| | - Yi Wei
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, China
| | - Zixing Huang
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, China
| | - Jie Chen
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, China
| | - Ting Duan
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, China
| | - Bin Song
- Department of Radiology, Sichuan University West China Hospital, Chengdu 610041, China
| |
Collapse
|
40
|
Wu LF, Rao SX, Xu PJ, Yang L, Chen CZ, Liu H, Huang JF, Fu CX, Halim A, Zeng MS. Pre-TACE kurtosis of ADC total derived from histogram analysis for diffusion-weighted imaging is the best independent predictor of prognosis in hepatocellular carcinoma. Eur Radiol 2018; 29:213-223. [PMID: 29922932 DOI: 10.1007/s00330-018-5482-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE To determine the feasibility of pre-TACE IVIM imaging based on histogram analysis for predicting prognosis in the treatment of unresectable hepatocellular carcinoma (HCC). MATERIALS AND METHODS Fifty-five patients prospectively underwent 1.5T MRI 1 week before TACE. Histogram metrics for IVIM parameters and ADCs maps between responders and non-responders with mRECIST assessment were compared. Kaplan-Meier, log-rank tests and Cox proportional hazard regression model were used to correlate variables with time to progression (TTP). RESULTS Mean (p = 0.022), median (p = 0.043), and 25th percentile (p < 0.001) of perfusion fraction (PF), mean (p < 0.001), median (p < 0.001), 25th percentile (p < 0.001) and 75th percentile (p = 0.001) of ADC(0,500), mean (p = 0.005), median (p = 0.008) and 25th percentile (p = 0.039) of ADCtotal were higher, while skewness and kurtosis of PF (p = 0.001, p = 0.005, respectively), kurtosis of ADC(0,500) and ADCtotal (p = 0.005, p = 0.001, respectively) were lower in responders compared to non-responders. Multivariable analysis demonstrated that mRECIST was associated with TTP independently, and kurtosis of ADCtotal had the best predictive performance for disease progression. CONCLUSION Pre-TACE kurtosis of ADCtotal is the best independent predictor for TTP. KEY POINTS • mRECIST was associated with TTP independently. • Lower kurtosis and higher mean for ADCs tend to have good response. • Pre-TACE kurtosis of ADC total is the best independent predictor for TTP.
Collapse
Affiliation(s)
- Li-Fang Wu
- Shanghai Institute of Medical Imaging, Department of Radiology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Sheng-Xiang Rao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Peng-Ju Xu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Li Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Cai-Zhong Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Hao Liu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Jian-Feng Huang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Cai-Xia Fu
- Siemens Healthcare, Siemens MR Center, Gaoxin C. Ave., 2nd, Hi-Tech Industrial Park, Shenzhen, 518057, China
| | - Alice Halim
- Fudan University, No. 130, Dongan Road, Xuhui District, Shanghai, 200032, China
| | - Meng-Su Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
41
|
Mürtz P, Sprinkart AM, Reick M, Pieper CC, Schievelkamp AH, König R, Schild HH, Willinek WA, Kukuk GM. Accurate IVIM model-based liver lesion characterisation can be achieved with only three b-value DWI. Eur Radiol 2018; 28:4418-4428. [PMID: 29671057 DOI: 10.1007/s00330-018-5401-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate a simplified intravoxel incoherent motion (IVIM) approach of diffusion-weighted imaging (DWI) with four b-values for liver lesion characterisation at 1.5 T. METHODS DWI data from a respiratory-gated MRI sequence with b = 0, 50, 250, 800 s/mm2 were retrospectively analysed in 173 lesions and 40 healthy livers. The apparent diffusion coefficient ADC = ADC(0,800) and IVIM-based parameters D1' = ADC(50,800), D2' =ADC(250,800), f1', f2', D*', ADClow = ADC(0,50), and ADCdiff=ADClow-D2' were calculated voxel-wise without fitting procedures. Differences between lesion groups were investigated. RESULTS Focal nodular hyperplasias were best discriminated from all other lesions by f1' with an area under the curve (AUC) of 0.989. Haemangiomas were best discriminated by D1' (AUC of 0.994). For discrimination between malignant and benign lesions, ADC(0,800) and D1' were best suited (AUC of 0.915 and 0.858, respectively). Discriminatory power was further increased by using a combination of D1' and f1'. CONCLUSION IVIM parameters D and f approximated from three b-values provided more discriminatory power between liver lesions than ADC determined from two b-values. The use of b = 0, 50, 800 s/mm2 was superior to that of b = 0, 250, 800 s/mm2. The acquisition of four instead of three b-values has no further benefit for lesion characterisation. KEY POINTS • Diffusion and perfusion characteristics are assessable with only three b-values. • Association of b = 0, 50, 800 s/mm2is superior to b = 0, 250, 800 s/mm2. • A fourth acquired b-value has no benefit for differential diagnosis. • For liver lesion characterisation, simplified IVIM analysis is superior to ADC determination. • Simplified IVIM approach guarantees numerically stable, voxel-wise results and short acquisition times.
Collapse
Affiliation(s)
- P Mürtz
- Department of Radiology, University of Bonn, Bonn, Germany.
- Radiologische Klinik der Universität Bonn, Sigmund-Freud-Straße 25, 53105, Bonn, Germany.
| | - A M Sprinkart
- Department of Radiology, University of Bonn, Bonn, Germany
| | - M Reick
- Department of Radiology, University of Bonn, Bonn, Germany
| | - C C Pieper
- Department of Radiology, University of Bonn, Bonn, Germany
| | | | - R König
- Department of Radiology, University of Bonn, Bonn, Germany
| | - H H Schild
- Department of Radiology, University of Bonn, Bonn, Germany
| | - W A Willinek
- Department of Radiology, University of Bonn, Bonn, Germany
| | - G M Kukuk
- Department of Radiology, University of Bonn, Bonn, Germany
| |
Collapse
|
42
|
Luo M, Zhang L, Jiang XH, Zhang WD. Intravoxel incoherent motion: application in differentiation of hepatocellular carcinoma and focal nodular hyperplasia. Diagn Interv Radiol 2018; 23:263-271. [PMID: 28703102 DOI: 10.5152/dir.2017.16595] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE We aimed to explore whether intravoxel incoherent motion (IVIM)-related parameters of hepatocellular carcinoma (HCC) and focal nodular hyperplasia (FNH) demonstrate differences that could be used to differentiate and improve diagnostic efficiency. METHODS A total of 27 patients, including 22 with HCC and 5 with FNH, underwent liver 3.0 T magnetic resonance imaging for routine sequences. They were concurrently examined by IVIM diffusion-weighted imaging (DWI) scanning with 11 different b values (0-800 s/mm2). IVIM-derived parameters, such as pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (f), and apparent diffusion coefficient (ADCtotal), were quantified automatically by post-processing software and compared between HCC and FNH groups. A receiver operating characteristic (ROC) curve was then created to predict their diagnostic value. RESULTS D* was weak in terms of reproducibility among the other parameters. ADCtotal, D, and D* were significantly lower in the HCC group than in the FNH group, while f did not show a significant difference. ADCtotal and D had the largest area under the curve values (AUC; 0.915 and 0.897, respectively) and similarly high efficacy to differentiate the two conditions. CONCLUSION IVIM provides a new modality to differentiate the HCC and FNH. ADCtotal and D demonstrated outstanding and comparable diagnosing utility.
Collapse
Affiliation(s)
- Ma Luo
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
| | | | | | | |
Collapse
|
43
|
Xiao Z, Zhong Y, Tang Z, Qiang J, Qian W, Wang R, Wang J, Wu L, Tang W, Zhang Z. Standard diffusion-weighted, diffusion kurtosis and intravoxel incoherent motion MR imaging of sinonasal malignancies: correlations with Ki-67 proliferation status. Eur Radiol 2018; 28:2923-2933. [PMID: 29383521 DOI: 10.1007/s00330-017-5286-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/11/2017] [Accepted: 12/22/2017] [Indexed: 01/12/2023]
Abstract
OBJECTIVES To explore the correlations of parameters derived from standard diffusion-weighted imaging (DWI), diffusion kurtosis imaging (DKI) and intravoxel incoherent motion (IVIM) with the Ki-67 proliferation status. METHODS Seventy-five patients with histologically proven sinonasal malignancies who underwent standard DWI, DKI and IVIM were retrospectively reviewed. The mean, minimum, maximum and whole standard DWI [apparent diffusion coefficient (ADC)], DKI [diffusion kurtosis (K) and diffusion coefficient (Dk)] and IVIM [pure diffusion coefficient (D), pseudo-diffusion coefficient (D*) and perfusion fraction (f)] parameters were measured and correlated with the Ki-67 labelling index (LI). The Ki-67 LI was categorised as high (> 50%) or low (≤ 50%). RESULTS The K and f values were positively correlated with the Ki-67 LI (rho = 0.295~0.532), whereas the ADC, Dk and D values were negatively correlated with the Ki-67 LI (rho = -0.443~-0.277). The ADC, Dk and D values were lower, whereas the K value was higher in sinonasal malignancies with a high Ki-67 LI than in those in a low Ki-67 LI (all p < 0.05). A higher maximum K value (Kmax > 0.977) independently predicted a high Ki-67 status [odds ratio (OR) = 7.614; 95% confidence interval (CI) = 2.197-38.674; p = 0.017]. CONCLUSION ADC, Dk, K, D and f are correlated with Ki-67 LI. Kmax is the strongest independent factor for predicting Ki-67 status. KEY POINTS • DWI-derived parameters from different models are capable of providing different pathophysiological information. • DWI, DKI and IVIM parameters are associated with Ki-67 proliferation status. • K max derived from DKI is the strongest independent factor for the prediction of Ki-67 proliferation status.
Collapse
Affiliation(s)
- Zebin Xiao
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Yufeng Zhong
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China.,Department of Radiology, Jinshan Hospital of Shanghai Medical School, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Zuohua Tang
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China.
| | - Jinwei Qiang
- Department of Radiology, Jinshan Hospital of Shanghai Medical School, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China.
| | - Wen Qian
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Rong Wang
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Jie Wang
- Department of Radiotherapy, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, 200031, China
| | - Lingjie Wu
- Department of Otolaryngology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, 200031, China
| | - Wenlin Tang
- Siemens Healthcare Ltd., Shanghai, 201318, People's Republic of China
| | - Zhongshuai Zhang
- Siemens Healthcare Ltd., Shanghai, 201318, People's Republic of China
| |
Collapse
|
44
|
Xiao Z, Tang Z, Qiang J, Wang S, Qian W, Zhong Y, Wang R, Wang J, Wu L, Tang W, Zhang Z. Intravoxel Incoherent Motion MR Imaging in the Differentiation of Benign and Malignant Sinonasal Lesions: Comparison with Conventional Diffusion-Weighted MR Imaging. AJNR Am J Neuroradiol 2018; 39:538-546. [PMID: 29371251 DOI: 10.3174/ajnr.a5532] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Intravoxel incoherent motion is a promising method for the differentiation of sinonasal lesions. This study aimed to evaluate the value of intravoxel incoherent motion in the differentiation of benign and malignant sinonasal lesions and to compare the diagnostic performance of intravoxel incoherent motion with that of conventional DWI. MATERIALS AND METHODS One hundred thirty-one patients with histologically proved solid sinonasal lesions (56 benign and 75 malignant) who underwent conventional DWI and intravoxel incoherent motion were recruited in this study. The diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) values derived from intravoxel incoherent motion and ADC values derived from conventional DWI were measured and compared between the 2 groups using the Student t test. Receiver operating characteristic curve analysis, logistic regression analysis, and 10-fold cross-validation were performed to evaluate the diagnostic performance of single-parametric and multiparametric models. RESULTS The mean ADC and D values were significantly lower in malignant sinonasal lesions than in benign sinonasal lesions (both P < .001). The mean f value was higher in malignant lesions than in benign lesions (P = .003). Multiparametric models can significantly improve the cross-validated areas under the curve for the differentiation of sinonasal lesions compared with single-parametric models (all corrected P < .05 except the D value). The model of D+f provided a better diagnostic performance than the ADC value (corrected P < .001). CONCLUSIONS Intravoxel incoherent motion appears to be a more effective MR imaging technique than conventional DWI in the differentiation of benign and malignant sinonasal lesions.
Collapse
Affiliation(s)
- Z Xiao
- From the Departments of Radiology (Z.X., Z.T., W.Q., R.W.)
| | - Z Tang
- From the Departments of Radiology (Z.X., Z.T., W.Q., R.W.)
| | - J Qiang
- Department of Radiology (J.Q., Y.Z.), Jinshan Hospital of Shanghai Medical School, Fudan University, Shanghai, P. R. China
| | | | - W Qian
- From the Departments of Radiology (Z.X., Z.T., W.Q., R.W.)
| | - Y Zhong
- Department of Radiology (J.Q., Y.Z.), Jinshan Hospital of Shanghai Medical School, Fudan University, Shanghai, P. R. China
| | - R Wang
- From the Departments of Radiology (Z.X., Z.T., W.Q., R.W.)
| | | | - L Wu
- Otolaryngology (L.W.), Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, P. R. China
| | - W Tang
- Siemens Healthcare Ltd (W.T., Z.Z.), Shanghai, P. R. China
| | - Z Zhang
- Siemens Healthcare Ltd (W.T., Z.Z.), Shanghai, P. R. China
| |
Collapse
|
45
|
Intravoxel Incoherent Motion Diffusion-Weighted Imaging Versus Dynamic Contrast-Enhanced Magnetic Resonance Imaging: Comparison of the Diagnostic Performance of Perfusion-Related Parameters in Breast. J Comput Assist Tomogr 2018; 42:6-11. [PMID: 28786902 DOI: 10.1097/rct.0000000000000661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the diagnostic performance of the perfusion-related parameters of intravoxel incoherent motion (IVIM) imaging for breast lesions, compared with dynamic contrast-enhanced magnetic resonance imaging (DCE MRI). METHODS Fifty-nine patients with both IVIM imaging and subsequent DCE MRI were enrolled. Perfusion-related parameters of IVIM imaging (perfusion fraction, f; pseudo-diffusion coefficient, D*), as well as model-based and model-free parameters of DCE MRI, were measured. Receiver operating characteristic curve analysis and correlations between the IVIM and DCE MRI parameters were performed. RESULTS Thirty-one malignant and 35 benign lesions were pathologically proved. The area under the receiver operating characteristic curves (AUC) of D* plus f (AUCf+D*) was 0.834. The combined AUC of all model-based DCE MRI parameters (AUCmodel-based) was 0.904. The combined AUC of all model-free DCE MRI parameters (AUCmodel-free) was 0.876. AUCf+D* had no significant difference with either AUCmodel-based or AUCmodel-free. No significant correlation was found between f or D* and DCE-derived parameters. CONCLUSIONS Intravoxel incoherent motion imaging has the same value in differentiating malignant and benign breast lesions, compared with DCE MRI, in terms of perfusion-related parameters.
Collapse
|
46
|
He MK, Zou RH, Li QJ, Zhou ZG, Shen JX, Zhang YF, Yu ZS, Xu L, Shi M. Phase II Study of Sorafenib Combined with Concurrent Hepatic Arterial Infusion of Oxaliplatin, 5-Fluorouracil and Leucovorin for Unresectable Hepatocellular Carcinoma with Major Portal Vein Thrombosis. Cardiovasc Intervent Radiol 2018; 41:734-743. [PMID: 29327075 DOI: 10.1007/s00270-017-1874-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Sorafenib is recommended for the first-line treatment of advanced hepatocellular carcinoma (HCC). However, the median progression-free survival (PFS) of patients with HCC and major portal vein tumor thrombosis treated with sorafenib monotherapy is no more than 3 months. A prospective single-arm phase II study was conducted to determine whether adding hepatic arterial infusion chemotherapy of oxaliplatin, 5-fluorouracil and leucovorin to sorafenib could improve on these results. METHODS Thirty five patients were treated with sorafenib 400 mg orally twice a day, oxaliplatin 85 mg/m2 HAI on day 1, leucovorin 400 mg/m2 HAI on days 1, and 5-fluorouracil 2800 mg/m2 on days 1 and 2, repeated every 21 days. The primary end point was the 3-month PFS rate. RESULTS The 3-, 6-, and 12-month PFS rates were 82.9, 51.4, and 22.9%, respectively. The median PFS and overall survival was 6.7 and 13.2 months, respectively. The objective response rate was 40%, and the disease control rate was 77.1% by RECIST criteria. Five (14.3%) patients achieved conversion to complete resection after the study treatment, and one of them experienced a pathological complete response. Treatment-related deaths did not occur. Grade 3-4 toxicities consisted of increases in aspartate aminotransferase (31.4%), hand-foot syndrome (17.1%), thrombocytopenia (14.3%), and neutropenia (8.6%). CONCLUSIONS The combination treatment met the pre-specified end point of a 3-month progression free survival rate exceeding 65% and was clinical tolerable. The merits of this approach need to be established with a phase III trial. Clinical trial number http://ClinicalTrials.gov (No. NCT02981498).
Collapse
Affiliation(s)
- Min-Ke He
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China
| | - Ru-Hai Zou
- Department of Ultrasonography, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China
| | - Qi-Jiong Li
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China
| | - Zhong-Guo Zhou
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China
| | - Jing-Xian Shen
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China
| | - Yong-Fa Zhang
- Department of Liver Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zi-Shan Yu
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China
| | - Li Xu
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China
| | - Ming Shi
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China.
| |
Collapse
|
47
|
Sotome H, Ogura A, Asai A, Fuju A. [Capillary Blood Flow of Muscle Before and After the Exercise Used by Intravoxel Incoherent Motion]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2018; 74:861-868. [PMID: 30232311 DOI: 10.6009/jjrt.2018_jsrt_74.9.861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Capillaries are the most basic and important blood vessel of the circulatory systems. The evaluation of the blood flow may contribute to many studies in future. We evaluated the capillary blood flow change of lower limb muscle over time before and after the exercise used by magnetic resonance imaging-intravoxel incoherent motion (MRI-IVIM) obtained perfusion information. Furthermore, we examined an association between the muscle pain after the exercise and the diffusion weighted image (DWI) indexes. DWI was imaged using multi-b values for a thigh and calf muscles. MRI was performed just after an exercise test, 3, 6, and 24 hours later, and the IVIM index and diffusion index were calculated. Furthermore, we interviewed the degree of the muscle ache 24 hours later. As a result, pseudo diffusion coefficient (D*) and f value as IVIM index increased after-exercise as compared with pre-exercise and decreased in 3 hours later. A similar tendency was found in the apparent diffusion coefficient and the diffusion coefficient as diffusion index. Furthermore, all indexes increased in after exercise from before exercise and decreased with time passed and increased again 24 hours later. In conclusion, IVIM could obtain capillary blood flow information, and it was suggested to contribute for sports medicine in future.
Collapse
Affiliation(s)
- Hana Sotome
- School of Radiological Technology, Gunma Prefectural College of Health Sciences (Current address: Department of Radiology, Fujioka General Hospital)
| | - Akio Ogura
- Graduate School, Gunma Prefectural College of Health Sciences
| | - Ayumi Asai
- School of Radiological Technology, Gunma Prefectural College of Health Sciences (Current address: Department of Radiology, Shizuoka City Shizuoka Hospital)
| | - Atsuya Fuju
- School of Radiological Technology, Gunma Prefectural College of Health Sciences (Current address: Department of Radiology, Kiryu Kosei General Hospital)
| |
Collapse
|
48
|
Newitt DC, Malyarenko D, Chenevert TL, Quarles CC, Bell L, Fedorov A, Fennessy F, Jacobs MA, Solaiyappan M, Hectors S, Taouli B, Muzi M, Kinahan PE, Schmainda KM, Prah MA, Taber EN, Kroenke C, Huang W, Arlinghaus LR, Yankeelov TE, Cao Y, Aryal M, Yen YF, Kalpathy-Cramer J, Shukla-Dave A, Fung M, Liang J, Boss M, Hylton N. Multisite concordance of apparent diffusion coefficient measurements across the NCI Quantitative Imaging Network. J Med Imaging (Bellingham) 2018; 5:011003. [PMID: 29021993 PMCID: PMC5633866 DOI: 10.1117/1.jmi.5.1.011003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022] Open
Abstract
Diffusion weighted MRI has become ubiquitous in many areas of medicine, including cancer diagnosis and treatment response monitoring. Reproducibility of diffusion metrics is essential for their acceptance as quantitative biomarkers in these areas. We examined the variability in the apparent diffusion coefficient (ADC) obtained from both postprocessing software implementations utilized by the NCI Quantitative Imaging Network and online scan time-generated ADC maps. Phantom and in vivo breast studies were evaluated for two ([Formula: see text]) and four ([Formula: see text]) [Formula: see text]-value diffusion metrics. Concordance of the majority of implementations was excellent for both phantom ADC measures and in vivo [Formula: see text], with relative biases [Formula: see text] ([Formula: see text]) and [Formula: see text] (phantom [Formula: see text]) but with higher deviations in ADC at the lowest phantom ADC values. In vivo [Formula: see text] concordance was good, with typical biases of [Formula: see text] to 3% but higher for online maps. Multiple b-value ADC implementations were separated into two groups determined by the fitting algorithm. Intergroup mean ADC differences ranged from negligible for phantom data to 2.8% for [Formula: see text] in vivo data. Some higher deviations were found for individual implementations and online parametric maps. Despite generally good concordance, implementation biases in ADC measures are sometimes significant and may be large enough to be of concern in multisite studies.
Collapse
Affiliation(s)
- David C. Newitt
- University of California San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, California, United States
| | - Dariya Malyarenko
- University of Michigan, Department of Radiology, Ann Arbor, Michigan, United States
| | - Thomas L. Chenevert
- University of Michigan, Department of Radiology, Ann Arbor, Michigan, United States
| | - C. Chad Quarles
- Barrow Neurological Institute, Division of Imaging Research, Phoenix, Arizona, United States
| | - Laura Bell
- Barrow Neurological Institute, Division of Imaging Research, Phoenix, Arizona, United States
| | - Andriy Fedorov
- Harvard Medical School, Brigham and Women’s Hospital, Department of Radiology, Boston, Massachusetts, United States
| | - Fiona Fennessy
- Harvard Medical School, Brigham and Women’s Hospital, Department of Radiology, Boston, Massachusetts, United States
| | - Michael A. Jacobs
- The Johns Hopkins School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, United States
| | - Meiyappan Solaiyappan
- The Johns Hopkins School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science and Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, United States
| | - Stefanie Hectors
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Bachir Taouli
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Mark Muzi
- University of Washington, Department of Radiology, Neurology, and Radiation Oncology, Seattle, Washington, United States
| | - Paul E. Kinahan
- University of Washington, Department of Radiology, Neurology, and Radiation Oncology, Seattle, Washington, United States
| | - Kathleen M. Schmainda
- Medical College of Wisconsin, Department of Radiology, Milwaukee, Wisconsin, United States
| | - Melissa A. Prah
- Medical College of Wisconsin, Department of Radiology, Milwaukee, Wisconsin, United States
| | - Erin N. Taber
- Oregon Health and Science University, Advanced Imaging Research Center, Portland, Oregon, United States
| | - Christopher Kroenke
- Oregon Health and Science University, Advanced Imaging Research Center, Portland, Oregon, United States
| | - Wei Huang
- Oregon Health and Science University, Advanced Imaging Research Center, Portland, Oregon, United States
| | - Lori R. Arlinghaus
- Vanderbilt University Medical Center, Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, United States
| | - Thomas E. Yankeelov
- The University of Texas at Austin, Institute for Computational and Engineering Sciences, Department of Biomedical Engineering and Diagnostic Medicine, Austin, Texas, United States
| | - Yue Cao
- University of Michigan, Radiation Oncology, Radiology, and Biomedical Engineering, Ann Arbor, Michigan, United States
| | - Madhava Aryal
- University of Michigan, Radiation Oncology, Radiology, and Biomedical Engineering, Ann Arbor, Michigan, United States
| | - Yi-Fen Yen
- Harvard Medical School, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Jayashree Kalpathy-Cramer
- Harvard Medical School, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Amita Shukla-Dave
- Memorial Sloan-Kettering Cancer Center, Department of Medical Physics and Radiology, New York, New York, United States
| | - Maggie Fung
- Memorial Sloan-Kettering Cancer Center, GE Healthcare, New York, New York, United States
| | | | - Michael Boss
- National Institute of Standards and Technology, Applied Physics Division, Boulder, Colorado, United States
- University of Colorado Boulder, Department of Physics, Boulder, Colorado, United States
| | - Nola Hylton
- University of California San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, California, United States
| |
Collapse
|
49
|
Federau C. Intravoxel incoherent motion MRI as a means to measure in vivo perfusion: A review of the evidence. NMR IN BIOMEDICINE 2017; 30. [PMID: 28885745 DOI: 10.1002/nbm.3780] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/19/2017] [Accepted: 07/07/2017] [Indexed: 05/07/2023]
Abstract
The idea that in vivo intravoxel incoherent motion magnetic resonance signal is influenced by blood motion in the microvasculature is exciting, because it suggests that local and quantitative perfusion information can be obtained in a simple and elegant way from a few diffusion-weighted images, without contrast injection. When the method was proposed in the late 1980s some doubts appeared as to its feasibility, and, probably because the signal to noise and image quality at the time was not sufficient, no obvious experimental evidence could be produced to alleviate them. Helped by the tremendous improvements seen in the last three decades in MR hardware, pulse design, and post-processing capabilities, an increasing number of encouraging reports on the value of intravoxel incoherent motion perfusion imaging have emerged. The aim of this article is to review the current published evidence on the feasibility of in vivo perfusion imaging with intravoxel incoherent motion MRI.
Collapse
Affiliation(s)
- Christian Federau
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Basel, Petersgraben, Basle, Switzerland
| |
Collapse
|
50
|
Luo M, Zhang L, Jiang XH, Zhang WD. Intravoxel Incoherent Motion Diffusion-weighted Imaging: Evaluation of the Differentiation of Solid Hepatic Lesions. Transl Oncol 2017; 10:831-838. [PMID: 28866259 PMCID: PMC5595232 DOI: 10.1016/j.tranon.2017.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To evaluate whether intravoxel incoherent motion (IVIM)-related parameters could be used to differentiate malignant from benign focal liver lesions (FLLs) and to improve diagnostic efficiency. METHODS Seventy-four patients with 75 lesions, including 51 malignant FLLs and 24 benign FLLs, underwent liver 3.0-T magnetic resonance imaging for routine examination sequences. IVIM diffusion-weighted imaging (DWI) with 11 b values (0-800s/mm2) was also acquired concurrently. Apparent diffusion coefficient (ADCtotal) and IVIM-derived parameters, such as the pure diffusion coefficient (D), the pseudodiffusion coefficient (D⁎), and the perfusion fraction (f), were calculated and compared between the two groups. A receiver operating characteristic curve analysis was performed to assess their diagnostic value. RESULTS ADCtotal, D, and f were significantly lower in the malignant group than in the benign group, whereas D⁎ did not show a statistical difference. D had a larger area under the curve value (0.968) and higher sensitivity (92.30%) for differentiation. CONCLUSION IVIM is a useful method to differentiate malignant and benign FLLs. The D value showed higher efficacy to detect hepatic solid lesions.
Collapse
Affiliation(s)
- Ma Luo
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China
| | - Ling Zhang
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China
| | - Xin-Hua Jiang
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China
| | - Wei-Dong Zhang
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China.
| |
Collapse
|