1
|
Liu X, Bao Y, Sui L, Cao J, Wang Y, Yu C, Qiao G, Cong Y. Mammographically detected breast clustered microcalcifications localized by chest thin-section computed tomography. World J Surg Oncol 2024; 22:72. [PMID: 38419107 PMCID: PMC10902948 DOI: 10.1186/s12957-024-03354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/24/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND To explore the capability and clinical significance of chest thin-section computed tomography (CT) for localization of mammographically detected clustered microcalcifications. METHODS A total of 69 patients with 71 mammographically detected clustered microcalcifications received surgical biopsy under the guidance of mammography (MG), CT was used to localize calcifications combined with MG if calcifications can be seen on CT. Intraoperative mammography of the specimens were performed in all cases for identification of the resected microcalcifications. The clinical, imaging and pathological information of these patients were analyzed. RESULTS A total of 42 (59.15%) cases of calcifications were localized by CT + MG, 29 (40.85%) cases were guided only by the mammography. All suspicious calcifications on the mammography were successfully removed. Pathological results showed 42 cases were cancer, 23 cases were benign, and 6 cases were atypical hyperplasia. The mean age in the CT + MG group was older than that of the MG group (54.12 vs. 49.27 years; P = 0.014). The maximum diameter of clusters of microcalcifications on mammography in the CT + MG group was larger than that of the MG group [(cranio-caudal view, 1.52 vs. 0.61 mm, P = 0.000; mediolateral oblique (MLO) view, 1.53 vs. 0.62 mm, P = 0.000)]. The gray value ratio (calcified area / paraglandular; MLO, P = 0.004) and the gray value difference (calcified area - paraglandular; MLO, P = 0.005) in the CT + MG group was higher than that of the MG group. Multivariate analysis showed that the max diameter of clusters of microcalcifications (MLO view) was a significant predictive factor of localization by CT in total patients (P = 0.001). CONCLUSIONS About half of the mammographically detected clustered microcalcifications could be localized by thin-section CT. Maximum diameter of clusters of microcalcifications (MLO view) was a predictor of visibility of calcifications by CT. Chest thin-section CT may be useful for localization of calcifications in some patients, especially for calcifications that are only visible in one view on the mammography.
Collapse
Affiliation(s)
- Xinjie Liu
- Surgery Department of West Area, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, Shandong, 264001, P.R. China
| | - Yuhan Bao
- Department of Breast Surgery, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250031, P.R. China
| | - Laijian Sui
- Department of Orthopedics and Arthrology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, Shandong, 264001, P.R. China
| | - Jianqiao Cao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, Shandong, 264001, P.R. China
| | - Yidan Wang
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, Shandong, 264001, P.R. China
| | - Chao Yu
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, Shandong, 264001, P.R. China
| | - Guangdong Qiao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, Shandong, 264001, P.R. China
| | - Yizi Cong
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, Shandong, 264001, P.R. China.
| |
Collapse
|
2
|
Birnbacher L, Braig EM, Pfeiffer D, Pfeiffer F, Herzen J. Quantitative X-ray phase contrast computed tomography with grating interferometry : Biomedical applications of quantitative X-ray grating-based phase contrast computed tomography. Eur J Nucl Med Mol Imaging 2021; 48:4171-4188. [PMID: 33846846 PMCID: PMC8566444 DOI: 10.1007/s00259-021-05259-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
The ability of biomedical imaging data to be of quantitative nature is getting increasingly important with the ongoing developments in data science. In contrast to conventional attenuation-based X-ray imaging, grating-based phase contrast computed tomography (GBPC-CT) is a phase contrast micro-CT imaging technique that can provide high soft tissue contrast at high spatial resolution. While there is a variety of different phase contrast imaging techniques, GBPC-CT can be applied with laboratory X-ray sources and enables quantitative determination of electron density and effective atomic number. In this review article, we present quantitative GBPC-CT with the focus on biomedical applications.
Collapse
Affiliation(s)
- Lorenz Birnbacher
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Eva-Maria Braig
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
| | - Daniela Pfeiffer
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franz Pfeiffer
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julia Herzen
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany.
| |
Collapse
|
3
|
Mettivier G, di Franco F, Sarno A, Castriconi R, Di Lillo F, Bliznakova K, Russo P. In-Line Phase Contrast Mammography, Phase Contrast Digital Breast Tomosynthesis, and Phase Contrast Breast Computed Tomography With a Dedicated CT Scanner and a Microfocus X-Ray Tube: Experimental Phantom Study. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3003380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Zhu Y, O'Connell AM, Ma Y, Liu A, Li H, Zhang Y, Zhang X, Ye Z. Dedicated breast CT: state of the art-Part II. Clinical application and future outlook. Eur Radiol 2021; 32:2286-2300. [PMID: 34476564 DOI: 10.1007/s00330-021-08178-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Dedicated breast CT is being increasingly used for breast imaging. This technique provides images with no compression, removal of tissue overlap, rapid acquisition, and available simultaneous assessment of microcalcifications and contrast enhancement. In this second installment in a 2-part review, the current status of clinical applications and ongoing efforts to develop new imaging systems are discussed, with particular emphasis on how to achieve optimized practice including lesion detection and characterization, response to therapy monitoring, density assessment, intervention, and implant evaluation. The potential for future screening with breast CT is also addressed. KEY POINTS: • Dedicated breast CT is an emerging modality with enormous potential in the future of breast imaging by addressing numerous clinical needs from diagnosis to treatment. • Breast CT shows either noninferiority or superiority with mammography and numerical comparability to MRI after contrast administration in diagnostic statistics, demonstrates excellent performance in lesion characterization, density assessment, and intervention, and exhibits promise in implant evaluation, while potential application to breast cancer screening is still controversial. • New imaging modalities such as phase-contrast breast CT, spectral breast CT, and hybrid imaging are in the progress of R & D.
Collapse
Affiliation(s)
- Yueqiang Zhu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Avice M O'Connell
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY, 14642, USA
| | - Yue Ma
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Aidi Liu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Haijie Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Yuwei Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Xiaohua Zhang
- Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive, Suite 112, West Henrietta, NY, 14586, USA
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China.
| |
Collapse
|
5
|
Notohamiprodjo S, Varasteh Z, Beer AJ, Niu G, Chen X(S, Weber W, Schwaiger M. Tumor Vasculature. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Heck L, Eggl E, Grandl S, Dierolf M, Jud C, Günther B, Achterhold K, Mayr D, Gleich B, Hellerhoff K, Pfeiffer F, Herzen J. Dose and spatial resolution analysis of grating-based phase-contrast mammography using an inverse Compton x-ray source. J Med Imaging (Bellingham) 2020; 7:023505. [PMID: 32341937 PMCID: PMC7175026 DOI: 10.1117/1.jmi.7.2.023505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 04/06/2020] [Indexed: 11/14/2022] Open
Abstract
Purpose: Although the mortality rate of breast cancer was reduced with the introduction of screening mammography, many women undergo unnecessary subsequent examinations due to inconclusive diagnoses. Superposition of anatomical structures especially within dense breasts in conjunction with the inherently low soft tissue contrast of absorption images compromises image quality. This can be overcome by phase-contrast imaging. Approach: We analyze the spatial resolution of grating-based multimodal mammography using a mammographic phantom and one freshly dissected mastectomy specimen at an inverse Compton x-ray source. Here, the focus was on estimating the spatial resolution with the sample in the beam path and discussing benefits and drawbacks of the method used and the estimation of the mean glandular dose. Finally, the possibility of improving the spatial resolution is investigated by comparing monochromatic grating-based mammography with the standard one. Results: The spatial resolution is constant or also higher for the image acquired with monochromatic radiation and the contrast-to-noise ratio (CNR) is higher in our approach while the dose can be reduced by up to 20%. Conclusions: In summary, phase-contrast imaging helps to improve tumor detection by advanced diagnostic image quality. We demonstrate a higher spatial resolution for one mastectomy specimen and increased CNR at an equal or lower dose for the monochromatic measurements.
Collapse
Affiliation(s)
- Lisa Heck
- Technical University of Munich, Chair of Biomedical Physics, Munich School of BioEngineering, Department of Physics, Garching, Germany
| | - Elena Eggl
- Technical University of Munich, Chair of Biomedical Physics, Munich School of BioEngineering, Department of Physics, Garching, Germany
| | - Susanne Grandl
- Ludwig Maximilian University of Munich, Institute for Clinical Radiology, Munich, Germany
| | - Martin Dierolf
- Technical University of Munich, Chair of Biomedical Physics, Munich School of BioEngineering, Department of Physics, Garching, Germany
| | - Christoph Jud
- Technical University of Munich, Chair of Biomedical Physics, Munich School of BioEngineering, Department of Physics, Garching, Germany
| | - Benedikt Günther
- Technical University of Munich, Chair of Biomedical Physics, Munich School of BioEngineering, Department of Physics, Garching, Germany
| | - Klaus Achterhold
- Technical University of Munich, Chair of Biomedical Physics, Munich School of BioEngineering, Department of Physics, Garching, Germany
| | - Doris Mayr
- Ludwig Maximilian University of Munich, Institute of Pathology, Munich, Germany
| | - Bernhard Gleich
- Technical University of Munich, Chair of Biomedical Physics, Munich School of BioEngineering, Department of Physics, Garching, Germany
| | - Karin Hellerhoff
- Ludwig Maximilian University of Munich, Institute for Clinical Radiology, Munich, Germany
| | - Franz Pfeiffer
- Technical University of Munich, Chair of Biomedical Physics, Munich School of BioEngineering, Department of Physics, Garching, Germany.,Technical University of Munich, School of Medicine and Klinikum rechts der Isar, Department of Diagnostic and Interventional Radiology, Munich, Germany
| | - Julia Herzen
- Technical University of Munich, Chair of Biomedical Physics, Munich School of BioEngineering, Department of Physics, Garching, Germany
| |
Collapse
|
7
|
Synchrotron Radiation-Based Three-Dimensional Visualization of Angioarchitectural Remodeling in Hippocampus of Epileptic Rats. Neurosci Bull 2019; 36:333-345. [PMID: 31823302 DOI: 10.1007/s12264-019-00450-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
Characterizing the three-dimensional (3D) morphological alterations of microvessels under both normal and seizure conditions is crucial for a better understanding of epilepsy. However, conventional imaging techniques cannot detect microvessels on micron/sub-micron scales without angiography. In this study, synchrotron radiation (SR)-based X-ray in-line phase-contrast imaging (ILPCI) and quantitative 3D characterization were used to acquire high-resolution, high-contrast images of rat brain tissue under both normal and seizure conditions. The number of blood microvessels was markedly increased on days 1 and 14, but decreased on day 60 after seizures. The surface area, diameter distribution, mean tortuosity, and number of bifurcations and network segments also showed similar trends. These pathological changes were confirmed by histological tests. Thus, SR-based ILPCI provides systematic and detailed views of cerebrovascular anatomy at the micron level without using contrast-enhancing agents. This holds considerable promise for better diagnosis and understanding of the pathogenesis and development of epilepsy.
Collapse
|
8
|
Hellerhoff K, Birnbacher L, Sztrókay-Gaul A, Grandl S, Auweter S, Willner M, Marschner M, Mayr D, Reiser MF, Pfeiffer F, Herzen J. Assessment of intraductal carcinoma in situ (DCIS) using grating-based X-ray phase-contrast CT at conventional X-ray sources: An experimental ex-vivo study. PLoS One 2019; 14:e0210291. [PMID: 30625220 PMCID: PMC6326478 DOI: 10.1371/journal.pone.0210291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/08/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The extent of intraductal carcinoma in situ (DCIS) is commonly underestimated due to the discontinuous growth and lack of microcalcifications. Specimen radiography has been established to reduce the rate of re-excision. However, the predictive value for margin assessment with conventional specimen radiography for DCIS is low. In this study we assessed the potential of grating-based phase-contrast computed tomography (GBPC-CT) at conventional X-ray sources for specimen tomography of DCIS containing samples. MATERIALS AND METHODS GBPC-CT was performed on four ex-vivo breast specimens containing DCIS and invasive carcinoma of non-specific type. Phase-contrast and absorption-based datasets were manually matched with corresponding histological slices as the standard of reference. RESULTS Matching of CT images and histology was successful. GBPC-CT showed an improved soft tissue contrast compared to absorption-based images revealing more histological details in the same sections. Non-calcifying DCIS exceeding the invasive tumor could be correlated to areas of dilated bright ducts around the tumor. CONCLUSIONS GBPC-CT imaging at conventional X-ray sources offers improved depiction quality for the imaging of breast tissue samples compared to absorption-based imaging, allows the identification of diagnostically relevant tissue details, and provides full three-dimensional assessment of sample margins.
Collapse
MESH Headings
- Breast Neoplasms/diagnostic imaging
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Calcinosis/diagnostic imaging
- Calcinosis/pathology
- Carcinoma, Ductal, Breast/diagnostic imaging
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/diagnostic imaging
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/surgery
- Female
- Humans
- In Vitro Techniques
- Mammography/methods
- Microscopy, Phase-Contrast/methods
- Prospective Studies
- Tomography, X-Ray Computed/methods
Collapse
Affiliation(s)
- Karin Hellerhoff
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
- Abteilung für Diagnostische Radiologie, Rotkreuzklinikum München, Munich, Germany
| | - Lorenz Birnbacher
- Chair of Biomedical Physics, Department of Physics & Munich School of BioEngineering, Technical University of Munich, Garching, Germany
- * E-mail:
| | - Anikó Sztrókay-Gaul
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
- Abteilung für Diagnostische Radiologie, Rotkreuzklinikum München, Munich, Germany
| | - Susanne Grandl
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
- Abteilung für Diagnostische Radiologie, Rotkreuzklinikum München, Munich, Germany
| | - Sigrid Auweter
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Marian Willner
- Chair of Biomedical Physics, Department of Physics & Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| | - Mathias Marschner
- Chair of Biomedical Physics, Department of Physics & Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| | - Doris Mayr
- Institute of Pathology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Maximilian F. Reiser
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics & Munich School of BioEngineering, Technical University of Munich, Garching, Germany
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julia Herzen
- Chair of Biomedical Physics, Department of Physics & Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| |
Collapse
|
9
|
Baran P, Mayo S, McCormack M, Pacile S, Tromba G, Dullin C, Zanconati F, Arfelli F, Dreossi D, Fox J, Prodanovic Z, Cholewa M, Quiney H, Dimmock M, Nesterets Y, Thompson D, Brennan P, Gureyev T. High-Resolution X-Ray Phase-Contrast 3-D Imaging of Breast Tissue Specimens as a Possible Adjunct to Histopathology. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2642-2650. [PMID: 29994112 DOI: 10.1109/tmi.2018.2845905] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Histopathological analysis is the current gold standard in breast cancer diagnosis and management, however, as imaging technology improves, the amount of potential diagnostic information that may be demonstrable radiologically should also increase. We aimed to evaluate the potential clinical usefulness of 3-D phase-contrast micro-computed tomography (micro-CT) imaging at high spatial resolutions as an adjunct to conventional histological microscopy. Ten breast tissue specimens, 2 mm in diameter, were scanned at the SYRMEP beamline of the Elettra Synchrotron using the propagation-based phase-contrast micro-tomography method. We obtained pixel size images, which were analyzed and compared with corresponding histological sections examined under light microscopy. To evaluate the effect of spatial resolution on breast cancer diagnosis, scans with four different pixel sizes were also performed. Our comparative analysis revealed that high-resolution images can enable, at a near-histological level, detailed architectural assessment of tissue that may permit increased breast cancer diagnostic sensitivity and specificity when compared with current imaging practices. The potential clinical applications of this method are also discussed.
Collapse
|
10
|
Pfeiffer F, Reiser M, Rummeny E. [X‑ray Phase Contrast : Principles, potential and advances in clinical translation]. Radiologe 2018; 58:218-225. [PMID: 29374312 DOI: 10.1007/s00117-018-0357-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
More than 100 years ago Max von Laue in Munich discovered that X‑rays can be interpreted not only as X‑ray quanta in a particle picture, but also show a wave character. This property has been used for a long time in basic research (e.g. in crystallography for determining the structure of proteins), but so far has had no application in medical imaging. In the last 10 years, however, very impressive technological progress could be made in preclinical research, which also makes the utilization of the wave character of X‑ray light possible for medical imaging. These novel radiography procedures, so-called phase-contrast and dark-field imaging, have a great potential for a pronounced improvement in X‑ray imaging and therefore, also the diagnosis of important diseases. This article describes the basic principles of these novel procedures, summarizes the preclinical research results already achieved exemplified by various organs and shows the potential for future clinical utilization in radiography and computed tomography.
Collapse
Affiliation(s)
- F Pfeiffer
- Lehrstuhl für Biomedizinische Physik, Department Physik & Munich School of BioEngineering, Technische Universität München, München, Deutschland. .,Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland.
| | - M Reiser
- Klinik und Poliklinik für Radiologie, Klinikum der Universität, Ludwig-Maximilians-Universität München, München, Deutschland
| | - E Rummeny
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| |
Collapse
|
11
|
Diagnosis of breast cancer based on microcalcifications using grating-based phase contrast CT. Eur Radiol 2018; 28:3742-3750. [DOI: 10.1007/s00330-017-5158-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
|
12
|
Giuliani A, Mazzoni S, Mele L, Liccardo D, Tromba G, Langer M. Synchrotron Phase Tomography: An Emerging Imaging Method for Microvessel Detection in Engineered Bone of Craniofacial Districts. Front Physiol 2017; 8:769. [PMID: 29085301 PMCID: PMC5649129 DOI: 10.3389/fphys.2017.00769] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/20/2017] [Indexed: 01/12/2023] Open
Abstract
The engineering of large 3D constructs, such as certain craniofacial bone districts, is nowadays a critical challenge. Indeed, the amount of oxygen needed for cell survival is able to reach a maximum diffusion distance of ~150–200 μm from the original vascularization vector, often hampering the long-term survival of the regenerated tissues. Thus, the rapid growth of new blood vessels, delivering oxygen and nutrients also to the inner cells of the bone grafts, is mandatory for their long-term function in clinical practice. Unfortunately, significant progress in this direction is currently hindered by a lack of methods with which to visualize these processes in 3D and reliably quantify them. In this regard, a challenging method for simultaneous 3D imaging and analysis of microvascularization and bone microstructure has emerged in recent years: it is based on the use of synchrotron phase tomography. This technique is able to simultaneously identify multiple tissue features in a craniofacial bone site (e.g., the microvascular and the calcified tissue structure). Moreover, it overcomes the intrinsic limitations of both histology, achieving only a 2D characterization, and conventional tomographic approaches, poorly resolving the vascularization net in the case of an incomplete filling of the newly formed microvessels by contrast agents. Indeed, phase tomography, being based on phase differences among the scattered X-ray waves, is capable of discriminating tissues with similar absorption coefficients (like vessels and woven bone) in defined experimental conditions. The approach reviewed here is based on the most recent experiences applied to bone regeneration in the craniofacial region.
Collapse
Affiliation(s)
- Alessandra Giuliani
- Sezione di Biochimica, Biologia e Fisica Applicata, Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| | - Serena Mazzoni
- Sezione di Biochimica, Biologia e Fisica Applicata, Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| | - Luigi Mele
- Sezione di Biotecnologie, Istologia Medica e Biologia Molecolare, Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Davide Liccardo
- Sezione di Biotecnologie, Istologia Medica e Biologia Molecolare, Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | | | - Max Langer
- Centre de Recherche en Acquisition et Traitment d'Images pour la Santé (CREATIS), Centre National de la Recherche Scientifique (CNRS) UMR 5220, Institut national de la santé et de la recherche médicale (Inserm) U1206, Université de Lyon, INSA-Lyon, Villeurbanne, France
| |
Collapse
|
13
|
Qualitative and Quantitative Imaging Evaluation of Renal Cell Carcinoma Subtypes with Grating-based X-ray Phase-contrast CT. Sci Rep 2017; 7:45400. [PMID: 28361951 PMCID: PMC5374440 DOI: 10.1038/srep45400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/21/2017] [Indexed: 11/13/2022] Open
Abstract
Current clinical imaging methods face limitations in the detection and correct characterization of different subtypes of renal cell carcinoma (RCC), while these are important for therapy and prognosis. The present study evaluates the potential of grating-based X-ray phase-contrast computed tomography (gbPC-CT) for visualization and characterization of human RCC subtypes. The imaging results for 23 ex vivo formalin-fixed human kidney specimens obtained with phase-contrast CT were compared to the results of the absorption-based CT (gbCT), clinical CT and a 3T MRI and validated using histology. Regions of interest were placed on each specimen for quantitative evaluation. Qualitative and quantitative gbPC-CT imaging could significantly discriminate between normal kidney cortex (54 ± 4 HUp) and clear cell (42 ± 10), papillary (43 ± 6) and chromophobe RCCs (39 ± 7), p < 0.05 respectively. The sensitivity for detection of tumor areas was 100%, 50% and 40% for gbPC-CT, gbCT and clinical CT, respectively. RCC architecture like fibrous strands, pseudocapsules, necrosis or hyalinization was depicted clearly in gbPC-CT and was not equally well visualized in gbCT, clinical CT and MRI. The results show that gbPC-CT enables improved discrimination of normal kidney parenchyma and tumorous tissues as well as different soft-tissue components of RCCs without the use of contrast media.
Collapse
|
14
|
Li B, Zhang Y, Wu W, Du G, Cai L, Shi H, Chen S. Neovascularization of hepatocellular carcinoma in a nude mouse orthotopic liver cancer model: a morphological study using X-ray in-line phase-contrast imaging. BMC Cancer 2017; 17:73. [PMID: 28122521 PMCID: PMC5264465 DOI: 10.1186/s12885-017-3073-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 01/18/2017] [Indexed: 11/24/2022] Open
Abstract
Background This study aimed to determine whether synchrotron radiation (SR)-based X-ray in-line phase-contrast imaging (IL-PCI) can be used to investigate the morphological characteristics of tumor neovascularization in a liver xenograft animal model. Methods A human hepatocellular carcinoma HCCLM3 xenograft model was established in nude mice. Xenografts were sampled each week for 4 weeks and fixed to analyze tissue characteristics and neovascularization using SR-based X-ray in-line phase contrast computed tomography (IL-XPCT) without any contrast agent. Results The effect of the energy level and object–to-detector distance on phase-contrast difference was in good agreement with the theory of IL-PCI. Boundaries between the tumor and adjacent normal tissues at week 1 were clearly observed in two-dimensional phase contrast projection imaging. A quantitative contrast difference was observed from weeks 1 to 4. Moreover, 3D image reconstruction of hepatocellular carcinoma (HCC) samples showed blood vessels inside the tumor were abnormal. The smallest blood vessels measured approximately 20 μm in diameter. The tumor vascular density initially increased and then decreased gradually over time. The maximum tumor vascular density was 4.29% at week 2. Conclusion IL-XPCT successfully acquired images of neovascularization in HCC xenografts in nude mice.
Collapse
Affiliation(s)
- Beilei Li
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Yiqiu Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Weizhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guohao Du
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Liang Cai
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Shaoliang Chen
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No.180, Fenglin Road, Shanghai, 200032, China. .,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
15
|
Diemoz PC, Bravin A, Sztrókay-Gaul A, Ruat M, Grandl S, Mayr D, Auweter S, Mittone A, Brun E, Ponchut C, Reiser MF, Coan P, Olivo A. A method for high-energy, low-dose mammography using edge illumination x-ray phase-contrast imaging. Phys Med Biol 2016; 61:8750-8761. [PMID: 27893445 DOI: 10.1088/1361-6560/61/24/8750] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Since the breast is one of the most radiosensitive organs, mammography is arguably the area where lowering radiation dose is of the uttermost importance. Phase-based x-ray imaging methods can provide opportunities in this sense, since they do not require x-rays to be stopped in tissue for image contrast to be generated. Therefore, x-ray energy can be considerably increased compared to those usually exploited by conventional mammography. In this article we show how a novel, optimized approach can lead to considerable dose reductions. This was achieved by matching the edge-illumination phase method, which reaches very high angular sensitivity also at high x-ray energies, to an appropriate image processing algorithm and to a virtually noise-free detection technology capable of reaching almost 100% efficiency at the same energies. Importantly, while proof-of-concept was obtained at a synchrotron, the method has potential for a translation to conventional sources.
Collapse
Affiliation(s)
- Paul C Diemoz
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Detection of Post-Therapeutic Effects in Breast Carcinoma Using Hard X-Ray Index of Refraction Computed Tomography - A Feasibility Study. PLoS One 2016; 11:e0158306. [PMID: 27362638 PMCID: PMC4928822 DOI: 10.1371/journal.pone.0158306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/13/2016] [Indexed: 11/19/2022] Open
Abstract
Objectives Neoadjuvant chemotherapy is the state-of-the-art treatment in advanced breast cancer. A correct visualization of the post-therapeutic tumor size is of high prognostic relevance. X-ray phase-contrast computed tomography (PC-CT) has been shown to provide improved soft-tissue contrast at a resolution formerly restricted to histopathology, at low doses. This study aimed at assessing ex-vivo the potential use of PC-CT for visualizing the effects of neoadjuvant chemotherapy on breast carcinoma. Materials and Methods The analysis was performed on two ex-vivo formalin-fixed mastectomy samples containing an invasive carcinoma removed from two patients treated with neoadjuvant chemotherapy. Images were matched with corresponding histological slices. The visibility of typical post-therapeutic tissue changes was assessed and compared to results obtained with conventional clinical imaging modalities. Results PC-CT depicted the different tissue types with an excellent correlation to histopathology. Post-therapeutic tissue changes were correctly visualized and the residual tumor mass could be detected. PC-CT outperformed clinical imaging modalities in the detection of chemotherapy-induced tissue alterations including post-therapeutic tumor size. Conclusions PC-CT might become a unique diagnostic tool in the prediction of tumor response to neoadjuvant chemotherapy. PC-CT might be used to assist during histopathological diagnosis, offering a high-resolution and high-contrast virtual histological tool for the accurate delineation of tumor boundaries.
Collapse
|
17
|
Sarno A, Mettivier G, Golosio B, Oliva P, Spandre G, Di Lillo F, Fedon C, Longo R, Russo P. Imaging performance of phase-contrast breast computed tomography with synchrotron radiation and a CdTe photon-counting detector. Phys Med 2016; 32:681-90. [DOI: 10.1016/j.ejmp.2016.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 11/25/2022] Open
|
18
|
Assessment of fibrotic tissue and microvascular architecture by in-line phase-contrast imaging in a mouse model of liver fibrosis. Eur Radiol 2016; 26:2947-55. [PMID: 26787604 DOI: 10.1007/s00330-015-4173-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/25/2015] [Accepted: 12/14/2015] [Indexed: 12/18/2022]
Abstract
PURPOSE To explore the value of in-line phase-contrast imaging with computed tomography (ILPCI-CT) by synchrotron radiation (SR) for liver fibrosis. MATERIALS AND METHODS Liver fibrosis models were set up in 13 BALB/c mice by peritoneal injections of thioacetamide and evaluated by ILPCI-CT. Histological staging was used to categorize liver fibrosis into normal, mild fibrosis and advanced fibrosis groups. Microvessel density (MVD), the ratio of total vessel length to volume (L/V), the ratio of total number of branching points to liver volume (P/V) and the distribution of vessel diameter were assessed. RESULTS The CT images showed slightly high-density shadows around the portal tracts in the fibrosis group. Three-dimensional reconstruction can detect vascular and nodular changes on the surface of fibrotic livers. The MVDs between the three groups were significantly different (P = 0.024). L/V was significantly different between the three groups (P = 0.014). There was a positive correlation between MVD and P/V. CONCLUSION Fibrous material can be detected by ILPCI-CT even in the early stage of fibrosis. MVD, L/V, P/V and the distribution of vessel diameter were consistent with fibrosis-related angiogenesis progress. Three-dimensional reconstruction is a promising method to visualize morphological changes of the fibrotic liver. KEY POINTS • ILPCI-CT can detect fibrous material even in the early stage of liver fibrosis. • MVD, L/V, P/V, and the distribution of vascular diameter reflect pathological angiogenesis. • 3D reconstruction could be a promising approach for detecting liver fibrosis.
Collapse
|
19
|
Molecular evaluation of thrombosis using X-ray phase contrast imaging with microbubbles targeted to P-selectin in mice. Eur Radiol 2015; 26:3253-61. [PMID: 26628067 DOI: 10.1007/s00330-015-4129-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 11/15/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVES X-ray phase contrast imaging (PCI) provides excellent image contrast by utilizing the phase shift. The introduction of microbubbles into tissues can cause a phase shift to make microbubbles visibly identified on PCI. In this study, we assessed the feasibility of targeted microbubble-based PCI for the detection of thrombosis. METHODS The absorption and phase contrast images of P-selectin-targeted microbubbles (MBP) were obtained and compared in vitro. MBP, control IgG-targeted microbubbles (MBC), and unbound microbubbles (MBU) were tested for binding specificity on thrombi expressing P-selectin. MBP were used as molecular PCI probes to evaluate P-selectin expression in a mouse model of arteriovenous shunt thrombosis that was created using PE tubes in the bypass outside of the mouse body. RESULTS PCI clearly showed the microbubbles not viewable via absorption contrast imaging (ACI). In vitro attachment of MBP (91.60 ± 11.63) to thrombi was significantly higher than attachment of MBC (17.80 ± 4.02, P < 0.001) or MBU (9.80 ± 2.59, P < 0.001). In the mouse model of arteriovenous shunt thrombosis, the binding affinity of MBP (15.50 ± 6.25) was significantly greater than that of MBC (0.50 ± 0.84, P < 0.001) or MBU (0.33 ± 0.52, P < 0.001). CONCLUSIONS Our results indicate that molecular PCI may be considered as a novel and promising imaging modality for the investigation of thrombosis. KEY POINTS • Small thrombi are rarely detected by conventional radiography. • Phase contrast imaging (PCI) provides higher contrast and spatial resolution than conventional radiography. • P-selectin targeted microbubbles detected by PCI may suggest early thrombosis.
Collapse
|
20
|
Xuan R, Zhao X, Hu D, Jian J, Wang T, Hu C. Three-dimensional visualization of the microvasculature of bile duct ligation-induced liver fibrosis in rats by x-ray phase-contrast imaging computed tomography. Sci Rep 2015. [PMID: 26212186 PMCID: PMC4515745 DOI: 10.1038/srep11500] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
X-ray phase-contrast imaging (PCI) can substantially enhance contrast, and is particularly useful in differentiating biological soft tissues with small density differences. Combined with computed tomography (CT), PCI-CT enables the acquisition of accurate microstructures inside biological samples. In this study, liver microvasculature was visualized without contrast agents in vitro with PCI-CT using liver fibrosis samples induced by bile duct ligation (BDL) in rats. The histological section examination confirmed the correspondence of CT images with the microvascular morphology of the samples. By means of the PCI-CT and three-dimensional (3D) visualization technique, 3D microvascular structures in samples from different stages of liver fibrosis were clearly revealed. Different types of blood vessels, including portal veins and hepatic veins, in addition to ductular proliferation and bile ducts, could be distinguished with good sensitivity, excellent specificity and excellent accuracy. The study showed that PCI-CT could assess the morphological changes in liver microvasculature that result from fibrosis and allow characterization of the anatomical and pathological features of the microvasculature. With further development of PCI-CT technique, it may become a novel noninvasive imaging technique for the auxiliary analysis of liver fibrosis.
Collapse
Affiliation(s)
- Ruijiao Xuan
- College of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Doudou Hu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jianbo Jian
- College of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Tailing Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chunhong Hu
- College of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
21
|
Statistical iterative reconstruction algorithm for X-ray phase-contrast CT. Sci Rep 2015; 5:10452. [PMID: 26067714 PMCID: PMC4464273 DOI: 10.1038/srep10452] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/14/2015] [Indexed: 02/01/2023] Open
Abstract
Grating-based phase-contrast computed tomography (PCCT) is a promising imaging tool on the horizon for pre-clinical and clinical applications. Until now PCCT has been plagued by strong artifacts when dense materials like bones are present. In this paper, we present a new statistical iterative reconstruction algorithm which overcomes this limitation. It makes use of the fact that an X-ray interferometer provides a conventional absorption as well as a dark-field signal in addition to the phase-contrast signal. The method is based on a statistical iterative reconstruction algorithm utilizing maximum-a-posteriori principles and integrating the statistical properties of the raw data as well as information of dense objects gained from the absorption signal. Reconstruction of a pre-clinical mouse scan illustrates that artifacts caused by bones are significantly reduced and image quality is improved when employing our approach. Especially small structures, which are usually lost because of streaks, are recovered in our results. In comparison with the current state-of-the-art algorithms our approach provides significantly improved image quality with respect to quantitative and qualitative results. In summary, we expect that our new statistical iterative reconstruction method to increase the general usability of PCCT imaging for medical diagnosis apart from applications focused solely on soft tissue visualization.
Collapse
|
22
|
Jian W, Wu M, Shi H, Wang L, Zhang L, Luo S. Signs analysis and clinical assessment: phase-contrast computed tomography of human breast tumours. PLoS One 2015; 10:e0124143. [PMID: 25844722 PMCID: PMC4386813 DOI: 10.1371/journal.pone.0124143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 03/12/2015] [Indexed: 12/12/2022] Open
Abstract
Purpose To analyse the diagnostic signs present in slices of human breast tumour specimens using synchrotron radiation phase-contrast imaging computed tomography (PCI-CT) for the first time and assess the feasibility of this technique for clinical applications. Materials and Methods The ethics committee of our university and relevant clinical hospital approved this prospective study, and written informed consent was obtained from all patients. PCI-CT of human breast tumour specimens with synchrotron radiation was performed at the Shanghai Synchrotron Radiation Facility (SSRF). A total of 14 specimens of early-stage carcinomas and 8 specimens of adenomas were enrolled. Based on raw data reconstruction, the diagnostic signs present in the slices were analysed and correlated with histopathology. We proposed a criterion for clinical diagnosis according to the evaluated signs and the Breast Imaging Reporting and Data System (BI-RADS) for reference. The criterion was then assessed by clinicians in a double-blind method. Finally, descriptive statistics were evaluated, depending on the assessment results. Results The 14 carcinoma specimens and 8 adenoma specimens were diagnosed as malignant and benign tumours, respectively. The total coincidence rate was 100%. Conclusion Our study results demonstrate that the X-ray diagnostic signs observed in the specimen slices and the criterion used for clinical diagnosis were accurate and reliable. The criterion based on signs analysis can be used to differentiate early-stage benign or malignant tumours. As a promising imaging method, PCI-CT can serve as a possible and feasible supplement to BI-RADS in the future.
Collapse
Affiliation(s)
- Wushuai Jian
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Mingshu Wu
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Hongli Shi
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Liting Wang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Lu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Shuqian Luo
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
23
|
Grating-based phase-contrast imaging of tumor angiogenesis in lung metastases. PLoS One 2015; 10:e0121438. [PMID: 25811626 PMCID: PMC4374967 DOI: 10.1371/journal.pone.0121438] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 02/17/2015] [Indexed: 11/19/2022] Open
Abstract
Purpose To assess the feasibility of the grating-based phase-contrast imaging (GPI) technique for studying tumor angiogenesis in nude BALB/c mice, without contrast agents. Methods We established lung metastatic models of human gastric cancer by injecting the moderately differentiated SGC-7901 gastric cancer cell line into the tail vein of nude mice. Samples were embedded in a 10% formalin suspension and dried before imaging. Grating-based X-ray phase-contrast images were obtained at the BL13W beamline of the Shanghai Synchrotron Radiation Facility (SSRF) and compared with histological sections. Results Without contrast agents, grating-based X-ray phase-contrast imaging still differentiated angiogenesis within metastatic tumors with high spatial resolution. Vessels, down to tens of microns, showed gray values that were distinctive from those of the surrounding tumors, which made them easily identifiable. The vessels depicted in the imaging study were similar to those identified on histopathology, both in size and shape. Conclusions Our preliminary study demonstrates that grating-based X-ray phase-contrast imaging has the potential to depict angiogenesis in lung metastases.
Collapse
|
24
|
Epple FM, Ehn S, Thibault P, Koehler T, Potdevin G, Herzen J, Pennicard D, Graafsma H, Noël PB, Pfeiffer F. Phase unwrapping in spectral X-ray differential phase-contrast imaging with an energy-resolving photon-counting pixel detector. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:816-823. [PMID: 25163054 DOI: 10.1109/tmi.2014.2349852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Grating-based differential phase-contrast imaging has proven to be feasible with conventional X-ray sources. The polychromatic spectrum generally limits the performance of the interferometer but benefit can be gained with an energy-sensitive detector. In the presented work, we employ the energy-discrimination capability to correct for phase-wrapping artefacts. We propose to use the phase shifts, which are measured in distinct energy bins, to estimate the optimal phase shift in the sense of maximum likelihood. We demonstrate that our method is able to correct for phase-wrapping artefacts, to improve the contrast-to-noise ratio and to reduce beam hardening due to the modelled energy dependency. The method is evaluated on experimental data which are measured with a laboratory Talbot-Lau interferometer equipped with a conventional polychromatic X-ray source and an energy-sensitive photon-counting pixel detector. Our work shows, that spectral imaging is an important step to move differential phase-contrast imaging closer to pre-clinical and clinical applications, where phase wrapping is particularly problematic.
Collapse
|
25
|
Grandl S, Sztrókay-Gaul A, Auweter SD, Hellerhoff K. [Phase contrast imaging of the breast. Basic principles and steps towards clinical implementation]. Radiologe 2014; 54:254-61. [PMID: 24623010 DOI: 10.1007/s00117-013-2577-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
CLINICAL/METHODICAL ISSUE Breast cancer is the most common cancer and the leading cause of cancer deaths in women worldwide. STANDARD RADIOLOGICAL METHODS Mammography is the only imaging technique approved for nationwide breast cancer screening. Digital full field mammography has improved mammographic image quality. Nevertheless, mammography has a low positive predictive value and a low sensitivity especially in mammographically dense breasts. One of the major limitations is the inherently low contrast between healthy breast parenchyma and breast cancer. METHODICAL INNOVATIONS Phase contrast imaging is based on the phase shift that occurs when X-rays encounter a change in refractive index between different materials. PERFORMANCE The improved soft tissue contrast makes the technology particularly promising for breast diagnostics. ACHIEVEMENTS The studies presented here suggest that phase contrast imaging provides additional diagnostic information both using phase contrast mammography and phase contrast computed tomography (CT). PRACTICAL RECOMMENDATIONS This paper provides an overview of the basic principles of the phase contrast imaging and describes recent developments towards in vivo and ex vivo phase contrast imaging of the breast.
Collapse
Affiliation(s)
- S Grandl
- Institut für Klinische Radiologie, Klinikum der Ludwig-Maximilians-Universität München, Campus Großhadern, Marchioninistr. 15, 81377, München, Deutschland,
| | | | | | | |
Collapse
|
26
|
Velroyen A, Bech M, Zanette I, Schwarz J, Rack A, Tympner C, Herrler T, Staab-Weijnitz C, Braunagel M, Reiser M, Bamberg F, Pfeiffer F, Notohamiprodjo M. X-ray phase-contrast tomography of renal ischemia-reperfusion damage. PLoS One 2014; 9:e109562. [PMID: 25299243 PMCID: PMC4192129 DOI: 10.1371/journal.pone.0109562] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/02/2014] [Indexed: 01/28/2023] Open
Abstract
Purpose The aim of the study was to investigate microstructural changes occurring in unilateral renal ischemia-reperfusion injury in a murine animal model using synchrotron radiation. Material and Methods The effects of renal ischemia-reperfusion were investigated in a murine animal model of unilateral ischemia. Kidney samples were harvested on day 18. Grating-Based Phase-Contrast Imaging (GB-PCI) of the paraffin-embedded kidney samples was performed at a Synchrotron Radiation Facility (beam energy of 19 keV). To obtain phase information, a two-grating Talbot interferometer was used applying the phase stepping technique. The imaging system provided an effective pixel size of 7.5 µm. The resulting attenuation and differential phase projections were tomographically reconstructed using filtered back-projection. Semi-automated segmentation and volumetry and correlation to histopathology were performed. Results GB-PCI provided good discrimination of the cortex, outer and inner medulla in non-ischemic control kidneys. Post-ischemic kidneys showed a reduced compartmental differentiation, particularly of the outer stripe of the outer medulla, which could not be differentiated from the inner stripe. Compared to the contralateral kidney, after ischemia a volume loss was detected, while the inner medulla mainly retained its volume (ratio 0.94). Post-ischemic kidneys exhibited severe tissue damage as evidenced by tubular atrophy and dilatation, moderate inflammatory infiltration, loss of brush borders and tubular protein cylinders. Conclusion In conclusion GB-PCI with synchrotron radiation allows for non-destructive microstructural assessment of parenchymal kidney disease and vessel architecture. If translation to lab-based approaches generates sufficient density resolution, and with a time-optimized image analysis protocol, GB-PCI may ultimately serve as a non-invasive, non-enhanced alternative for imaging of pathological changes of the kidney.
Collapse
Affiliation(s)
- Astrid Velroyen
- Chair of Biomedical Physics, Department of Physics (E17), Munich, Bavaria, Germany
| | - Martin Bech
- Chair of Biomedical Physics, Department of Physics (E17), Munich, Bavaria, Germany
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - Irene Zanette
- Chair of Biomedical Physics, Department of Physics (E17), Munich, Bavaria, Germany
| | - Jolanda Schwarz
- Chair of Biomedical Physics, Department of Physics (E17), Munich, Bavaria, Germany
| | - Alexander Rack
- European Synchrotron Radiation Facility, Grenoble, France
| | - Christiane Tympner
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tanja Herrler
- Department of General, Trauma, Hand, and Plastic Surgery, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Claudia Staab-Weijnitz
- Institute for Clinical Radiology, University Hospitals Munich, Munich, Germany
- Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians-University and Helmholtz Zentrum Munich, Munich, Germany
| | - Margarita Braunagel
- Institute for Clinical Radiology, University Hospitals Munich, Munich, Germany
| | - Maximilian Reiser
- Institute for Clinical Radiology, University Hospitals Munich, Munich, Germany
| | - Fabian Bamberg
- Institute for Clinical Radiology, University Hospitals Munich, Munich, Germany
- Department of Radiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics (E17), Munich, Bavaria, Germany
| | - Mike Notohamiprodjo
- Institute for Clinical Radiology, University Hospitals Munich, Munich, Germany
- Department of Radiology, University Hospital Tuebingen, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
27
|
Sarapata A, Chabior M, Cozzini C, Sperl JI, Bequé D, Langner O, Coman J, Zanette I, Ruiz-Yaniz M, Pfeiffer F. Quantitative electron density characterization of soft tissue substitute plastic materials using grating-based x-ray phase-contrast imaging. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:103708. [PMID: 25362404 DOI: 10.1063/1.4898052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many scientific research areas rely on accurate electron density characterization of various materials. For instance in X-ray optics and radiation therapy, there is a need for a fast and reliable technique to quantitatively characterize samples for electron density. We present how a precise measurement of electron density can be performed using an X-ray phase-contrast grating interferometer in a radiographic mode of a homogenous sample in a controlled geometry. A batch of various plastic materials was characterized quantitatively and compared with calculated results. We found that the measured electron densities closely match theoretical values. The technique yields comparable results between a monochromatic and a polychromatic X-ray source. Measured electron densities can be further used to design dedicated X-ray phase contrast phantoms and the additional information on small angle scattering should be taken into account in order to exclude unsuitable materials.
Collapse
Affiliation(s)
- A Sarapata
- Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany
| | - M Chabior
- Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany
| | - C Cozzini
- GE Global Research, 85748 Garching, Germany
| | - J I Sperl
- GE Global Research, 85748 Garching, Germany
| | - D Bequé
- GE Global Research, 85748 Garching, Germany
| | | | - J Coman
- QRM GmbH, Möhrendorf, Germany
| | - I Zanette
- Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany
| | - M Ruiz-Yaniz
- Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany
| | - F Pfeiffer
- Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany
| |
Collapse
|
28
|
Grandl S, Willner M, Herzen J, Sztrókay-Gaul A, Mayr D, Auweter SD, Hipp A, Birnbacher L, Marschner M, Chabior M, Reiser M, Pfeiffer F, Bamberg F, Hellerhoff K. Visualizing typical features of breast fibroadenomas using phase-contrast CT: an ex-vivo study. PLoS One 2014; 9:e97101. [PMID: 24824169 PMCID: PMC4019647 DOI: 10.1371/journal.pone.0097101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/15/2014] [Indexed: 11/29/2022] Open
Abstract
Background Fibroadenoma is the most common benign solid breast lesion type and a very common cause for histologic assessment. To justify a conservative therapy, a highly specific discrimination between fibroadenomas and other breast lesions is crucial. Phase-contrast imaging offers improved soft-tissue contrast and differentiability of fine structures combined with the potential of 3-dimensional imaging. In this study we assessed the potential of grating-based phase-contrast CT imaging for visualizing diagnostically relevant features of fibroadenomas. Materials and Methods Grating-based phase-contrast CT was performed on six ex-vivo formalin-fixed breast specimens containing a fibroadenoma and three samples containing benign changes that resemble fibroadenomas using Talbot Lau interferometry and a polychromatic X-ray source. Phase-contrast and simultaneously acquired absorption-based 3D-datasets were manually matched with corresponding histological slices. The visibility of diagnostically valuable features was assessed in comparison with histology as the gold-standard. Results In all cases, matching of grating-based phase-contrast CT images and histology was successfully completed. Grating-based phase-contrast CT showed greatly improved differentiation of fine structures and provided accurate depiction of strands of fibrous tissue within the fibroadenomas as well as of the diagnostically valuable dilated, branched ductuli of the fibroadenomas. A clear demarcation of tumor boundaries in all cases was provided by phase- but not absorption-contrast CT. Conclusions Pending successful translation of the technology to a clinical setting and considerable reduction of the required dose, the data presented here suggest that grating-based phase-contrast CT may be used as a supplementary non-invasive diagnostic tool in breast diagnostics. Phase-contrast CT may thus contribute to the reduction of false positive findings and reduce the recall and core biopsy rate in population-based screening. Phase-contrast CT may further be used to assist during histopathological workup, offering a 3D view of the tumor and helping to identify diagnostically valuable tissue sections within large tumors.
Collapse
Affiliation(s)
- Susanne Grandl
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
- * E-mail:
| | - Marian Willner
- Department of Physics and Institute of Medical Engineering, Technical University of Munich, Munich, Germany
| | - Julia Herzen
- Department of Physics and Institute of Medical Engineering, Technical University of Munich, Munich, Germany
- Institute for Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| | - Anikó Sztrókay-Gaul
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Doris Mayr
- Institute of Pathology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Sigrid D. Auweter
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Alexander Hipp
- Institute for Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| | - Lorenz Birnbacher
- Department of Physics and Institute of Medical Engineering, Technical University of Munich, Munich, Germany
| | - Mathias Marschner
- Department of Physics and Institute of Medical Engineering, Technical University of Munich, Munich, Germany
| | - Michael Chabior
- Department of Physics and Institute of Medical Engineering, Technical University of Munich, Munich, Germany
| | - Maximilian Reiser
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Franz Pfeiffer
- Department of Physics and Institute of Medical Engineering, Technical University of Munich, Munich, Germany
| | - Fabian Bamberg
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Karin Hellerhoff
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
29
|
Willner M, Herzen J, Grandl S, Auweter S, Mayr D, Hipp A, Chabior M, Sarapata A, Achterhold K, Zanette I, Weitkamp T, Sztrókay A, Hellerhoff K, Reiser M, Pfeiffer F. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging. Phys Med Biol 2014; 59:1557-71. [PMID: 24614413 DOI: 10.1088/0031-9155/59/7/1557] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method's prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.
Collapse
Affiliation(s)
- M Willner
- Department of Physics and Institute of Medical Engineering, Technische Universität München, James-Franck-Straße 1, D-85748 Garching, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Auweter SD, Herzen J, Willner M, Grandl S, Scherer K, Bamberg F, Reiser MF, Pfeiffer F, Hellerhoff K. X-ray phase-contrast imaging of the breast--advances towards clinical implementation. Br J Radiol 2014; 87:20130606. [PMID: 24452106 DOI: 10.1259/bjr.20130606] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Breast cancer constitutes about one-quarter of all cancers and is the leading cause of cancer death in women. To reduce breast cancer mortality, mammographic screening programmes have been implemented in many Western countries. However, these programmes remain controversial because of the associated radiation exposure and the need for improvement in terms of diagnostic accuracy. Phase-contrast imaging is a new X-ray-based technology that has been shown to provide enhanced soft-tissue contrast and improved visualization of cancerous structures. Furthermore, there is some indication that these improvements of image quality can be maintained at reduced radiation doses. Thus, X-ray phase-contrast mammography may significantly contribute to advancements in early breast cancer diagnosis. Feasibility studies of X-ray phase-contrast breast CT have provided images that allow resolution of the fine structure of tissue that can otherwise only be obtained by histology. This implies that X-ray phase-contrast imaging may also lead to the development of entirely new (micro-) radiological applications. This review provides a brief overview of the physical characteristics of this new technology and describes recent developments towards clinical implementation of X-ray phase-contrast imaging of the breast.
Collapse
Affiliation(s)
- S D Auweter
- Department of Clinical Radiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schleede S, Bech M, Grandl S, Sztrókay A, Herzen J, Mayr D, Stockmar M, Potdevin G, Zanette I, Rack A, Weitkamp T, Pfeiffer F. X-ray phase-contrast tomosynthesis for improved breast tissue discrimination. Eur J Radiol 2014; 83:531-6. [DOI: 10.1016/j.ejrad.2013.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 11/15/2022]
|
32
|
Herzen J, Willner MS, Fingerle AA, Noël PB, Köhler T, Drecoll E, Rummeny EJ, Pfeiffer F. Imaging liver lesions using grating-based phase-contrast computed tomography with bi-lateral filter post-processing. PLoS One 2014; 9:e83369. [PMID: 24465378 PMCID: PMC3894935 DOI: 10.1371/journal.pone.0083369] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 11/02/2013] [Indexed: 12/21/2022] Open
Abstract
X-ray phase-contrast imaging shows improved soft-tissue contrast compared to standard absorption-based X-ray imaging. Especially the grating-based method seems to be one promising candidate for clinical implementation due to its extendibility to standard laboratory X-ray sources. Therefore the purpose of our study was to evaluate the potential of grating-based phase-contrast computed tomography in combination with a novel bi-lateral denoising method for imaging of focal liver lesions in an ex vivo feasibility study. Our study shows that grating-based phase-contrast CT (PCCT) significantly increases the soft-tissue contrast in the ex vivo liver specimens. Combining the information of both signals – absorption and phase-contrast – the bi-lateral filtering leads to an improvement of lesion detectability and higher contrast-to-noise ratios. The normal and the pathological tissue can be clearly delineated and even internal structures of the pathological tissue can be visualized, being invisible in the absorption-based CT alone. Histopathology confirmed the presence of the corresponding findings in the analyzed tissue. The results give strong evidence for a sufficiently high contrast for different liver lesions using non-contrast-enhanced PCCT. Thus, ex vivo imaging of liver lesions is possible with a polychromatic X-ray source and at a spatial resolution of ∼100 µm. The post-processing with the novel bi-lateral denoising method improves the image quality by combining the information from the absorption and the phase-contrast images.
Collapse
Affiliation(s)
- Julia Herzen
- Institute of Materials Science, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
- Physics Department & Institute of Medical Engineering, Technische Universität München, Garching, Germany
- * E-mail:
| | - Marian S. Willner
- Physics Department & Institute of Medical Engineering, Technische Universität München, Garching, Germany
| | | | - Peter B. Noël
- Department of Radiology, Technische Universität München, Munich, Germany
| | - Thomas Köhler
- Philips Technologie GmbH, Innovative Technologies, Research Laboratories, Hamburg, Germany
| | - Enken Drecoll
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Ernst J. Rummeny
- Department of Radiology, Technische Universität München, Munich, Germany
| | - Franz Pfeiffer
- Physics Department & Institute of Medical Engineering, Technische Universität München, Garching, Germany
| |
Collapse
|
33
|
TAPFER A, BECH M, ZANETTE I, SYMVOULIDIS P, STANGL S, MULTHOFF G, MOLLS M, NTZIACHRISTOS V, PFEIFFER F. Three-dimensional imaging of whole mouse models: comparing nondestructive X-ray phase-contrast micro-CT with cryotome-based planar epi-illumination imaging. J Microsc 2013; 253:24-30. [DOI: 10.1111/jmi.12094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/27/2013] [Indexed: 11/28/2022]
Affiliation(s)
- A. TAPFER
- Department of Physics and Institute of Medical Engineering; Technische Universität München; Munich Germany
| | - M. BECH
- Department of Physics and Institute of Medical Engineering; Technische Universität München; Munich Germany
- Medical Radiation Physics; Clinical Sciences; Lund University; Lund Sweden
| | - I. ZANETTE
- Department of Physics and Institute of Medical Engineering; Technische Universität München; Munich Germany
- European Synchrotron Radiation Facility; Grenoble France
| | - P. SYMVOULIDIS
- Institute for Biological and Medical Imaging; Helmholtz Zentrum München; Neuherberg Germany
- Chair for Biological Imaging; Technische Universität München; Munich Germany
| | - S. STANGL
- Department of Radiation Oncology; Klinikum rechts der Isar; Technische Universität München; Munich Germany
| | - G. MULTHOFF
- Department of Radiation Oncology; Klinikum rechts der Isar; Technische Universität München; Munich Germany
| | - M. MOLLS
- Department of Radiation Oncology; Klinikum rechts der Isar; Technische Universität München; Munich Germany
| | - V. NTZIACHRISTOS
- Institute for Biological and Medical Imaging; Helmholtz Zentrum München; Neuherberg Germany
- Chair for Biological Imaging; Technische Universität München; Munich Germany
| | - F. PFEIFFER
- Department of Physics and Institute of Medical Engineering; Technische Universität München; Munich Germany
| |
Collapse
|
34
|
Grandl S, Willner M, Herzen J, Mayr D, Auweter SD, Hipp A, Pfeiffer F, Reiser M, Hellerhoff K. Evaluation of phase-contrast CT of breast tissue at conventional X-ray sources - presentation of selected findings. Z Med Phys 2013; 23:212-21. [PMID: 23489931 DOI: 10.1016/j.zemedi.2013.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Grating-based phase contrast computed tomography (PC-CT) at synchrotron radiation sources has been shown to provide improved visualization of breast tumors. However, broad clinical application of phase-contrast imaging will likely depend on transferring the technology to standard polychromatic X-ray sources. On the basis of selected findings, we demonstrate the potential of grating-based PC-CT using a conventional X-ray source. MATERIALS AND METHODS Grating-based PC-CT of two ex-vivo formalin fixed breast specimens containing lobular carcinoma was conducted using a Talbot Lau interferometer run at a polychromatic X-ray source of 40kVp. Phase-contrast and absorption-based 3D-datasets of both specimens were simultaneously recorded. Radiological images were manually matched with corresponding histological sections. The visualization of selected histological findings in phase contrast was compared to absorption contrast. RESULTS Grating-based PC-CT was able to depict the 3-dimensional structure of dilated ducts and high phase contrast was found as a correlate to thickened fibrous ductal walls. Differences in contrast between fibrous and less fibrous breast tissue were observed in phase- but not in absorption-contrast images. Furthermore, regions of low phase contrast correlated with the extension of compact tumor components. CONCLUSIONS On the basis of selected findings, we show that grating-based PC-CT at a polychromatic X-ray source provides complementary information to conventional absorption contrast; albeit at lower spatial resolution than synchrotron-based imaging.
Collapse
Affiliation(s)
- Susanne Grandl
- Department of Clinical Radiology, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tapfer A, Braren R, Bech M, Willner M, Zanette I, Weitkamp T, Trajkovic-Arsic M, Siveke JT, Settles M, Aichler M, Walch A, Pfeiffer F. X-ray phase-contrast CT of a pancreatic ductal adenocarcinoma mouse model. PLoS One 2013; 8:e58439. [PMID: 23536795 PMCID: PMC3594292 DOI: 10.1371/journal.pone.0058439] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/04/2013] [Indexed: 12/20/2022] Open
Abstract
To explore the potential of grating-based x-ray phase-contrast computed tomography (CT) for preclinical research, a genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC) was investigated. One ex-vivo mouse specimen was scanned with different grating-based phase-contrast CT imaging setups covering two different settings: i) high-resolution synchrotron radiation (SR) imaging and ii) dose-reduced imaging using either synchrotron radiation or a conventional x-ray tube source. These experimental settings were chosen to assess the potential of phase-contrast imaging for two different types of application: i) high-performance imaging for virtual microscopy applications and ii) biomedical imaging with increased soft-tissue contrast for in-vivo applications. For validation and as a reference, histological slicing and magnetic resonance imaging (MRI) were performed on the same mouse specimen. For each x-ray imaging setup, attenuation and phase-contrast images were compared visually with regard to contrast in general, and specifically concerning the recognizability of lesions and cancerous tissue. To quantitatively assess contrast, the contrast-to-noise ratios (CNR) of selected regions of interest (ROI) in the attenuation images and the phase images were analyzed and compared. It was found that both for virtual microscopy and for in-vivo applications, there is great potential for phase-contrast imaging: in the SR-based benchmarking data, fine details about tissue composition are accessible in the phase images and the visibility of solid tumor tissue under dose-reduced conditions is markedly superior in the phase images. The present study hence demonstrates improved diagnostic value with phase-contrast CT in a mouse model of a complex endogenous cancer, promoting the use and further development of grating-based phase-contrast CT for biomedical imaging applications.
Collapse
Affiliation(s)
- Arne Tapfer
- Department of Physics and Institute of Medical Engineering, Technische Universität München, Garching, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pfeiffer F, Herzen J, Willner M, Chabior M, Auweter S, Reiser M, Bamberg F. Grating-based X-ray phase contrast for biomedical imaging applications. Z Med Phys 2013; 23:176-85. [PMID: 23453793 DOI: 10.1016/j.zemedi.2013.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/31/2013] [Accepted: 02/05/2013] [Indexed: 02/01/2023]
Abstract
In this review article we describe the development of grating-based X-ray phase-contrast imaging, with particular emphasis on potential biomedical applications of the technology. We review the basics of image formation in grating-based phase-contrast and dark-field radiography and present some exemplary multimodal radiography results obtained with laboratory X-ray sources. Furthermore, we discuss the theoretical concepts to extend grating-based multimodal radiography to quantitative transmission, phase-contrast, and dark-field scattering computed tomography.
Collapse
Affiliation(s)
- Franz Pfeiffer
- Department of Physics, Technical University Munich, 85748 Garching, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Willner M, Bech M, Herzen J, Zanette I, Hahn D, Kenntner J, Mohr J, Rack A, Weitkamp T, Pfeiffer F. Quantitative X-ray phase-contrast computed tomography at 82 keV. OPTICS EXPRESS 2013; 21:4155-4166. [PMID: 23481949 DOI: 10.1364/oe.21.004155] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Potential applications of grating-based X-ray phase-contrast imaging are investigated in various fields due to its compatibility with laboratory X-ray sources. So far the method was mainly restricted to X-ray energies below 40 keV, which is too low to examine dense or thick objects, but a routine operation at higher energies is on the brink of realisation. In this study, imaging results obtained at 82 keV are presented. These comprise a test object consisting of well-defined materials for a quantitative analysis and a tooth to translate the findings to a biomedical sample. Measured linear attenuation coefficients ? and electron densities ?e are in good agreement with theoretical values. Improved contrast-to-noise ratios were found in phase contrast compared to attenuation contrast. The combination of both contrast modalities further enables to simultaneously assess information on density and composition of materials with effective atomic numbers Z? > 8. In our biomedical example, we demonstrate the possibility to detect differences in mass density and calcium concentration within teeth.
Collapse
Affiliation(s)
- Marian Willner
- Biomedical Physics, TU Munchen, 85748 Garching, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|