1
|
Rjeily NB, Solomon AJ. Misdiagnosis of Multiple Sclerosis: Past, Present, and Future. Curr Neurol Neurosci Rep 2024; 24:547-557. [PMID: 39243340 DOI: 10.1007/s11910-024-01371-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
PURPOSE OF REVIEW Misdiagnosis of multiple sclerosis (MS) is a prevalent worldwide problem. This review discusses how MS misdiagnosis has evolved over time and focuses on contemporary challenges and potential strategies for its prevention. RECENT FINDINGS Recent studies report cohorts with a range of misdiagnosis between 5 and 18%. Common disorders are frequently misdiagnosed as MS. Overreliance on MRI findings and misapplication of MS diagnostic criteria are often associated with misdiagnosis. Emerging imaging biomarkers, including the central vein sign and paramagnetic rim lesions, may aid diagnostic accuracy when evaluating patients for suspected MS. MS misdiagnosis can have harmful consequences for patients and healthcare systems. Further research is needed to better understand its causes. Concerted and novel educational efforts to ensure accurate and widespread implementation of MS diagnostic criteria remain an unmet need. The incorporation of diagnostic biomarkers highly specific for MS in the future may prevent misdiagnosis.
Collapse
Affiliation(s)
- Nicole Bou Rjeily
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew J Solomon
- Department of Neurological Sciences, Larner College of Medicine, The University of Vermont, 1 South Prospect St., Burlington, VT, 05477, USA.
| |
Collapse
|
2
|
Harrison DM, Sati P, Klawiter EC, Narayanan S, Bagnato F, Beck ES, Barker P, Calvi A, Cagol A, Donadieu M, Duyn J, Granziera C, Henry RG, Huang SY, Hoff MN, Mainero C, Ontaneda D, Reich DS, Rudko DA, Smith SA, Trattnig S, Zurawski J, Bakshi R, Gauthier S, Laule C. The use of 7T MRI in multiple sclerosis: review and consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Brain Commun 2024; 6:fcae359. [PMID: 39445084 PMCID: PMC11497623 DOI: 10.1093/braincomms/fcae359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The use of ultra-high-field 7-Tesla (7T) MRI in multiple sclerosis (MS) research has grown significantly over the past two decades. With recent regulatory approvals of 7T scanners for clinical use in 2017 and 2020, the use of this technology for routine care is poised to continue to increase in the coming years. In this context, the North American Imaging in MS Cooperative (NAIMS) convened a workshop in February 2023 to review the previous and current use of 7T technology for MS research and potential future research and clinical applications. In this workshop, experts were tasked with reviewing the current literature and proposing a series of consensus statements, which were reviewed and approved by the NAIMS. In this review and consensus paper, we provide background on the use of 7T MRI in MS research, highlighting this technology's promise for identification and quantification of aspects of MS pathology that are more difficult to visualize with lower-field MRI, such as grey matter lesions, paramagnetic rim lesions, leptomeningeal enhancement and the central vein sign. We also review the promise of 7T MRI to study metabolic and functional changes to the brain in MS. The NAIMS provides a series of consensus statements regarding what is currently known about the use of 7T MRI in MS, and additional statements intended to provide guidance as to what work is necessary going forward to accelerate 7T MRI research in MS and translate this technology for use in clinical practice and clinical trials. This includes guidance on technical development, proposals for a universal acquisition protocol and suggestions for research geared towards assessing the utility of 7T MRI to improve MS diagnostics, prognostics and therapeutic efficacy monitoring. The NAIMS expects that this article will provide a roadmap for future use of 7T MRI in MS.
Collapse
Affiliation(s)
- Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Baltimore VA Medical Center, Baltimore, MD 21201, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital, Montreal, QC, Canada, H3A 2B4
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada, H3A 2B4
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Nashville VA Medical Center, TN Valley Healthcare System, Nashville, TN 37212, USA
| | - Erin S Beck
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alberto Calvi
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Alessandro Cagol
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| | - Maxime Donadieu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeff Duyn
- Advanced MRI Section, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Department of Neurology, University Hospital Basel, 4001 Basel, Switzerland
| | - Roland G Henry
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Susie Y Huang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Michael N Hoff
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Caterina Mainero
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital, Montreal, QC, Canada, H3A 2B4
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37212, USA
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Jonathan Zurawski
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rohit Bakshi
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susan Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Cornelia Laule
- Radiology, Pathology and Laboratory Medicine, Physics and Astronomy, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada, BC V6T 1Z4
| |
Collapse
|
3
|
Bagnato F, Sati P, Hemond CC, Elliott C, Gauthier SA, Harrison DM, Mainero C, Oh J, Pitt D, Shinohara RT, Smith SA, Trapp B, Azevedo CJ, Calabresi PA, Henry RG, Laule C, Ontaneda D, Rooney WD, Sicotte NL, Reich DS, Absinta M. Imaging chronic active lesions in multiple sclerosis: a consensus statement. Brain 2024; 147:2913-2933. [PMID: 38226694 PMCID: PMC11370808 DOI: 10.1093/brain/awae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Chronic active lesions (CAL) are an important manifestation of chronic inflammation in multiple sclerosis and have implications for non-relapsing biological progression. In recent years, the discovery of innovative MRI and PET-derived biomarkers has made it possible to detect CAL, and to some extent quantify them, in the brain of persons with multiple sclerosis, in vivo. Paramagnetic rim lesions on susceptibility-sensitive MRI sequences, MRI-defined slowly expanding lesions on T1-weighted and T2-weighted scans, and 18-kDa translocator protein-positive lesions on PET are promising candidate biomarkers of CAL. While partially overlapping, these biomarkers do not have equivalent sensitivity and specificity to histopathological CAL. Standardization in the use of available imaging measures for CAL identification, quantification and monitoring is lacking. To fast-forward clinical translation of CAL, the North American Imaging in Multiple Sclerosis Cooperative developed a consensus statement, which provides guidance for the radiological definition and measurement of CAL. The proposed manuscript presents this consensus statement, summarizes the multistep process leading to it, and identifies the remaining major gaps in knowledge.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher C Hemond
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | | | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, MD 21201, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5S, Canada
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seth A Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Bruce Trapp
- Department on Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Christina J Azevedo
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90007, USA
| | - Peter A Calabresi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roland G Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Cornelia Laule
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH 44195, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martina Absinta
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Translational Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| |
Collapse
|
4
|
Hemond CC, Dundamadappa SK, Deshpande M, Baek J, Brown RH, Ionete C, Reich DS. Paramagnetic Rim Lesions are Highly Specific for Multiple Sclerosis in Real-World Data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.14.24312000. [PMID: 39371137 PMCID: PMC11451766 DOI: 10.1101/2024.08.14.24312000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Paramagnetic rim lesions (PRL) are an emerging biomarker for multiple sclerosis (MS). In addition to associating with greater disease severity, PRL may be diagnostically supportive. Objective Our aim was to determine PRL specificity and sensitivity for discriminating MS from its diagnostic mimics using real-world clinical diagnostic and imaging data. Methods This is a retrospective, cross-sectional analysis of a longitudinal cohort of patients with prospectively collected observational data. Patients were included if they underwent neuroimmunological evaluation in our academic MS center, and had an available MRI scan from the same clinical 3T magnet that included a T2*-weighted sequence with susceptibility postprocessing (SWAN protocol, GE). SWAN-derived filtered phase maps and corresponding T2-FLAIR images were manually reviewed to determine PRL. PRL were categorized as "definite," "probable," or "possible" based on modified, recent consensus criteria. We hypothesized that PRL would convey a high specificity to discriminate MS from its MRI mimics. Results 580 patients were evaluated in total: 473 with MS, 57 with non-inflammatory neurological disease (NIND), and 50 with other inflammatory neurological disease (OIND). Identification of "definite" or "probable" PRL provided a specificity of 98% to discriminate MS from NIND and OIND; sensitivity was 36%. Interrater agreement was almost perfect for definite/probable identification at a subject level. Conclusions PRL convey high specificity for MS and can aid in the diagnostic evaluation. Modest sensitivity limits their use as single diagnostic indicators. Including lesions with lower confidence ("possible" PRL) rapidly erodes specificity and should be interpreted with caution given the potential harms associated with misdiagnosis.
Collapse
Affiliation(s)
- Christopher C. Hemond
- Departments of Neurology, University of Massachusetts Memorial Medical Center and University of Massachusetts Chan Medical School, Worcester, MA, USA
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sathish K. Dundamadappa
- Departments of Radiology, University of Massachusetts Memorial Medical Center and University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mugdha Deshpande
- Departments of Neurology, University of Massachusetts Memorial Medical Center and University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonggyu Baek
- Population and Quantitative Health Sciences, University of Massachusetts Memorial Medical Center and University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Robert H. Brown
- Departments of Neurology, University of Massachusetts Memorial Medical Center and University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Carolina Ionete
- Departments of Neurology, University of Massachusetts Memorial Medical Center and University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Hemond CC, Gaitán MI, Absinta M, Reich DS. New Imaging Markers in Multiple Sclerosis and Related Disorders: Smoldering Inflammation and the Central Vein Sign. Neuroimaging Clin N Am 2024; 34:359-373. [PMID: 38942521 PMCID: PMC11213979 DOI: 10.1016/j.nic.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Concepts of multiple sclerosis (MS) biology continue to evolve, with observations such as "progression independent of disease activity" challenging traditional phenotypic categorization. Iron-sensitive, susceptibility-based imaging techniques are emerging as highly translatable MR imaging sequences that allow for visualization of at least 2 clinically useful biomarkers: the central vein sign and the paramagnetic rim lesion (PRL). Both biomarkers demonstrate high specificity in the discrimination of MS from other mimics and can be seen at 1.5 T and 3 T field strengths. Additionally, PRLs represent a subset of chronic active lesions engaged in "smoldering" compartmentalized inflammation behind an intact blood-brain barrier.
Collapse
Affiliation(s)
- Christopher C Hemond
- Department of Neurology, University of Massachusetts Memorial Medical Center and University of Massachusetts Chan Medical School, Worcester, MA, USA; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - María I Gaitán
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Zhu Z, Zhang Y, Li C, Guo W, Chen Z, Chen W, Li S, Wang N, Chen X, Fu Y. Paramagnetic rim lesions as a biomarker to discriminate between multiple sclerosis and cerebral small vessel disease. Front Neurol 2024; 15:1429698. [PMID: 39081339 PMCID: PMC11286476 DOI: 10.3389/fneur.2024.1429698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background Multiple sclerosis (MS) and Cerebral Small Vessel Disease (CSVD) exhibit some similarities in Magnetic resonance imaging (MRI), potentially leading to misdiagnosis and delaying effective treatment windows. It is unclear whether CSVD can be detected with Paramagnetic Rim Lesions (PRL), which is special in MS. Objective We aimed to investigate whether PRL can serve as a neuroimaging marker for discriminating between MS and CSVD. Methods In this retrospective study, 49 MS and 104 CSVD patients underwent 3.0 T Magnetic resonance imaging (MRI). Visual assessment of 37 MS patients and 89 CSVD patients with or without lacunes, cerebral microbleeds (CMBs), enlarged perivascular spaces (EPVS), white matter hyperintensity (WMH), central vein sign (CVS), and PRL. The distribution and number of PRL were then counted. Results Our study found that PRL was detected in over half of the MS patients but was entirely absent in CSVD patients (78.38 vs. 0%, p < 0.0001), and PRL showed high specificity with good sensitivity in discriminating between MS and CSVD (sensitivity: 78.38%, specificity: 100%, AUC: 0.96). Conclusion Paramagnetic Rim Lesions is a special imaging feature in MS, absent in CSVD. Detection of PRL can be very helpful in the clinical management of MS and CSVD.
Collapse
Affiliation(s)
- Zhibao Zhu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuanyuan Zhang
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chun Li
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wenliang Guo
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhili Chen
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wei Chen
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shaowu Li
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Wang
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
| | - Ying Fu
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Okromelidze L, Patel V, Middlebrooks EH. Reply. AJNR Am J Neuroradiol 2024; 45:E27. [PMID: 38724205 DOI: 10.3174/ajnr.a8267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Affiliation(s)
- L Okromelidze
- Department of RadiologyMayo ClinicJacksonville, Florida
| | - V Patel
- Department of RadiologyMayo ClinicJacksonville, Florida
| | | |
Collapse
|
8
|
Moura J, Granziera C, Marta M, Silva AM. Emerging imaging markers in radiologically isolated syndrome: implications for earlier treatment initiation. Neurol Sci 2024; 45:3061-3068. [PMID: 38374458 DOI: 10.1007/s10072-024-07402-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
The presence of central nervous system lesions fulfilling the criteria of dissemination in space and time on MRI leads to the diagnosis of a radiologically isolated syndrome (RIS), which may be an early sign of multiple sclerosis (MS). However, some patients who do not fulfill the necessary criteria for RIS still evolve to MS, and some T2 hyperintensities that resemble demyelinating lesions may originate from mimics. In light of the recent recognition of the efficacy of disease-modifying therapy (DMT) in RIS, it is relevant to consider additional imaging features that are more specific of MS. We performed a narrative review on cortical lesions (CL), the central vein sign (CVS), and paramagnetic rim lesions (PRL) in patients with RIS. In previous RIS studies, the reported prevalence of CLs ranges between 20.0 and 40.0%, CVS + white matter lesions (WMLs) between 87.0 and 93.0% and PRLs between 26.7 and 63.0%. Overall, these imaging findings appear to be frequent in RIS cohorts, although not consistently taken into account in previous studies. The search for CLs, CVS + WML and PRLs in RIS patients could lead to earlier identification of patients who will evolve to MS and benefit from DMTs.
Collapse
Affiliation(s)
- João Moura
- Department of Neurology, Centro Hospitalar Universitário de Santo António, Largo Professor Abel Salazar, 4099-001, Porto, Portugal.
- ICBAS School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Monica Marta
- Department of Neurology, Royal London Hospital, Barts Health NHS Trust, London, UK
- Neuroscience and Trauma, Blizard Institute of Cell and Molecular Science, London, UK
| | - Ana Martins Silva
- Department of Neurology, Centro Hospitalar Universitário de Santo António, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Unit of Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
9
|
Daboul L, O’Donnell CM, Amin M, Rodrigues P, Derbyshire J, Azevedo C, Bar-Or A, Caverzasi E, Calabresi PA, Cree BA, Freeman L, Henry RG, Longbrake EE, Oh J, Papinutto N, Pelletier D, Prchkovska V, Raza P, Ramos M, Samudralwar RD, Schindler MK, Sotirchos ES, Sicotte NL, Solomon AJ, Shinohara RT, Reich DS, Sati P, Ontaneda D. A multicenter pilot study evaluating simplified central vein assessment for the diagnosis of multiple sclerosis. Mult Scler 2024; 30:25-34. [PMID: 38088067 PMCID: PMC11037932 DOI: 10.1177/13524585231214360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
BACKGROUND The central vein sign (CVS) is a proposed magnetic resonance imaging (MRI) biomarker for multiple sclerosis (MS); the optimal method for abbreviated CVS scoring is not yet established. OBJECTIVE The aim of this study was to evaluate the performance of a simplified approach to CVS assessment in a multicenter study of patients being evaluated for suspected MS. METHODS Adults referred for possible MS to 10 sites were recruited. A post-Gd 3D T2*-weighted MRI sequence (FLAIR*) was obtained in each subject. Trained raters at each site identified up to six CVS-positive lesions per FLAIR* scan. Diagnostic performance of CVS was evaluated for a diagnosis of MS which had been confirmed using the 2017 McDonald criteria at thresholds including three positive lesions (Select-3*) and six positive lesions (Select-6*). Inter-rater reliability assessments were performed. RESULTS Overall, 78 participants were analyzed; 37 (47%) were diagnosed with MS, and 41 (53%) were not. The mean age of participants was 45 (range: 19-64) years, and most were female (n = 55, 71%). The area under the receiver operating characteristic curve (AUROC) for the simplified counting method was 0.83 (95% CI: 0.73-0.93). Select-3* and Select-6* had sensitivity of 81% and 65% and specificity of 68% and 98%, respectively. Inter-rater agreement was 78% for Select-3* and 83% for Select-6*. CONCLUSION A simplified method for CVS assessment in patients referred for suspected MS demonstrated good diagnostic performance and inter-rater agreement.
Collapse
Affiliation(s)
- Lynn Daboul
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | - Carly M. O’Donnell
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Moein Amin
- Neurological Institute, Cleveland Clinic, Cleveland, OH
| | | | - John Derbyshire
- Functional MRI Facility, NIMH, National Institutes of Health, Bethesda, MD
| | - Christina Azevedo
- Department of Neurology, University of Southern California, Los Angeles, CA
| | - Amit Bar-Or
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Eduardo Caverzasi
- Department of Neurology, University of California at San Francisco, San Francisco, CA
| | | | - Bruce A.C. Cree
- Department of Neurology, University of California at San Francisco, San Francisco, CA
| | - Leorah Freeman
- Department of Neurology, Dell Medical School, The University of Texas, Austin, TX
| | - Roland G. Henry
- Department of Neurology, University of California at San Francisco, San Francisco, CA
| | | | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, ON, CANADA
| | - Nico Papinutto
- Department of Neurology, University of California at San Francisco, San Francisco, CA
| | - Daniel Pelletier
- Department of Neurology, University of Southern California, Los Angeles, CA
| | | | - Praneeta Raza
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | - Marc Ramos
- QMENTA Cloud Platform, QMENTA Inc., Boston, MA, USA
| | | | - Matthew K. Schindler
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Nancy L. Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Andrew J. Solomon
- Department of Neurological Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT
| | - Russell T. Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
10
|
Okromelidze L, Patel V, Singh RB, Lopez Chiriboga AS, Tao S, Zhou X, Straub S, Westerhold EM, Gupta V, Agarwal AK, Murray JV, Desai A, Sandhu SJS, Marin Collazo IV, Middlebrooks EH. Central Vein Sign in Multiple Sclerosis: A Comparison Study of the Diagnostic Performance of 3T versus 7T MRI. AJNR Am J Neuroradiol 2023; 45:76-81. [PMID: 38164557 PMCID: PMC10756573 DOI: 10.3174/ajnr.a8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND PURPOSE An early and accurate diagnosis of multiple sclerosis remains challenging in clinical neurology. Established diagnostic methods have less than desirable sensitivity and specificity. An accurate, noninvasive diagnostic test for MS could have a major impact on diagnostic criteria. We compared the frequency of detection of the central vein sign (CVS) in white matter lesions of MS and controls on 7T T2*-weighted and SWI to 3T SWI. Additionally, we assessed the diagnostic performance of 7T T2*, 7T SWI, and 3T SWI for MS. MATERIALS AND METHODS A retrospective case-control study was performed of patients with MS having both 7T MRI and 3T MRI. A control group of patients without MS was selected. Diagnosis of MS was established by board-certified neurologists with fellowship training in autoimmune neurology in line with the 2017 McDonald criteria. Percentage of lesions with a CVS was blindly measured for each technique. Diagnostic performance was computed by sensitivity, specificity, and positive and negative likelihood ratios (LRs). RESULTS Sixty-one patients with MS (903 lesions) and 39 controls (1088 lesions) were included. 7T T2* showed significantly more CVS (87%) than both 7T SWI (73%) and 3T SWI (31%) (all P < .001). CVS was identified in the control group in ≤6% of lesions on all sequences. Using a threshold of >40% of lesions with CVS on 7T T2* and >15% on 7T SWI, both sequences had an accuracy = 100%, sensitivity = 100%, specificity = 100%, infinite positive LR, and zero negative LR. Using an optimal threshold of >12%, 3T SWI had an accuracy = 96.0%, sensitivity = 93.4%, specificity = 100%, infinite positive LR, and negative LR = 0.066. CONCLUSIONS 7T MRI had 100% sensitivity and specificity for the diagnosis of MS and is superior to 3T. Future revisions to MS diagnostic criteria may consider recommendations for 7T MRI and inclusion of CVS as a biomarker.
Collapse
Affiliation(s)
- Lela Okromelidze
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - Vishal Patel
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - Rahul B Singh
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | | | - Shengzhen Tao
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - Xiangzhi Zhou
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - Sina Straub
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - Erin M Westerhold
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - Vivek Gupta
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - Amit K Agarwal
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - John V Murray
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - Amit Desai
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | - S J S Sandhu
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| | | | - Erik H Middlebrooks
- From the Departments of Radiology (L.O., V.P., R.B.S., S.T., X.Z., S.S., E.M.W., V.G., A.K.A., J.V.M., A.D., S.J.S.S., E.H.M.), Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
11
|
Abou Mrad T, Naja K, Khoury SJ, Hannoun S. Central vein sign and paramagnetic rim sign: From radiologically isolated syndrome to multiple sclerosis. Eur J Neurol 2023; 30:2912-2918. [PMID: 37350369 DOI: 10.1111/ene.15922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
The widespread use of magnetic resonance imaging (MRI) has led to an increase in incidental findings in the central nervous system. Radiologically isolated syndrome (RIS) is a condition where imaging reveals lesions suggestive of demyelinating disease without any clinical episodes consistent with multiple sclerosis (MS). The prognosis for RIS patients is uncertain, with some remaining asymptomatic while others progress to MS. Several risk factors for disease progression have been identified, including male sex, younger age at diagnosis, and spinal cord lesions. This article reviews two promising biomarkers, the central vein sign (CVS) and the paramagnetic rim sign (PRS), and their potential role in the diagnosis and prognosis of MS and RIS. Both CVS and PRS have been shown to be accurate diagnostic markers in MS, with high sensitivity and specificity, and have been useful in distinguishing MS from other disorders. Further research is needed to validate these findings and determine the clinical utility of these biomarkers in routine practice.
Collapse
Affiliation(s)
- Tatiana Abou Mrad
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Kim Naja
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Samia J Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Salem Hannoun
- Medical Imaging Sciences Program, Division of Health Professions, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
12
|
Bachhuber A. [Diagnostic work-up, findings, and documentation of multiple sclerosis]. RADIOLOGIE (HEIDELBERG, GERMANY) 2023; 63:115-119. [PMID: 36658297 DOI: 10.1007/s00117-022-01104-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Although multiple sclerosis is the most common chronic inflammatory demyelinating disease of the central nervous system, the rate of misdiagnosis in clinical practice is high. This is usually due to the inadequate application of the McDonald criteria and misinterpretation of images. OBJECTIVE This review focuses on typical clinical symptoms, choice of magnetic resonance imaging (MRI) sequences, correct application of the McDonald criteria, and finally interpretation of the images.
Collapse
Affiliation(s)
- Armin Bachhuber
- Klinik für Diagnostische und Interventionelle, Neuroradiologie, Universitätsklinikum des Saarlandes, Kirrberger Straße, 66424, Homburg-Saar, Deutschland.
| |
Collapse
|
13
|
Daboul L, O'Donnell CM, Cao Q, Amin M, Rodrigues P, Derbyshire J, Azevedo C, Bar-Or A, Caverzasi E, Calabresi P, Cree BAC, Freeman L, Henry RG, Longbrake EE, Nakamura K, Oh J, Papinutto N, Pelletier D, Samudralwar RD, Suthiphosuwan S, Schindler MK, Sotirchos ES, Sicotte NL, Solomon AJ, Shinohara RT, Reich DS, Ontaneda D, Sati P. Effect of GBCA Use on Detection and Diagnostic Performance of the Central Vein Sign: Evaluation Using a 3-T FLAIR* Sequence in Patients With Suspected Multiple Sclerosis. AJR Am J Roentgenol 2023; 220:115-125. [PMID: 35975888 PMCID: PMC10016223 DOI: 10.2214/ajr.22.27731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND. The central vein sign (CVS) is a proposed MRI biomarker of multiple sclerosis (MS). The impact of gadolinium-based contrast agent (GBCA) administration on CVS evaluation remains poorly investigated. OBJECTIVE. The purpose of this study was to assess the effect of GBCA use on CVS detection and on the diagnostic performance of the CVS for MS using a 3-T FLAIR* sequence. METHODS. This study was a secondary analysis of data from the pilot study for the prospective multicenter Central Vein Sign: A Diagnostic Biomarker in Multiple Sclerosis (CAVS-MS), which recruited adults with suspected MS from April 2018 to February 2020. Participants underwent 3-T brain MRI including FLAIR and precontrast and post-contrast echo-planar imaging T2*-weighted acquisitions. Postprocessing was used to generate combined FLAIR and T2*-weighted images (hereafter, FLAIR*). MS diagnoses were established using the 2017 McDonald criteria. Thirty participants (23 women, seven men; mean age, 45 years) were randomly selected from the CAVS-MS pilot study cohort. White matter lesions (WMLs) were marked using FLAIR* images. A single observer, blinded to clinical data and GBCA use, reviewed marked WMLs on FLAIR* images for the presence of the CVS. RESULTS. Thirteen of 30 participants had MS. Across participants, on precontrast FLAIR* imaging, 218 CVS-positive and 517 CVS-negative WMLs were identified; on post-contrast FLAIR* imaging, 269 CVS-positive and 459 CVS-negative WMLs were identified. The fraction of WMLs that were CVS-positive on precontrast and postcontrast images was 48% and 58% in participants with MS and 7% and 10% in participants without MS, respectively. The median patient-level CVS-positivity rate on precontrast and postcontrast images was 43% and 67% for participants with MS and 4% and 8% for participants without MS, respectively. In a binomial model adjusting for MS diagnoses, GBCA use was associated with an increased likelihood of at least one CVS-positive WML (odds ratio, 1.6; p < .001). At a 40% CVS-positivity threshold, the sensitivity of the CVS for MS increased from 62% on precontrast images to 92% on postcontrast images (p = .046). Specificity was not significantly different between precontrast (88%) and postcontrast (82%) images (p = .32). CONCLUSION. GBCA use increased CVS detection on FLAIR* images, thereby increasing the sensitivity of the CVS for MS diagnoses. CLINICAL IMPACT. The postcontrast FLAIR* sequence should be considered for CVS evaluation in future investigational trials and clinical practice.
Collapse
Affiliation(s)
- Lynn Daboul
- Department of Neurology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | - Carly M O'Donnell
- Department of Biostatistics, Epidemiology, and Informatics, Penn Statistics in Imaging and Visualization Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Quy Cao
- Department of Biostatistics, Epidemiology, and Informatics, Penn Statistics in Imaging and Visualization Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Moein Amin
- Neurological Institute, Cleveland Clinic, Cleveland, OH
| | | | | | - Christina Azevedo
- Department of Neurology, University of Southern California, Los Angeles, CA
| | - Amit Bar-Or
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Eduardo Caverzasi
- Department of Neurology, University of California at San Francisco, San Francisco, CA
| | - Peter Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, MD
| | - Bruce A C Cree
- Department of Neurology, University of California at San Francisco, San Francisco, CA
| | - Leorah Freeman
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Roland G Henry
- Department of Neurology, University of California at San Francisco, San Francisco, CA
| | | | - Kunio Nakamura
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Jiwon Oh
- Division of Neurology, St. Michael's Hospital, University of Toronto, ON, Canada
| | - Nico Papinutto
- Department of Neurology, University of California at San Francisco, San Francisco, CA
| | - Daniel Pelletier
- Department of Neurology, University of Southern California, Los Angeles, CA
| | - Rohini D Samudralwar
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX
| | - Suradech Suthiphosuwan
- Department of Medical Imaging, St. Michael's Hospital, University of Toronto, ON, Canada
| | - Matthew K Schindler
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Andrew J Solomon
- Department of Neurological Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Penn Statistics in Imaging and Visualization Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
14
|
Mey GM, Mahajan KR, DeSilva TM. Neurodegeneration in multiple sclerosis. WIREs Mech Dis 2023; 15:e1583. [PMID: 35948371 PMCID: PMC9839517 DOI: 10.1002/wsbm.1583] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 01/31/2023]
Abstract
Axonal loss in multiple sclerosis (MS) is a key component of disease progression and permanent neurologic disability. MS is a heterogeneous demyelinating and neurodegenerative disease of the central nervous system (CNS) with varying presentation, disease courses, and prognosis. Immunomodulatory therapies reduce the frequency and severity of inflammatory demyelinating events that are a hallmark of MS, but there is minimal therapy to treat progressive disease and there is no cure. Data from patients with MS, post-mortem histological analysis, and animal models of demyelinating disease have elucidated patterns of MS pathogenesis and underlying mechanisms of neurodegeneration. MRI and molecular biomarkers have been proposed to identify predictors of neurodegeneration and risk factors for disease progression. Early signs of axonal dysfunction have come to light including impaired mitochondrial trafficking, structural axonal changes, and synaptic alterations. With sustained inflammation as well as impaired remyelination, axons succumb to degeneration contributing to CNS atrophy and worsening of disease. These studies highlight the role of chronic demyelination in the CNS in perpetuating axonal loss, and the difficulty in promoting remyelination and repair amidst persistent inflammatory insult. Regenerative and neuroprotective strategies are essential to overcome this barrier, with early intervention being critical to rescue axonal integrity and function. The clinical and basic research studies discussed in this review have set the stage for identifying key propagators of neurodegeneration in MS, leading the way for neuroprotective therapeutic development. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Gabrielle M. Mey
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
| | - Kedar R. Mahajan
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
- Mellen Center for MS Treatment and ResearchNeurological Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Tara M. DeSilva
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
15
|
Martire MS, Moiola L, Rocca MA, Filippi M, Absinta M. What is the potential of paramagnetic rim lesions as diagnostic indicators in multiple sclerosis? Expert Rev Neurother 2022; 22:829-837. [PMID: 36342396 DOI: 10.1080/14737175.2022.2143265] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION In multiple sclerosis (MS), paramagnetic rim lesions (PRLs) on MRI identify a subset of chronic active lesions (CALs), which have been linked through clinical and pathological studies to more severe disease course and greater disability accumulation. Beside their prognostic relevance, increasing evidence supports the use of PRL as a diagnostic biomarker. AREAS COVERED This review summarizes the most recent updates regarding the MRI pathophysiology of PRL, their prevalence in MS (by clinical phenotypes) vs mimicking conditions, and their potential role as diagnostic MS biomarkers. We searched PubMed with terms including 'multiple sclerosis' AND 'paramagnetic rim lesions' OR 'iron rim lesions' OR 'rim lesions' for manuscripts published between January 2008 and July 2022. EXPERT OPINION Current research suggests that PRL can improve the diagnostic specificity and the overall accuracy of MS diagnosis when used together with the dissemination in space MRI criteria and the central vein sign. Nevertheless, future prospective multicenter studies should further define the real-world prevalence and specificity of PRL. International guidelines are needed to establish methodological criteria for PRL identification before its implementation into clinical practice.
Collapse
Affiliation(s)
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Assunta Rocca
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Absinta
- Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Al-Louzi O, Manukyan S, Donadieu M, Absinta M, Letchuman V, Calabresi B, Desai P, Beck ES, Roy S, Ohayon J, Pham DL, Thomas A, Jacobson S, Cortese I, Auluck PK, Nair G, Sati P, Reich DS. Lesion size and shape in central vein sign assessment for multiple sclerosis diagnosis: An in vivo and postmortem MRI study. Mult Scler 2022; 28:1891-1902. [PMID: 35674284 DOI: 10.1177/13524585221097560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The "central vein sign" (CVS), a linear hypointensity on T2*-weighted imaging corresponding to a central vein/venule, is associated with multiple sclerosis (MS) lesions. The effect of lesion-size exclusion criteria on MS diagnostic accuracy has not been extensively studied. OBJECTIVE Investigate the optimal lesion-size exclusion criteria for CVS use in MS diagnosis. METHODS Cross-sectional study of 163 MS and 51 non-MS, and radiological/histopathological correlation of 5 MS and 1 control autopsy cases. The effects of lesion-size exclusion on MS diagnosis using the CVS, and intralesional vein detection on histopathology were evaluated. RESULTS CVS+ lesions were larger compared to CVS- lesions, with effect modification by MS diagnosis (mean difference +7.7 mm3, p = 0.004). CVS percentage-based criteria with no lesion-size exclusion showed the highest diagnostic accuracy in differentiating MS cases. However, a simple count of three or more CVS+ lesions greater than 3.5 mm is highly accurate and can be rapidly implemented (sensitivity 93%; specificity 88%). On magnetic resonance imaging (MRI)-histopathological correlation, the CVS had high specificity for identifying intralesional veins (0/7 false positives). CONCLUSION Lesion-size measures add important information when using CVS+ lesion counts for MS diagnosis. The CVS is a specific biomarker corresponding to intralesional veins on histopathology.
Collapse
Affiliation(s)
- Omar Al-Louzi
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sargis Manukyan
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maxime Donadieu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD; USA/IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Vijay Letchuman
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Brent Calabresi
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Parth Desai
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Erin S Beck
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Snehashis Roy
- Section on Neural Function, National Institute of Mental Health, Bethesda, MD, USA
| | - Joan Ohayon
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Dzung L Pham
- Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Irene Cortese
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Pavan K Auluck
- Human Brain Collection Core, National Institute of Mental Health, Bethesda, MD, USA
| | - Govind Nair
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
17
|
MS or not MS: T2-weighted imaging (T2WI)-based radiomic findings distinguish MS from its mimics. Mult Scler Relat Disord 2022; 61:103756. [DOI: 10.1016/j.msard.2022.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/20/2022] [Accepted: 03/20/2022] [Indexed: 11/23/2022]
|
18
|
Chaaban L, Safwan N, Moussa H, El‐Sammak S, Khoury S, Hannoun S. Central vein sign: A putative diagnostic marker for multiple sclerosis. Acta Neurol Scand 2022; 145:279-287. [PMID: 34796472 DOI: 10.1111/ane.13553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/04/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
The presence of a "central vein sign" (CVS) has been introduced as a biomarker for the diagnosis of multiple sclerosis (MS) and shown to have the ability to accurately differentiate MS from other white matter diseases (MS mimics). Following the development of susceptibility-based magnetic resonance venography that allowed the in vivo detection of CVS, a standard CVS definition was established by introducing the "40% rule" that assesses the number of MS lesions with CVS as a fraction of the total number of lesions to differentiate MS lesions from other types of lesions. The "50% rule," the "three-lesion criteria," and the "six-lesion criteria" were later introduced and defined. Each of these rules had high levels of sensitivity, specificity, and accuracy in differentiating MS from other diseases, which has been recognized by the Magnetic Resonance Imaging in MS (MAGNIMS) group and the Consortium of MS Centers task force. The North American Imaging in Multiple Sclerosis Cooperative even provided statements and recommendations aiming to refine, standardize and evaluate the CVS in MS. Herein, we review the existing literature on CVS and evaluate its added value in the diagnosis of MS and usefulness in differentiating it from other vasculopathies. We also review the histopathology of CVS and identify available automated CVS assessment methods as well as define the role of vascular comorbidities in the diagnosis of MS.
Collapse
Affiliation(s)
- Lara Chaaban
- Department of Agriculture and Food Sciences American University of Beirut Beirut Lebanon
| | - Nancy Safwan
- Department of Agriculture and Food Sciences American University of Beirut Beirut Lebanon
| | - Hussein Moussa
- Nehme and Therese Tohme Multiple Sclerosis Center American University of Beirut Medical Center Beirut Lebanon
| | - Sally El‐Sammak
- Nehme and Therese Tohme Multiple Sclerosis Center American University of Beirut Medical Center Beirut Lebanon
| | - Samia J. Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center American University of Beirut Medical Center Beirut Lebanon
- Faculty of Medicine Abu‐Haidar Neuroscience Institute American University of Beirut Medical Center Beirut Lebanon
| | - Salem Hannoun
- Nehme and Therese Tohme Multiple Sclerosis Center American University of Beirut Medical Center Beirut Lebanon
- Medical Imaging Sciences Program Division of Health Professions Faculty of Health Sciences American University of Beirut Beirut Lebanon
| |
Collapse
|
19
|
Gaitán MI, Paday Formenti ME, Calandri I, Ysrraelit MC, Yañez P, Correale J. The central vein sign is present in most infratentorial multiple sclerosis plaques. Mult Scler Relat Disord 2022; 58:103484. [PMID: 35007822 DOI: 10.1016/j.msard.2021.103484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/27/2021] [Accepted: 12/31/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE There is growing evidence supporting the presence of the central vein sign (CVS) in the supratentorial brain as an imaging biomarker for multiple sclerosis (MS) diagnosis. Recently, using optimized susceptibility-weighted angiography (SWAN-venule), we detected CVS in 86% of supratentorial white matter lesions (WMLs) in the clinical setting on images obtained in a 3T MRI scanner. Despite the relevance of the infratentorial compartment, CVS prevalence in infratentorial MS plaques has not been investigated in detail. Our objective was to determine the proportion of MS infratentorial lesions showing CVS positivity. MATERIALS AND METHODS We included subjects with MS and other brain diseases showing at least one infratentorial lesion larger than 3 mm on 3D-FLAIR. Patients were scanned in a 3T MRI scanner (GE Medical Systems, discovery-MR750), applying a comprehensive protocol including post-contrast 3D-FLAIR and SWAN-venule sequences. CVS presence was confirmed by two trained raters. RESULTS Thirty MRIs of subjects with MS were analyzed. One hundred and one infratentorial lesions were detected on FLAIR, and 86% were centered by a vein. Fifteen MRIs from the non-MS group were analyzed, 19 lesions were visible ion FLAIR and 16% were positive for the CVS. CONCLUSIONS SWAN-venule detects infratentorial lesions and highlights the central vein in MS plaques at 3T MRI. As occurs in the supratentorial brain, most infratentorial lesions are perivenular.
Collapse
Affiliation(s)
- María Inés Gaitán
- Department of Neurology, FLENI. Buenos Aires, Argentina; María Inés Gaitán, Montañeses 2325, ZC, 1428, Buenos Aires City, Argentina.
| | | | | | | | - Paulina Yañez
- Department of Radiology, FLENI. Buenos Aires, Argentina
| | | |
Collapse
|
20
|
Ng Kee Kwong KC, Mollison D, Meijboom R, York EN, Kampaite A, Martin SJ, Hunt DPJ, Thrippleton MJ, Chandran S, Waldman AD. Rim lesions are demonstrated in early relapsing-remitting multiple sclerosis using 3 T-based susceptibility-weighted imaging in a multi-institutional setting. Neuroradiology 2022; 64:109-117. [PMID: 34664112 PMCID: PMC8724059 DOI: 10.1007/s00234-021-02768-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE Rim lesions, characterised by a paramagnetic rim on susceptibility-based MRI, have been suggested to reflect chronic inflammatory demyelination in multiple sclerosis (MS) patients. Here, we assess, through susceptibility-weighted imaging (SWI), the prevalence, longitudinal volume evolution and clinical associations of rim lesions in subjects with early relapsing-remitting MS (RRMS). METHODS Subjects (n = 44) with recently diagnosed RRMS underwent 3 T MRI at baseline (M0) and 1 year (M12) as part of a multi-centre study. SWI was acquired at M12 using a 3D segmented gradient-echo echo-planar imaging sequence. Rim lesions identified on SWI were manually segmented on FLAIR images at both time points for volumetric analysis. RESULTS Twelve subjects (27%) had at least one rim lesion at M12. A linear mixed-effects model, with 'subject' as a random factor, revealed mixed evidence for the difference in longitudinal volume change between rim lesions and non-rim lesions (p = 0.0350 and p = 0.0556 for subjects with and without rim lesions, respectively). All 25 rim lesions identified showed T1-weighted hypointense signal. Subjects with and without rim lesions did not differ significantly with respect to age, disease duration or clinical measures of disability (p > 0.05). CONCLUSION We demonstrate that rim lesions are detectable in early-stage RRMS on 3 T MRI across multiple centres, although their relationship to lesion enlargement is equivocal in this small cohort. Identification of SWI rims was subjective. Agreed criteria for defining rim lesions and their further validation as a biomarker of chronic inflammation are required for translation of SWI into routine MS clinical practice.
Collapse
Affiliation(s)
- Koy Chong Ng Kee Kwong
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Daisy Mollison
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Rozanna Meijboom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Elizabeth N. York
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Agniete Kampaite
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | | | - David P. J. Hunt
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Adam D. Waldman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | | |
Collapse
|
21
|
Abdel Ghany H, Karam-Allah A, Edward R, Abdel Naseer M, Hegazy MI. Sensitivity and Specificity of Central Vein Sign as a Diagnostic Biomarker in Egyptian Patients with Multiple Sclerosis. Neuropsychiatr Dis Treat 2022; 18:1985-1992. [PMID: 36072679 PMCID: PMC9444024 DOI: 10.2147/ndt.s377877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Magnetic resonance imaging (MRI) findings in multiple sclerosis (MS) overlap with numerous MS mimics. The central vein sign (CVS) can help to differentiate MS from other mimics. This study aimed to determine the value of CVS as a diagnostic biomarker for distinguishing MS from its mimics. PATIENTS AND METHODS Patients were prospectively recruited into two groups: a typical clinical (TC) MS presentation with an atypical MRI for MS and an atypical clinical (ATC) MS presentation with a typical MRI for MS. Patients underwent a 1.5T MRI brain scan with a T2*-weighted gradient-echo sequence. The presence of the central vein was assessed by a radiologist blinded to patients' clinical presentation. The MS consultant made the final diagnosis without reviewing the T2*-weighted gradient-echo sequence or the CVS analysis results. RESULTS Forty-two patients were included. Ten (40%) out of 25 TC patients were diagnosed with clinically definite MS (CDMS), with a mean percentage of CV-positive lesions of 65.5% among CDMS patients. Four (23.5%) out of 17 ATC patients were diagnosed with CDMS with a mean CV-positive lesions percentage of 68.25% among CDMS patients. TC patients who were not diagnosed as CDMS had a mean CV-positive lesions percentage of 10.13%, while ATC patients who were not diagnosed as CDMS had a mean CV-positive lesions percentage of 16.38%. The CVS showed 85.7% sensitivity and 100% specificity (95% confidence interval: 0.919-1.018) for diagnosis of MS at a cut off value of 45% (p < 0.001). The percentage of CV-positive lesions was significantly higher in oligoclonal bands (OCBs) positive patients compared to OCBs negative patients (p < 0.001) and those with spinal cord lesions compared to patients with no spinal cord lesions (p = 0.017). CONCLUSION The CVS has 85.7% sensitivity and 100% specificity for the diagnosis of MS at a cutoff value of 45%.
Collapse
Affiliation(s)
- Hend Abdel Ghany
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Karam-Allah
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ramy Edward
- Radiology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maged Abdel Naseer
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed I Hegazy
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
22
|
Müller M, Egger N, Sommer S, Wilferth T, Meixner CR, Laun FB, Mennecke A, Schmidt M, Huhn K, Rothhammer V, Uder M, Dörfler A, Nagel AM. Direct imaging of white matter ultrashort T 2∗ components at 7 Tesla. Magn Reson Imaging 2021; 86:107-117. [PMID: 34906631 DOI: 10.1016/j.mri.2021.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE To demonstrate direct imaging of the white matter ultrashort T2∗ components at 7 Tesla using inversion recovery (IR)-enhanced ultrashort echo time (UTE) MRI. To investigate its characteristics, potentials and limitations, and to establish a clinical protocol. MATERIAL AND METHODS The IR UTE technique suppresses long T2∗ signals within white matter by using adiabatic inversion in combination with dual-echo difference imaging. Artifacts arising at 7 T from long T2∗ scalp fat components were reduced by frequency shifting the IR pulse such that those frequencies were inverted likewise. For 8 healthy volunteers, the T2∗ relaxation times of white matter were then quantified. In 20 healthy volunteers, the UTE difference and fraction contrast were evaluated. Finally, in 6 patients with multiple sclerosis (MS), the performance of the technique was assessed. RESULTS A frequency shift of -1.2 ppm of the IR pulse (i.e. towards the fat frequency) provided a good suppression of artifacts. With this, an ultrashort compartment of (68 ± 6) % with a T2∗ time of (147 ± 58) μs was quantified with a chemical shift of (-3.6 ± 0.5) ppm from water. Within healthy volunteers' white matter, a stable ultrashort T2∗ fraction contrast was calculated. For the MS patients, a significant fraction reduction in the identified lesions as well as in the normal-appearing white matter was observed. CONCLUSIONS The quantification results indicate that the observed ultrashort components arise primarily from myelin tissue. Direct IR UTE imaging of the white matter ultrashort T2∗ components is thus feasible at 7 T with high quantitative inter-subject repeatability and good detection of signal loss in MS.
Collapse
Affiliation(s)
- Max Müller
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Nico Egger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefan Sommer
- Siemens Healthcare, Zurich, Switzerland; Swiss Center for Musculoskeletal Imaging (SCMI), Balgrist Campus, Zurich, Switzerland
| | - Tobias Wilferth
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian R Meixner
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik Bernd Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Angelika Mennecke
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Manuel Schmidt
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Konstantin Huhn
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
23
|
Ineichen BV, Beck ES, Piccirelli M, Reich DS. New Prospects for Ultra-High-Field Magnetic Resonance Imaging in Multiple Sclerosis. Invest Radiol 2021; 56:773-784. [PMID: 34120128 PMCID: PMC8505164 DOI: 10.1097/rli.0000000000000804] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT There is growing interest in imaging multiple sclerosis (MS) through the ultra-high-field (UHF) lens, which currently means a static magnetic field strength of 7 T or higher. Because of higher signal-to-noise ratio and enhanced susceptibility effects, UHF magnetic resonance imaging improves conspicuity of MS pathological hallmarks, among them cortical demyelination and the central vein sign. This could, in turn, improve confidence in MS diagnosis and might also facilitate therapeutic monitoring of MS patients. Furthermore, UHF imaging offers unique insight into iron-related pathology, leptomeningeal inflammation, and spinal cord pathologies in neuroinflammation. Yet, limitations such as the longer scanning times to achieve improved resolution and incipient safety data on implanted medical devices need to be considered. In this review, we discuss applications of UHF imaging in MS, its advantages and limitations, and practical aspects of UHF in the clinical setting.
Collapse
Affiliation(s)
- Benjamin V. Ineichen
- From the Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Erin S. Beck
- From the Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Marco Piccirelli
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniel S. Reich
- From the Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
24
|
Ontaneda D, Sati P, Raza P, Kilbane M, Gombos E, Alvarez E, Azevedo C, Calabresi P, Cohen JA, Freeman L, Henry RG, Longbrake EE, Mitra N, Illenberger N, Schindler M, Moreno-Dominguez D, Ramos M, Mowry E, Oh J, Rodrigues P, Chahin S, Kaisey M, Waubant E, Cutter G, Shinohara R, Reich DS, Solomon A, Sicotte NL. Central vein sign: A diagnostic biomarker in multiple sclerosis (CAVS-MS) study protocol for a prospective multicenter trial. Neuroimage Clin 2021; 32:102834. [PMID: 34592690 PMCID: PMC8482479 DOI: 10.1016/j.nicl.2021.102834] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 01/06/2023]
Abstract
The specificity and implementation of current MRI-based diagnostic criteria for multiple sclerosis (MS) are imperfect. Approximately 1 in 5 of individuals diagnosed with MS are eventually determined not to have the disease, with overreliance on MRI findings a major cause of MS misdiagnosis. The central vein sign (CVS), a proposed MRI biomarker for MS lesions, has been extensively studied in numerous cross sectional studies and may increase diagnostic specificity for MS. CVS has desirable analytical, measurement, and scalability properties. "Central Vein Sign: A Diagnostic Biomarker in Multiple Sclerosis (CAVS-MS)" is an NIH-supported, 2-year, prospective, international, multicenter study conducted by the North American Imaging in MS Cooperative (NAIMS) to evaluate CVS as a diagnostic biomarker for immediate translation into clinical care. Study objectives include determining the concordance of CVS and McDonald Criteria to diagnose MS, the sensitivity of CVS to detect MS in those with typical presentations, and the specificity of CVS among those with atypical presentations. The study will recruit a total of 400 participants (200 with typical and 200 with atypical presentations) across 11 sites. T2*-weighted, high-isotropic-resolution, segmented echo-planar MRI will be acquired at baseline and 24 months on 3-tesla scanners, and FLAIR* images (combination of FLAIR and T2*) will be generated for evaluating CVS. Data will be processed on a cloud-based platform that contains clinical and CVS rating modules. Imaging quality control will be conducted by automated methods and neuroradiologist review. CVS will be determined by Select6* and Select3* lesion methods following published criteria at each site and by central readers, including neurologists and neuroradiologists. Automated CVS detection and algorithms for incorporation of CVS into McDonald Criteria will be tested. Diagnosis will be adjudicated by three neurologists who served on the 2017 International Panel on the Diagnosis of MS. The CAVS-MS study aims to definitively establish CVS as a diagnostic biomarker that can be applied broadly to individuals presenting for evaluation of the diagnosis of MS.
Collapse
Affiliation(s)
- D Ontaneda
- Cleveland Clinic Foundation, Cleveland, OH, United States.
| | - P Sati
- Cedars Sinai, Los Angeles, CA, United States; NINDS, NIH, Bethesda, MD, United States
| | - P Raza
- Cleveland Clinic Foundation, Cleveland, OH, United States
| | - M Kilbane
- Cleveland Clinic Foundation, Cleveland, OH, United States
| | - E Gombos
- Cedars Sinai, Los Angeles, CA, United States
| | - E Alvarez
- Neurology, U of Colorado, Denver, CO, United States
| | | | - P Calabresi
- Neurology, Johns Hopkins, Baltimore, MD, United States
| | - J A Cohen
- Cleveland Clinic Foundation, Cleveland, OH, United States
| | - L Freeman
- Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - R G Henry
- University of California San Francisco, San Francisco, CA, United States
| | | | - N Mitra
- University of Pennsylvania, Philadelphia, PA, United States
| | - N Illenberger
- University of Pennsylvania, Philadelphia, PA, United States
| | - M Schindler
- University of Pennsylvania, Philadelphia, PA, United States
| | | | - M Ramos
- QMENTA Inc, Boston, MA, United States
| | - E Mowry
- Neurology, Johns Hopkins, Baltimore, MD, United States
| | - J Oh
- University of Toronto, Toronto, ON, Canada
| | | | - S Chahin
- Washington University, St. Louis, MO, United States
| | - M Kaisey
- Cedars Sinai, Los Angeles, CA, United States
| | - E Waubant
- University of California San Francisco, San Francisco, CA, United States
| | - G Cutter
- UAB School of Public Health, Birmingham, AL, United States
| | - R Shinohara
- University of Pennsylvania, Philadelphia, PA, United States
| | - D S Reich
- NINDS, NIH, Bethesda, MD, United States
| | - A Solomon
- The University of Vermont, Burlington, VT, United States
| | - N L Sicotte
- Cedars Sinai, Los Angeles, CA, United States
| |
Collapse
|
25
|
Wattjes MP, Ciccarelli O, Reich DS, Banwell B, de Stefano N, Enzinger C, Fazekas F, Filippi M, Frederiksen J, Gasperini C, Hacohen Y, Kappos L, Li DKB, Mankad K, Montalban X, Newsome SD, Oh J, Palace J, Rocca MA, Sastre-Garriga J, Tintoré M, Traboulsee A, Vrenken H, Yousry T, Barkhof F, Rovira À. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 2021; 20:653-670. [PMID: 34139157 DOI: 10.1016/s1474-4422(21)00095-8] [Citation(s) in RCA: 318] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/15/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
The 2015 Magnetic Resonance Imaging in Multiple Sclerosis and 2016 Consortium of Multiple Sclerosis Centres guidelines on the use of MRI in diagnosis and monitoring of multiple sclerosis made an important step towards appropriate use of MRI in routine clinical practice. Since their promulgation, there have been substantial relevant advances in knowledge, including the 2017 revisions of the McDonald diagnostic criteria, renewed safety concerns regarding intravenous gadolinium-based contrast agents, and the value of spinal cord MRI for diagnostic, prognostic, and monitoring purposes. These developments suggest a changing role of MRI for the management of patients with multiple sclerosis. This 2021 revision of the previous guidelines on MRI use for patients with multiple sclerosis merges recommendations from the Magnetic Resonance Imaging in Multiple Sclerosis study group, Consortium of Multiple Sclerosis Centres, and North American Imaging in Multiple Sclerosis Cooperative, and translates research findings into clinical practice to improve the use of MRI for diagnosis, prognosis, and monitoring of individuals with multiple sclerosis. We recommend changes in MRI acquisition protocols, such as emphasising the value of three dimensional-fluid-attenuated inversion recovery as the core brain pulse sequence to improve diagnostic accuracy and ability to identify new lesions to monitor treatment effectiveness, and we provide recommendations for the judicious use of gadolinium-based contrast agents for specific clinical purposes. Additionally, we extend the recommendations to the use of MRI in patients with multiple sclerosis in childhood, during pregnancy, and in the post-partum period. Finally, we discuss promising MRI approaches that might deserve introduction into clinical practice in the near future.
Collapse
Affiliation(s)
- Mike P Wattjes
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany; Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Olga Ciccarelli
- Faculty of Brain Sciences, University College London Queen Square Institute of Neurology, University College London, London, UK; National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Brenda Banwell
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicola de Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Graz, Austria; Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Jette Frederiksen
- Department of Neurology, Rigshospitalet Glostrup, University Hospital of Copenhagen, Glostrup, Denmark
| | - Claudio Gasperini
- Department of Neurology, San Camillo-Forlanini Hospital, Roma, Italy
| | - Yael Hacohen
- Faculty of Brain Sciences, University College London Queen Square Institute of Neurology, University College London, London, UK; Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Ludwig Kappos
- Department of Neurology and Research Center for Clinical Neuroimmunology and Neuroscience, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - David K B Li
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital for Children, London, UK
| | - Xavier Montalban
- Multiple Sclerosis Centre of Catalonia, Department of Neurology-Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Division of Neurology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Scott D Newsome
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jiwon Oh
- Division of Neurology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | | | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Jaume Sastre-Garriga
- Multiple Sclerosis Centre of Catalonia, Department of Neurology-Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia, Department of Neurology-Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anthony Traboulsee
- Division of Neurology, University of British Columbia, Vancouver, BC, Canada
| | - Hugo Vrenken
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Tarek Yousry
- Lysholm Department of Neuroradiology, UCLH National Hospital for Neurology and Neurosurgery, London, UK; Neuroradiological Academic Unit, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands; Faculty of Brain Sciences, University College London Queen Square Institute of Neurology, University College London, London, UK; National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | | | |
Collapse
|
26
|
Weidauer S, Raab P, Hattingen E. Diagnostic approach in multiple sclerosis with MRI: an update. Clin Imaging 2021; 78:276-285. [PMID: 34174655 DOI: 10.1016/j.clinimag.2021.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Although neurological examination and medical history are the first and most important steps towards the diagnosis of multiple sclerosis (MS), MRI has taken a prominent role in the diagnostic workflow especially since the implementation of McDonald criteria. However, before applying those on MR imaging features, other diseases must be excluded and MS should be favoured as the most likely diagnosis. For the prognosis the earliest possible and correct diagnosis of MS is crucial, since increasingly effective disease modifying therapies are available for the different forms of clinical manifestation and progression. This review deals with the significance of MRI in the diagnostic workup of MS with special regard to daily clinical practice. The recommended MRI protocols for baseline and follow-up examinations are summarized and typical MS lesion patterns ("green flags") in four defined CNS compartments are introduced. Pivotal is the recognition of neurological aspects as well as imaging findings atypical for MS ("red flags"). In addition, routinely assessment of Aquaporin-4-IgG antibodies specific for neuromyelitis optica spectrum disorders (NMOSD) as well as the knowledge of associated lesion patterns on MRI is recommended. Mistaken identity of such lesions with MS and consecutive implementation of disease modifying therapies for MS can worsen the course of NMOSD.
Collapse
Affiliation(s)
- Stefan Weidauer
- Department of Neurology, Sankt Katharinen Hospital, Teaching Hospital of the Goethe University, Seckbacher Landstraße 65, 60389 Frankfurt am Main, Germany.
| | - Peter Raab
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl Neuberg Straße 1, 30625 Hannover, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW To summarize recent evidence from the application of susceptibility-based MRI sequences to investigate the 'central vein sign' (CVS) and 'iron rim' as biomarkers to improve the diagnostic work-up of multiple sclerosis (MS) and predict disease severity. RECENT FINDINGS The CVS is a specific biomarker for MS being detectable from the earliest phase of the disease. A threshold of 40% of lesions with the CVS can be optimal to distinguish MS from non-MS patients. Iron rim lesions, reflecting chronic active lesions, develop in relapsing-remitting MS patients and persist in progressive MS. They increase in size in the first few years after their formation and then stabilize. Iron rim lesions can distinguish MS from non-MS patients but not the different MS phenotypes. The presence of at least four iron rim lesions is associated with an earlier clinical disability, higher prevalence of clinically progressive MS and more severe brain atrophy. Automated methods for CVS and iron rim lesion detection are under development to facilitate their quantification. SUMMARY The assessment of the CVS and iron rim lesions is feasible in the clinical scenario and provides MRI measures specific to MS pathological substrates, improving diagnosis and prognosis of these patients.
Collapse
|
28
|
Haacke EM, Ge Y, Sethi SK, Buch S, Zamboni P. An Overview of Venous Abnormalities Related to the Development of Lesions in Multiple Sclerosis. Front Neurol 2021; 12:561458. [PMID: 33981281 PMCID: PMC8107266 DOI: 10.3389/fneur.2021.561458] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
The etiology of multiple sclerosis (MS) is currently understood to be autoimmune. However, there is a long history and growing evidence for disrupted vasculature and flow within the disease pathology. A broad review of the literature related to vascular effects in MS revealed a suggestive role for abnormal flow in the medullary vein system. Evidence for venous involvement in multiple sclerosis dates back to the early pathological work by Charcot and Bourneville, in the mid-nineteenth century. Pioneering work by Adams in the 1980s demonstrated vasculitis within the walls of veins and venules proximal to active MS lesions. And more recently, magnetic resonance imaging (MRI) has been used to show manifestations of the central vein as a precursor to the development of new MS lesions, and high-resolution MRI using Ferumoxytol has been used to reveal the microvasculature that has previously only been demonstrated in cadaver brains. Both approaches may shed new light into the structural changes occurring in MS lesions. The material covered in this review shows that multiple pathophysiological events may occur sequentially, in parallel, or in a vicious circle which include: endothelial damage, venous collagenosis and fibrin deposition, loss of vessel compliance, venous hypertension, perfusion reduction followed by ischemia, medullary vein dilation and local vascular remodeling. We come to the conclusion that a potential source of MS lesions is due to locally disrupted flow which in turn leads to remodeling of the medullary veins followed by endothelial damage with the subsequent escape of glial cells, cytokines, etc. These ultimately lead to the cascade of inflammatory and demyelinating events which ensue in the course of the disease.
Collapse
Affiliation(s)
- E. Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Yulin Ge
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, United States
| | - Sean K. Sethi
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Sagar Buch
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Paolo Zamboni
- Vascular Diseases Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
29
|
Penner IK, Gass A, Schreiber H, Wattjes MP. [Neuropsychological and MRI diagnostics in secondary progressive multiple sclerosis]. DER NERVENARZT 2021; 92:1293-1301. [PMID: 33891150 PMCID: PMC8648628 DOI: 10.1007/s00115-021-01118-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 11/24/2022]
Abstract
Hintergrund Die Multiple Sklerose ist im longitudinalen Verlauf oft ein Krankheitskontinuum mit initial schubförmig-remittierender Phase (RRMS) und späterer sekundärer Progredienz (SPMS). Die meisten bisher zugelassenen Therapien sind bei SPMS nicht ausreichend wirksam. Die frühe Erkennung der SPMS-Konversion ist daher entscheidend für die Therapiewahl. Wichtige Entscheidungshilfen können dabei die Testung kognitiver Teilleistungen und die Magnetresonanztomographie (MRT) sein. Ziel der Arbeit Darstellung der Bedeutung kognitiver Testungen und von MRT-Untersuchungen für Prädiktion und Erfassung der SPMS-Konversion. Ausarbeitung von Strategien der Verlaufsbeobachtung und Therapiesteuerung in der Praxis, insbesondere in der ambulanten Versorgung. Material und Methoden Übersichtsarbeit auf Basis einer unsystematischen Literaturrecherche. Ergebnisse Standardisierte kognitive Testung kann für die frühe SPMS-Diagnose hilfreich sein und die Verlaufsbewertung erleichtern. Eine jährliche Anwendung sensitiver Screeningtests wie Symbol Digit Modalities Test (SDMT) und Brief Visual Memory Test-Revised (BVMT‑R) oder der Brief International Cognitive Assessment for MS (BICAMS)-Testbatterie ist empfehlenswert. Persistierende inflammatorische Aktivität im MRT in den ersten drei Jahren der Erkrankung sowie das Vorhandensein kortikaler Läsionen sind prädiktiv für eine SPMS-Konversion. Ein standardisiertes MRT-Monitoring auf Merkmale einer progressiven MS kann den klinisch und neurokognitiv begründeten SPMS-Verdacht stützen. Diskussion Die interdisziplinäre Versorgung von MS-Patienten durch klinisch versierte Neurologen, unterstützt durch neuropsychologische Testung und MRT, hat einen hohen Stellenwert für die SPMS-Prädiktion und Diagnose. Letztere erlaubt eine frühe Umstellung auf geeignete Therapien, da bei SPMS andere Interventionen als für die RRMS notwendig sind. Nach erfolgter medikamentöser Umstellung erlaubt die klinische, neuropsychologische und bildgebende Vigilanz ein stringentes Monitoring auf neuroinflammatorische und -degenerative Aktivität sowie Therapiekomplikationen.
Collapse
Affiliation(s)
- I-K Penner
- Klinik für Neurologie, Medizinische Fakultät, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland. .,COGITO Zentrum für angewandte Neurokognition und neuropsychologische Forschung, Merowingerplatz 1, 40225, Düsseldorf, Deutschland.
| | - A Gass
- Neurologische Klinik, Universitätsmedizin Mannheim, Mannheim, Deutschland
| | - H Schreiber
- Nervenärztliche Gemeinschaftspraxis, Neuropoint Akademie und NTD, Ulm, Deutschland
| | - M P Wattjes
- Institut für diagnostische und interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Deutschland
| |
Collapse
|
30
|
Sparacia G, Agnello F, Iaia A, Banco A, Galia M, Midiri M. Multiple sclerosis: prevalence of the 'central vein' sign in white matter lesions on gadolinium-enhanced susceptibility-weighted images. Neuroradiol J 2021; 34:470-475. [PMID: 33872085 DOI: 10.1177/19714009211008750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS To evaluate prospectively whether an intravenous gadolinium injection could improve the detection of the central vein sign on susceptibility-weighted imaging sequences obtained with a 1.5 T magnetic resonance scanner in patients with multiple sclerosis compared to unenhanced susceptibility-weighted images. MATERIALS AND METHODS This prospective, institution review board-approved study included 19 patients affected by multiple sclerosis (six men; 13 women; mean age 40.8 years, range 20-74 years). Patients had the relapsing-remitting clinical subtype in 95% of cases, and only one (5%) patient had the primary progressive clinical subtype of multiple sclerosis. T2-weighted images, fluid-attenuated inversion recovery images, unenhanced and contrast-enhanced susceptibility-weighted images were evaluated in consensus by two neuroradiologists for the presence of the central vein sign. The readers were blinded to magnetic resonance imaging reports, clinical information, the presence and the localisation of focal hyperintense white matter lesions. Any discordance between readers was resolved through a joint review of the recorded images with an additional neuroradiologist. RESULTS A total of 317 multiple sclerosis lesions were analysed. The central vein sign had a higher prevalence detection rate on gadolinium-enhanced susceptibility-weighted images (272 of 317 lesions, 86%) compared to unenhanced susceptibility-weighted images (172 of 317 lesions, 54%). CONCLUSION Gadolinium-enhanced susceptibility-weighted imaging improves the detection rate of the central vein sign in multiple sclerosis lesions.
Collapse
Affiliation(s)
| | | | - Alberto Iaia
- Department of Neuroradiology, Christiana Care Health System, USA
| | - Aurelia Banco
- Department of Radiology, University of Palermo, Italy
| | - Massimo Galia
- Department of Radiology, University of Palermo, Italy
| | | |
Collapse
|
31
|
Etemadifar M, Ashourizadeh H, Nouri H, Kargaran PK, Salari M, Rayani M, Aghababaee A, Abhari AP. MRI signs of CNS demyelinating diseases. Mult Scler Relat Disord 2020; 47:102665. [PMID: 33310421 DOI: 10.1016/j.msard.2020.102665] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 11/27/2022]
Abstract
The differential diagnosis of the central nervous system (CNS) demyelinating diseases can be greatly facilitated by visualization and appreciation of pathognomonic radiological signs, visualized on magnetic resonance imaging (MRI) sequences. Given the distinct therapeutic approaches for each of these diseases, a decisive and reliable diagnosis in patients presenting with demyelination-associated symptoms is of crucial value. Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are major examples of such conditions, each possessing a number of MRI signs, closely associated with the disorder. This pictorial review aims to describe seventeen pathognomonic MRI signs associated with several CNS demyelinating disorders including MS, NMOSD, myelin oligodendrocyte glycoprotein-associated disease, Baló's concentric sclerosis, metachromatic leukodystrophy, progressive multifocal leukoencephalopathy, and neurosarcoidosis.
Collapse
Affiliation(s)
- Masoud Etemadifar
- Department of Neurosurgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Helia Ashourizadeh
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hosein Nouri
- Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran.
| | - Parisa K Kargaran
- Departments of Cardiovascular Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mehri Salari
- Department of Neurological Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Rayani
- Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Aghababaee
- Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Parsa Abhari
- Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| |
Collapse
|
32
|
AlTokhis AI, AlOtaibi AM, Felmban GA, Constantinescu CS, Evangelou N. Iron Rims as an Imaging Biomarker in MS: A Systematic Mapping Review. Diagnostics (Basel) 2020; 10:diagnostics10110968. [PMID: 33218056 PMCID: PMC7698946 DOI: 10.3390/diagnostics10110968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Multiple sclerosis (MS) is an autoimmune, inflammatory, demyelinating and degenerative disease of the central nervous system (CNS). To date, there is no definitive imaging biomarker for diagnosing MS. The current diagnostic criteria are mainly based on clinical relapses supported by the presence of white matter lesions (WMLs) on MRI. However, misdiagnosis of MS is still a significant clinical problem. The paramagnetic, iron rims (IRs) around white matter lesions have been proposed to be an imaging biomarker in MS. This study aimed to carry out a systematic mapping review to explore the detection of iron rim lesions (IRLs), on clinical MR scans, and describe the characteristics of IRLs presence in MS versus other MS-mimic disorders. Methods: Publications from 2001 on IRs lesions were reviewed in three databases: PubMed, Web of Science and Embase. From the initial result set 718 publications, a final total of 38 papers were selected. Results: The study revealed an increasing interest in iron/paramagnetic rims lesions studies. IRs were more frequently found in periventricular regions and appear to be absent in MS-mimics. Conclusions IR is proposed as a promising imaging biomarker for MS.
Collapse
Affiliation(s)
- Amjad I. AlTokhis
- School of Medicine, University of Nottingham, Nottingham, UK/Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK; (A.M.A.); (G.A.F.); (C.S.C.); (N.E.)
- School of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- Correspondence:
| | - Abdulmajeed M. AlOtaibi
- School of Medicine, University of Nottingham, Nottingham, UK/Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK; (A.M.A.); (G.A.F.); (C.S.C.); (N.E.)
- School of Applied Medical Sciences, King Saud bin Abdulaziz University, Riyadh 14611, Saudi Arabia
| | - Ghadah A. Felmban
- School of Medicine, University of Nottingham, Nottingham, UK/Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK; (A.M.A.); (G.A.F.); (C.S.C.); (N.E.)
- School of Applied Medical Sciences, King Saud bin Abdulaziz University, Riyadh 14611, Saudi Arabia
| | - Cris S. Constantinescu
- School of Medicine, University of Nottingham, Nottingham, UK/Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK; (A.M.A.); (G.A.F.); (C.S.C.); (N.E.)
| | - Nikos Evangelou
- School of Medicine, University of Nottingham, Nottingham, UK/Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK; (A.M.A.); (G.A.F.); (C.S.C.); (N.E.)
| |
Collapse
|
33
|
Investigation of the “central vein sign” in infratentorial multiple sclerosis lesions. Mult Scler Relat Disord 2020; 45:102409. [DOI: 10.1016/j.msard.2020.102409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 11/20/2022]
|
34
|
Auger C, Rovira À. New concepts about the role of magnetic resonance imaging in the diagnosis and follow-up of multiple sclerosis. RADIOLOGIA 2020. [DOI: 10.1016/j.rxeng.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Nuevos conceptos sobre el papel de la resonancia magnética en el diagnóstico y seguimiento de la esclerosis múltiple. RADIOLOGIA 2020; 62:349-359. [DOI: 10.1016/j.rx.2020.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 11/24/2022]
|
36
|
Lv A, Zhang Z, Fu Y, Yan Y, Yang L, Zhu W. Dawson's Fingers in Cerebral Small Vessel Disease. Front Neurol 2020; 11:669. [PMID: 32849175 PMCID: PMC7396560 DOI: 10.3389/fneur.2020.00669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
To explore Dawson's fingers in cerebral small vessel disease (CSVD) and factors related to the development of Dawson's finger, we collected and analyzed clinical data of 65 patients with CSVD. We found a venous abnormality feature called Dawson's fingers around the ventricles in magnetic resonance images (MRIs) of 20 out of 65 patients with CSVD (30. 8%). A significant association between Dawson's fingers and diabetes mellitus (DM) was also detected (30 vs. 8.9%, P < 0.05). CSVD patients with Dawson's fingers had significantly increased cerebral microbleeds (CMB) (44.2 vs. 75.0%, p < 0.05), lacunae (66.7 vs. 95.0%, p < 0.05), and white matter hyperintensity (WMH) (p < 0.05) damage, and these patients exhibited significant cognitive domain impairment as assessed via Montreal Cognitive Assessment (MoCA) (18.9 ± 1.8 vs. 24.0 ± 0.8, p < 0.05) and Mini-Mental State Examination (MMSE) (24.5 ± 1.1 vs. 26.6 ± 0.6, p < 0.05). Our results show a distinctly high incidence of Dawson's fingers in CSVD patients and identify a significant association with DM, thus yielding insights about the appropriate use of Dawson's fingers, a venous imaging marker, to explore the basic pathophysiology of CSVD.
Collapse
Affiliation(s)
- Aowei Lv
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zaiqiang Zhang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ying Fu
- Central Laboratory, Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenli Zhu
- Central Laboratory, Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
37
|
Elliott C, Arnold DL, Chen H, Ke C, Zhu L, Chang I, Cahir-McFarland E, Fisher E, Zhu B, Gheuens S, Scaramozza M, Beynon V, Franchimont N, Bradley DP, Belachew S. Patterning Chronic Active Demyelination in Slowly Expanding/Evolving White Matter MS Lesions. AJNR Am J Neuroradiol 2020; 41:1584-1591. [PMID: 32819894 DOI: 10.3174/ajnr.a6742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/31/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Slowly expanding/evolving lesions measured by conventional T1-weighted/T2-weighted brain MR imaging may contribute to progressive disability accumulation in MS. We evaluated the longitudinal change in myelin and axonal tissue integrity in white matter slowly expanding/evolving lesions by means of the magnetization transfer ratio and DTI radial diffusivity. MATERIALS AND METHODS Slowly expanding/evolving lesions were detected within the Study to Assess the Efficacy, Safety, Tolerability, and Pharmacokinetics of BIIB033 in Participants With Relapsing Forms of Multiple Sclerosis When Used Concurrently With Avonex (SYNERGY) Phase 2 clinical trial dataset (NCT01864148), comprising patients with relapsing-remitting and secondary-progressive MS (n = 299) with T1-weighted/T2-weighted MR imaging at all trial time points (baseline to week 72). RESULTS Compared with non-slowly expanding/evolving lesions (areas not classified as slowly expanding/evolving lesion) of baseline nonenhancing T2 lesions, slowly expanding/evolving lesions had a lower normalized magnetization transfer ratio and greater DTI radial diffusivity, both in patients with relapsing-remitting MS (n = 242) and secondary-progressive MS (n = 57, P < .001 for all). Although the changes with time in both the normalized magnetization transfer ratio and DTI radial diffusivity between slowly expanding/evolving lesions and non-slowly expanding/evolving lesions were positively correlated (P < .001), a decrease in the normalized magnetization transfer ratio and a greater increase in DTI radial diffusivity were observed in slowly expanding/evolving lesions versus non-slowly expanding/evolving lesions from baseline to week 72 in relapsing-remitting MS and secondary-progressive MS (P < .001 for all). CONCLUSIONS Patterns of longitudinal change in the normalized magnetization transfer ratio and DTI radial diffusivity in slowly expanding/evolving lesions were consistent with progressive demyelination and tissue loss, as seen in smoldering white matter MS plaques.
Collapse
Affiliation(s)
- C Elliott
- From the NeuroRx Research (C.E., D.L.A.) Montreal, Quebec, Canada
| | - D L Arnold
- From the NeuroRx Research (C.E., D.L.A.) Montreal, Quebec, Canada.,McGill University (D.L.A.) Montreal, Quebec, Canada
| | - H Chen
- Biogen (H.C., C.K., L.Z., I.C., E.C.-M., E.F., B.Z., S.G., M.S., V.B., N.F., D.P.B., S.B.), Cambridge, Massachusetts
| | - C Ke
- Biogen (H.C., C.K., L.Z., I.C., E.C.-M., E.F., B.Z., S.G., M.S., V.B., N.F., D.P.B., S.B.), Cambridge, Massachusetts
| | - L Zhu
- Biogen (H.C., C.K., L.Z., I.C., E.C.-M., E.F., B.Z., S.G., M.S., V.B., N.F., D.P.B., S.B.), Cambridge, Massachusetts
| | - I Chang
- Biogen (H.C., C.K., L.Z., I.C., E.C.-M., E.F., B.Z., S.G., M.S., V.B., N.F., D.P.B., S.B.), Cambridge, Massachusetts
| | - E Cahir-McFarland
- Biogen (H.C., C.K., L.Z., I.C., E.C.-M., E.F., B.Z., S.G., M.S., V.B., N.F., D.P.B., S.B.), Cambridge, Massachusetts
| | - E Fisher
- Biogen (H.C., C.K., L.Z., I.C., E.C.-M., E.F., B.Z., S.G., M.S., V.B., N.F., D.P.B., S.B.), Cambridge, Massachusetts
| | - B Zhu
- Biogen (H.C., C.K., L.Z., I.C., E.C.-M., E.F., B.Z., S.G., M.S., V.B., N.F., D.P.B., S.B.), Cambridge, Massachusetts
| | - S Gheuens
- Biogen (H.C., C.K., L.Z., I.C., E.C.-M., E.F., B.Z., S.G., M.S., V.B., N.F., D.P.B., S.B.), Cambridge, Massachusetts
| | - M Scaramozza
- Biogen (H.C., C.K., L.Z., I.C., E.C.-M., E.F., B.Z., S.G., M.S., V.B., N.F., D.P.B., S.B.), Cambridge, Massachusetts
| | - V Beynon
- Biogen (H.C., C.K., L.Z., I.C., E.C.-M., E.F., B.Z., S.G., M.S., V.B., N.F., D.P.B., S.B.), Cambridge, Massachusetts
| | - N Franchimont
- Biogen (H.C., C.K., L.Z., I.C., E.C.-M., E.F., B.Z., S.G., M.S., V.B., N.F., D.P.B., S.B.), Cambridge, Massachusetts
| | - D P Bradley
- Biogen (H.C., C.K., L.Z., I.C., E.C.-M., E.F., B.Z., S.G., M.S., V.B., N.F., D.P.B., S.B.), Cambridge, Massachusetts
| | - S Belachew
- Biogen (H.C., C.K., L.Z., I.C., E.C.-M., E.F., B.Z., S.G., M.S., V.B., N.F., D.P.B., S.B.), Cambridge, Massachusetts
| |
Collapse
|
38
|
Filippi M, Preziosa P, Banwell BL, Barkhof F, Ciccarelli O, De Stefano N, Geurts JJG, Paul F, Reich DS, Toosy AT, Traboulsee A, Wattjes MP, Yousry TA, Gass A, Lubetzki C, Weinshenker BG, Rocca MA. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain 2020; 142:1858-1875. [PMID: 31209474 PMCID: PMC6598631 DOI: 10.1093/brain/awz144] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/19/2022] Open
Abstract
MRI has improved the diagnostic work-up of multiple sclerosis, but inappropriate image interpretation and application of MRI diagnostic criteria contribute to misdiagnosis. Some diseases, now recognized as conditions distinct from multiple sclerosis, may satisfy the MRI criteria for multiple sclerosis (e.g. neuromyelitis optica spectrum disorders, Susac syndrome), thus making the diagnosis of multiple sclerosis more challenging, especially if biomarker testing (such as serum anti-AQP4 antibodies) is not informative. Improvements in MRI technology contribute and promise to better define the typical features of multiple sclerosis lesions (e.g. juxtacortical and periventricular location, cortical involvement). Greater understanding of some key aspects of multiple sclerosis pathobiology has allowed the identification of characteristics more specific to multiple sclerosis (e.g. central vein sign, subpial demyelination and lesional rims), which are not included in the current multiple sclerosis diagnostic criteria. In this review, we provide the clinicians and researchers with a practical guide to enhance the proper recognition of multiple sclerosis lesions, including a thorough definition and illustration of typical MRI features, as well as a discussion of red flags suggestive of alternative diagnoses. We also discuss the possible place of emerging qualitative features of lesions which may become important in the near future.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Brenda L Banwell
- Division of Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - Olga Ciccarelli
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, UK.,National Institute for Health Research University College London Hospitals Biomedical Research Center, National Institute for Health Research, London, UK
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Friedemann Paul
- NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel S Reich
- Translational Neuroradiology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ahmed T Toosy
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, UK
| | - Anthony Traboulsee
- MS/MRI Research Group, Djavad Mowafaghian Centre for Brain Health, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada.,Faculty of Medicine, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mike P Wattjes
- Department of Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Tarek A Yousry
- Division of Neuroradiology and Neurophysics, UCL Institute of Neurology, London, UK.,Lysholm Department of Neuroradiology, London, UK
| | - Achim Gass
- Department of Neurology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Catherine Lubetzki
- Sorbonne University, AP-HP Pitié-Salpétriére Hospital, Department of Neurology, 75013 Paris, France
| | | | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
39
|
Gaitán MI, Yañez P, Paday Formenti ME, Calandri I, Figueiredo E, Sati P, Correale J. SWAN-Venule: An Optimized MRI Technique to Detect the Central Vein Sign in MS Plaques. AJNR Am J Neuroradiol 2020; 41:456-460. [PMID: 32054616 DOI: 10.3174/ajnr.a6437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/08/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND PURPOSE Multiple sclerosis lesions develop around small veins that are radiologically described as the so-called central vein sign. With 7T MR imaging and magnetic susceptibility-based sequences, the central vein sign has been observed in 80%-100% of MS lesions in patients' brains. However, a lower proportion ∼50% has been reported at 3T using susceptibility-weighted angiography (SWAN). Our aim was to assess a modified version of SWAN optimized at 3T for sensitive detection of the central vein sign. MATERIALS AND METHODS Thirty subjects with MS were scanned on a 3T clinical MR imaging system. 3D T2-weighted FLAIR and optimized 3D SWAN called SWAN-venule, were acquired after injection of a gadolinium-based contrast agent. Patients showing >3 focal white matter lesions were included. The central vein sign was recorded by 2 trained raters on SWAN-venule images in the supratentorial brain. RESULTS Twenty patients showing >3 white matter lesions were included. A total of 380 white matter lesions (135 periventricular, 144 deep white matter, and 101 juxtacortical) seen on both FLAIR and SWAN-venule images were analyzed. Overall, the central vein sign was detected in 86% of the white matter lesions (periventricular, 89%; deep white matter, 95%; and juxtacortical, 78%). CONCLUSIONS The SWAN-venule technique is an optimized MR imaging sequence for highly sensitive detection of the central vein sign in MS brain lesions. This work will facilitate the validation and integration of the central vein sign to increase the diagnostic certainty of MS and further prevent misdiagnosis in clinical practice.
Collapse
Affiliation(s)
- M I Gaitán
- From the Department of Neurology (M.I.G., J.C.), Neuroimmunolgy Section
| | - P Yañez
- Departments of Radiology (P.Y., M.E.P.F.)
| | | | - I Calandri
- Neurology (I.C.), FLENI, Buenos Aires, Argentina
| | | | - P Sati
- Translational Neuroradiology Section (P.S.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - J Correale
- From the Department of Neurology (M.I.G., J.C.), Neuroimmunolgy Section
| |
Collapse
|
40
|
Sartoretti E, Sartoretti T, Wyss M, Becker AS, Schwenk Á, van Smoorenburg L, Najafi A, Binkert C, Thoeny HC, Zhou J, Jiang S, Graf N, Czell D, Sartoretti-Schefer S, Reischauer C. Amide Proton Transfer Weighted Imaging Shows Differences in Multiple Sclerosis Lesions and White Matter Hyperintensities of Presumed Vascular Origin. Front Neurol 2019; 10:1307. [PMID: 31920930 PMCID: PMC6914856 DOI: 10.3389/fneur.2019.01307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023] Open
Abstract
Objectives: To assess the ability of 3D amide proton transfer weighted (APTw) imaging based on magnetization transfer analysis to discriminate between multiple sclerosis lesions (MSL) and white matter hyperintensities of presumed vascular origin (WMH) and to compare APTw signal intensity of healthy white matter (healthy WM) with APTw signal intensity of MSL and WHM. Materials and Methods: A total of 27 patients (16 female, 11 males, mean age 39.6 years) with multiple sclerosis, 35 patients (17 females, 18 males, mean age 66.6 years) with small vessel disease (SVD) and 20 healthy young volunteers (9 females, 11 males, mean age 29 years) were included in the MSL, the WMH, and the healthy WM group. MSL and WMH were segmented on fluid attenuated inversion recovery (FLAIR) images underlaid onto APTw images. Histogram parameters (mean, median, 10th, 25th, 75th, 90th percentile) were calculated. Mean APTw signal intensity values in healthy WM were defined by "Region of interest" (ROI) measurements. Wilcoxon rank sum tests and receiver operating characteristics (ROC) curve analyses of clustered data were applied. Results: All histogram parameters except the 75 and 90th percentile were significantly different between MSL and WMH (p = 0.018-p = 0.034). MSL presented with higher median values in all parameters. The histogram parameters offered only low diagnostic performance in discriminating between MSL and WMH. The 10th percentile yielded the highest diagnostic performance with an AUC of 0.6245 (95% CI: [0.532, 0.717]). Mean APTw signal intensity values of MSL were significantly higher than mean values of healthy WM (p = 0.005). The mean values of WMH did not differ significantly from the values of healthy WM (p = 0.345). Conclusions: We found significant differences in APTw signal intensity, based on straightforward magnetization transfer analysis, between MSL and WMH and between MSL and healthy WM. Low AUC values from ROC analyses, however, suggest that it may be challenging to determine type of lesion with APTw imaging. More advanced analysis of the APT CEST signal may be helpful for further differentiation of MSL and WMH.
Collapse
Affiliation(s)
| | - Thomas Sartoretti
- Laboratory of Translational Nutrition Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Michael Wyss
- Institute of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland.,Philips Healthsystems, Zurich, Switzerland
| | - Anton S Becker
- Laboratory of Translational Nutrition Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Árpád Schwenk
- Institute of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland
| | | | - Arash Najafi
- Institute of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Christoph Binkert
- Institute of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Harriet C Thoeny
- Department of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Radiology, HFR Fribourg-Hôpital Cantonal, Fribourg, Switzerland
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, United States
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, United States
| | | | - David Czell
- Department of Neurology, Spital Linth, Uznach, Switzerland
| | | | - Carolin Reischauer
- Department of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Radiology, HFR Fribourg-Hôpital Cantonal, Fribourg, Switzerland
| |
Collapse
|
41
|
Clarke MA, Samaraweera APR, Falah Y, Pitiot A, Allen CM, Dineen RA, Tench CR, Morgan PS, Evangelou N. Single Test to ARrive at Multiple Sclerosis (STAR-MS) diagnosis: A prospective pilot study assessing the accuracy of the central vein sign in predicting multiple sclerosis in cases of diagnostic uncertainty. Mult Scler 2019; 26:433-441. [DOI: 10.1177/1352458519882282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Misdiagnosis is common in multiple sclerosis (MS) as a proportion of patients present with atypical clinical/magnetic resonance imaging (MRI) findings. The central vein sign has the potential to be a non-invasive, MS-specific biomarker. Objective: To test the accuracy of the central vein sign in predicting a diagnosis of MS in patients with diagnostic uncertainty at disease presentation using T2*-weighted, 3 T MRI. Methods: In this prospective pilot study, we recruited individuals with symptoms unusual for MS but with brain MRI consistent with the disease, and those with a typical clinical presentation of MS whose MRI did not suggest MS. We calculated the proportion of lesions with central veins for each patient and compared the results to the eventual clinical diagnoses. The optimal central vein threshold for diagnosis was established. Results: Thirty-eight patients were scanned, 35 of whom have received a clinical diagnosis. Median percentage of lesions with central veins was 51% in MS and 28% in non-MS. A threshold of 40.7% lesions with central veins resulted in 100% sensitivity and 73.9% specificity. Conclusion: The central vein sign assessed with a clinically available T2* scan can successfully diagnose MS in cases of diagnostic uncertainty. The central vein sign should be considered as a diagnostic biomarker in MS.
Collapse
Affiliation(s)
- Margareta A Clarke
- School of Psychology, University of Nottingham, Nottingham, UK/Department of Clinical Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | | - Yasser Falah
- Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Alain Pitiot
- Laboratory of Image & Data Analysis, Ilixa Ltd., Nottingham, UK
| | | | - Robert A Dineen
- Radiological Sciences, University of Nottingham, Nottingham, UK/National Institute of Health Research Nottingham Biomedical Research Centre, Nottingham, UK/Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Chris R Tench
- Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Paul S Morgan
- Radiological Sciences, University of Nottingham, Nottingham, UK/Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK/Medical Physics & Clinical Engineering, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Nikos Evangelou
- Department of Clinical Neurology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| |
Collapse
|
42
|
Haacke EM, Chen Y, Utriainen D, Wu B, Wang Y, Xia S, He N, Zhang C, Wang X, Lagana MM, Luo Y, Fatemi A, Liu S, Gharabaghi S, Wu D, Sethi SK, Huang F, Sun T, Qu F, Yadav BK, Ma X, Bai Y, Wang M, Cheng J, Yan F. STrategically Acquired Gradient Echo (STAGE) imaging, part III: Technical advances and clinical applications of a rapid multi-contrast multi-parametric brain imaging method. Magn Reson Imaging 2019; 65:15-26. [PMID: 31629075 DOI: 10.1016/j.mri.2019.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 12/15/2022]
Abstract
One major thrust in radiology today is image standardization with a focus on rapidly acquired quantitative multi-contrast information. This is critical for multi-center trials, for the collection of big data and for the use of artificial intelligence in evaluating the data. Strategically acquired gradient echo (STAGE) imaging is one such method that can provide 8 qualitative and 7 quantitative pieces of information in 5 min or less at 3 T. STAGE provides qualitative images in the form of proton density weighted images, T1 weighted images, T2* weighted images and simulated double inversion recovery (DIR) images. STAGE also provides quantitative data in the form of proton spin density, T1, T2* and susceptibility maps as well as segmentation of white matter, gray matter and cerebrospinal fluid. STAGE uses vendors' product gradient echo sequences. It can be applied from 0.35 T to 7 T across all manufacturers producing similar results in contrast and quantification of the data. In this paper, we discuss the strengths and weaknesses of STAGE, demonstrate its contrast-to-noise (CNR) behavior relative to a large clinical data set and introduce a few new image contrasts derived from STAGE, including DIR images and a new concept referred to as true susceptibility weighted imaging (tSWI) linked to fluid attenuated inversion recovery (FLAIR) or tSWI-FLAIR for the evaluation of multiple sclerosis lesions. The robustness of STAGE T1 mapping was tested using the NIST/NIH phantom, while the reproducibility was tested by scanning a given individual ten times in one session and the same subject scanned once a week over a 12-week period. Assessment of the CNR for the enhanced T1W image (T1WE) showed a significantly better contrast between gray matter and white matter than conventional T1W images in both patients with Parkinson's disease and healthy controls. We also present some clinical cases using STAGE imaging in patients with stroke, metastasis, multiple sclerosis and a fetus with ventriculomegaly. Overall, STAGE is a comprehensive protocol that provides the clinician with numerous qualitative and quantitative images.
Collapse
Affiliation(s)
- E Mark Haacke
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA; The MRI Institute for Biomedical Research, Bingham Farms, MI, USA; Magnetic Resonance Innovations, Inc., Bingham Farms, MI, USA.
| | - Yongsheng Chen
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - David Utriainen
- The MRI Institute for Biomedical Research, Bingham Farms, MI, USA; Magnetic Resonance Innovations, Inc., Bingham Farms, MI, USA
| | - Bo Wu
- Magnetic Resonance Innovations, Inc., Bingham Farms, MI, USA
| | - Yu Wang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China; Neusoft Medical Systems Co., Ltd., Shanghai, China
| | - Shuang Xia
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunyan Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Yu Luo
- Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ali Fatemi
- Departments of Radiology and Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Saifeng Liu
- The MRI Institute for Biomedical Research, Bingham Farms, MI, USA
| | - Sara Gharabaghi
- Magnetic Resonance Innovations, Inc., Bingham Farms, MI, USA
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Sean K Sethi
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA; The MRI Institute for Biomedical Research, Bingham Farms, MI, USA; Magnetic Resonance Innovations, Inc., Bingham Farms, MI, USA
| | - Feng Huang
- Neusoft Medical Systems Co., Ltd., Shanghai, China
| | - Taotao Sun
- Department of Radiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feifei Qu
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Brijesh K Yadav
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaoyue Ma
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China; Department of Radiology, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Yan Bai
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China; Department of Radiology, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China; Department of Radiology, Zhengzhou University People's Hospital, Zhengzhou, China.
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW To summarize recent findings from the application of MRI in the diagnostic work-up of patients with suspected multiple sclerosis (MS), and to review the insights into disease pathophysiology and the utility of MRI for monitoring treatment response. RECENT FINDINGS New evidence from the application of MRI in patients with clinically isolated syndromes has guided the 2017 revision of the McDonald criteria for MS diagnosis, which has simplified their clinical use while preserving accuracy. Other MRI measures (e.g., cortical lesions and central vein signs) may improve diagnostic specificity, but their assessment still needs to be standardized, and their reliability confirmed. Novel MRI techniques are providing fundamental insights into the pathological substrates of the disease and are helping to give a better understanding of its clinical manifestations. Combined clinical-MRI measures of disease activity and progression, together with the use of clinically relevant MRI measures (e.g., brain atrophy) might improve treatment monitoring, but these are still not ready for the clinical setting. SUMMARY Advances in MRI technology are improving the diagnostic work-up and monitoring of MS, even in the earliest phases of the disease, and are providing MRI measures that are more specific and sensitive to disease pathological substrates.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | | |
Collapse
|
44
|
Filippi M, Brück W, Chard D, Fazekas F, Geurts JJG, Enzinger C, Hametner S, Kuhlmann T, Preziosa P, Rovira À, Schmierer K, Stadelmann C, Rocca MA. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol 2019; 18:198-210. [DOI: 10.1016/s1474-4422(18)30451-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/22/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
|
45
|
Gras V, Pracht ED, Mauconduit F, Le Bihan D, Stöcker T, Boulant N. Robust nonadiabatic T2
preparation using universal parallel-transmit kT
-point pulses for 3D FLAIR imaging at 7 T. Magn Reson Med 2019; 81:3202-3208. [DOI: 10.1002/mrm.27645] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Vincent Gras
- NeuroSpin, Commissariat à l’Energie Atomique, Université Paris-Saclay; Gif sur Yvette France
| | | | | | - Denis Le Bihan
- NeuroSpin, Commissariat à l’Energie Atomique, Université Paris-Saclay; Gif sur Yvette France
| | - Tony Stöcker
- German Center for Neurodegenerative Diseases; Bonn Germany
- Department of Physics and Astronomy; University of Bonn; Bonn Germany
| | - Nicolas Boulant
- NeuroSpin, Commissariat à l’Energie Atomique, Université Paris-Saclay; Gif sur Yvette France
| |
Collapse
|
46
|
Dworkin JD, Sati P, Solomon A, Pham DL, Watts R, Martin ML, Ontaneda D, Schindler MK, Reich DS, Shinohara RT. Automated Integration of Multimodal MRI for the Probabilistic Detection of the Central Vein Sign in White Matter Lesions. AJNR Am J Neuroradiol 2018; 39:1806-1813. [PMID: 30213803 DOI: 10.3174/ajnr.a5765] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/25/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND PURPOSE The central vein sign is a promising MR imaging diagnostic biomarker for multiple sclerosis. Recent studies have demonstrated that patients with MS have higher proportions of white matter lesions with the central vein sign compared with those with diseases that mimic MS on MR imaging. However, the clinical application of the central vein sign as a biomarker is limited by interrater differences in the adjudication of the central vein sign as well as the time burden required for the determination of the central vein sign for each lesion in a patient's full MR imaging scan. In this study, we present an automated technique for the detection of the central vein sign in white matter lesions. MATERIALS AND METHODS Using multimodal MR imaging, the proposed method derives a central vein sign probability, πij, for each lesion, as well as a patient-level central vein sign biomarker, ψi. The method is probabilistic in nature, allows site-specific lesion segmentation methods, and is potentially robust to intersite variability. The proposed algorithm was tested on imaging acquired at the University of Vermont in 16 participants who have MS and 15 participants who do not. RESULTS By means of the proposed automated technique, participants with MS were found to have significantly higher values of ψ than those without MS (ψMS = 0.55 ± 0.18; ψnon-MS = 0.31 ± 0.12; P < .001). The algorithm was also found to show strong discriminative ability between patients with and without MS, with an area under the curve of 0.88. CONCLUSIONS The current study presents the first fully automated method for detecting the central vein sign in white matter lesions and demonstrates promising performance in a sample of patients with and without MS.
Collapse
Affiliation(s)
- J D Dworkin
- From the Department of Biostatistics, Epidemiology, and Informatics (J.D.D., M.L.M., R.T.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - P Sati
- Translational Neuroradiology Section (P.S., M.K.S., D.S.R.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - A Solomon
- Departments of Neurological Sciences (A.S.)
| | - D L Pham
- Center for Neuroscience and Regenerative Medicine (D.L.P.), Henry M. Jackson Foundation, Bethesda, Maryland
| | - R Watts
- Radiology (R.W.), Larner College of Medicine at the University of Vermont, Burlington, Vermont
| | - M L Martin
- From the Department of Biostatistics, Epidemiology, and Informatics (J.D.D., M.L.M., R.T.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - D Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research (D.O.), Cleveland Clinic, Cleveland, Ohio
| | - M K Schindler
- Translational Neuroradiology Section (P.S., M.K.S., D.S.R.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - D S Reich
- Translational Neuroradiology Section (P.S., M.K.S., D.S.R.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
- Department of Neurology (D.S.R.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - R T Shinohara
- From the Department of Biostatistics, Epidemiology, and Informatics (J.D.D., M.L.M., R.T.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
47
|
Samaraweera APR, Falah Y, Pitiot A, Dineen RA, Morgan PS, Evangelou N. The MRI central vein marker; differentiating PPMS from RRMS and ischemic SVD. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 5:e496. [PMID: 30345329 PMCID: PMC6192690 DOI: 10.1212/nxi.0000000000000496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/28/2018] [Indexed: 12/31/2022]
Abstract
Objective To determine whether the assessment of brain white matter lesion (WML) central veins differentiate patients with primary progressive MS (PPMS) from relapsing-remitting MS (RRMS) and ischemic small vessel disease (SVD) using 3T MRI. Methods In this cross-sectional study, 71 patients with PPMS, RRMS, and SVD were imaged using a T2*-weighted sequence. Two blinded raters identified the total number of WMLs, proportion of WMLs in periventricular, deep white matter (DWM) and juxtacortical regions, and proportion of WMLs with central veins in all patient groups. The proportions were compared between disease groups, including effect sizes. MS or SVD was categorized using a threshold of ≥40% WMLs with central veins as indicative of MS. Interrater and intrarater reproducibility was calculated. Results The mean proportion of WMLs with central veins was 68.4% in PPMS, 74.3% in RRMS, and 4.7% in SVD. The difference in proportions between PPMS and SVD groups was significant (p < 0.0005; effect size: 3.8) but not significant between MS subtypes (p = 0.3; effect size: 0.29). Distribution of WMLs was similar across both MS groups, but despite SVD patients having more DWM lesions than PPMS patients, proportions of WMLs with central veins remained low (2.75% in SVD; 62.5% in PPMS). Interrater and intrarater reproducibility comparing proportions of WMLs with central veins across all patients was 0.86 and 0.90, respectively. Level of agreement between the proportion of WML central veins and established diagnosis was 0.84 and 0.82 for each rater. Conclusions WML central veins could be used to differentiate PPMS from SVD but not between MS subtypes.
Collapse
Affiliation(s)
- Amal P R Samaraweera
- Division of Clinical Neuroscience (A.P.R.S., Y.F., R.A.D., N.E.), University of Nottingham; Laboratory of Image & Data Analysis (A.P.), Ilixa Ltd; National Institute of Health Research (R.A.D.), Nottingham Biomedical Research Centre; and Department of Medical Physics (P.S.M.), Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Yasser Falah
- Division of Clinical Neuroscience (A.P.R.S., Y.F., R.A.D., N.E.), University of Nottingham; Laboratory of Image & Data Analysis (A.P.), Ilixa Ltd; National Institute of Health Research (R.A.D.), Nottingham Biomedical Research Centre; and Department of Medical Physics (P.S.M.), Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Alain Pitiot
- Division of Clinical Neuroscience (A.P.R.S., Y.F., R.A.D., N.E.), University of Nottingham; Laboratory of Image & Data Analysis (A.P.), Ilixa Ltd; National Institute of Health Research (R.A.D.), Nottingham Biomedical Research Centre; and Department of Medical Physics (P.S.M.), Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Robert A Dineen
- Division of Clinical Neuroscience (A.P.R.S., Y.F., R.A.D., N.E.), University of Nottingham; Laboratory of Image & Data Analysis (A.P.), Ilixa Ltd; National Institute of Health Research (R.A.D.), Nottingham Biomedical Research Centre; and Department of Medical Physics (P.S.M.), Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Paul S Morgan
- Division of Clinical Neuroscience (A.P.R.S., Y.F., R.A.D., N.E.), University of Nottingham; Laboratory of Image & Data Analysis (A.P.), Ilixa Ltd; National Institute of Health Research (R.A.D.), Nottingham Biomedical Research Centre; and Department of Medical Physics (P.S.M.), Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Nikos Evangelou
- Division of Clinical Neuroscience (A.P.R.S., Y.F., R.A.D., N.E.), University of Nottingham; Laboratory of Image & Data Analysis (A.P.), Ilixa Ltd; National Institute of Health Research (R.A.D.), Nottingham Biomedical Research Centre; and Department of Medical Physics (P.S.M.), Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| |
Collapse
|
48
|
Tillema JM, Weigand SD, Dayan M, Shu Y, Kantarci OH, Lucchinetti CF, Port JD. Dark Rims: Novel Sequence Enhances Diagnostic Specificity in Multiple Sclerosis. AJNR Am J Neuroradiol 2018; 39:1052-1058. [PMID: 29700044 DOI: 10.3174/ajnr.a5636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/10/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The 2010 McDonald criteria are designed to sensitively detect MS; however, the low specificity of these criteria can occasionally lead to the misdiagnosis of MS. The purpose of this study was to determine whether a novel double inversion recovery MR imaging technique has the potential to increase the specificity of diagnostic criteria distinguishing MS from non-MS white matter lesions. MATERIALS AND METHODS This was a cross-sectional observational study. MR imaging data were acquired between 2011 and 2016. A novel double inversion recovery sequence that suppresses CSF and GM signal was used (GM-double inversion recovery). We compared WM lesions in a group of patients with multiple sclerosis and in a second group of positive controls with white matter lesions who did not have a diagnosis of MS. The presence of a rim on the GM-double inversion recovery MR imaging sequence was combined with the 2001 and 2010 McDonald disseminated-in-space criteria. Multiple MR imaging markers, including lesion location, size, and the presence of a rim, were compared between groups as well as a quantitative measure of lesion T1 hypointensity. RESULTS MR images from 107 patients with relapsing-remitting MS (median age, 32 years) and 36 positive control (median age, 39 years) subjects were analyzed. No significant differences were found in age and sex. In patients with MS, 1120/3211 lesions (35%) had a rim on GM-double inversion recovery; the positive control group had only 9/893 rim lesions (1%). Rims were associated with a decrease in the lesion T1 ratio. Using the 2010 MR imaging criteria plus the presence of rims on GM-double inversion recovery, we achieved 78% and 97% specificity in subjects with ≥1 and ≥2 rim lesions, respectively. CONCLUSIONS The addition of a novel GM-double inversion recovery technique enhanced specificity for diagnosing MS compared with established MR imaging criteria.
Collapse
Affiliation(s)
- J-M Tillema
- From the Departments of Neurology (J.-M.T., M.D., O.H.K., C.F.L.)
| | | | - M Dayan
- From the Departments of Neurology (J.-M.T., M.D., O.H.K., C.F.L.)
| | - Y Shu
- Radiology (Y.S., J.D.P.), Mayo Clinic, Rochester, Minnesota
| | - O H Kantarci
- From the Departments of Neurology (J.-M.T., M.D., O.H.K., C.F.L.)
| | - C F Lucchinetti
- From the Departments of Neurology (J.-M.T., M.D., O.H.K., C.F.L.)
| | - J D Port
- Radiology (Y.S., J.D.P.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
49
|
Abstract
Since its technical development in the early 1980s, magnetic resonance imaging (MRI) has quickly been adopted as an essential tool in supporting the diagnosis, longitudinal monitoring, evaluation of therapeutic response, and scientific investigations in multiple sclerosis (MS). The clinical usage of MRI has increased in parallel with technical innovations in the technique itself; the widespread adoption of clinically routine MRI at 1.5T has allowed sensitive qualitative and quantitative assessments of macroscopic central nervous system (CNS) inflammatory demyelinating lesions and tissue atrophy. However, conventional MRI lesion measures lack specificity for the underlying MS pathology and only weakly correlate with clinical status. Higher field strength units and newer, advanced MRI techniques offer increased sensitivity and specificity in the detection of disease activity and disease severity. This review summarizes the current status and future prospects regarding the role of MRI in the characterization of MS-related brain and spinal cord involvement.
Collapse
Affiliation(s)
- Christopher C Hemond
- Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Departments of Neurology and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Rohit Bakshi
- Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Departments of Neurology and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
50
|
Sparacia G, Agnello F, Gambino A, Sciortino M, Midiri M. Multiple sclerosis: High prevalence of the 'central vein' sign in white matter lesions on susceptibility-weighted images. Neuroradiol J 2018; 31:356-361. [PMID: 29565219 DOI: 10.1177/1971400918763577] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Purpose The aim of this study was to determine the occurrence and distribution of the 'central vein' sign in white matter lesions on susceptibility-weighted magnetic resonance images in patients with multiple sclerosis (MS) and cerebral small vessel disease (CSVD). Materials and methods T2-weighted and fluid-attenuated inversion recovery magnetic resonance images of 19 MS patients and 19 patients affected by CSVD were analysed for the presence and localisation of focal hyperintense white matter lesions. Lesions were subdivided into periventricular or non-periventricular (juxtacortical, subcortical, deep white matter and cerebellar) distributed. The number and localisation of lesions presenting with the central vein sign were recorded and compared between MS and CSVD lesions. Results A total of 313 MS patients and 75 CSVD lesions were identified on T2-weighted and fluid-attenuated inversion recovery magnetic resonance images. The central vein sign was found in 128 MS lesions (40.9%), and the majority of them (71/128, 55.5%) had a periventricular distribution. The central vein sign was found in 22 out of 75 (29.3%) CSVD lesions, and periventricular distribution was seen in six out of 22 (27.2%) CSVD lesions. The difference in the proportion of white matter hyperintense lesions that presented with the central vein sign on susceptibility-weighted images in patients with MS and CSVD was statistically different, and a significantly higher number of MS patients presented with lesions with the central vein sign compared to CSVD patients. Conclusion The presence of the central vein sign on susceptibility-weighted images for MS lesions improves the understanding of the periventricular distribution of MS lesions and could contribute as adjunctive diagnostic criteria for MS disease.
Collapse
Affiliation(s)
| | - Francesco Agnello
- 1 DIBIMED - Sezione di Scienze Radiologiche, University of Palermo, Palermo, Italy
| | - Angelo Gambino
- 1 DIBIMED - Sezione di Scienze Radiologiche, University of Palermo, Palermo, Italy
| | | | - Massimo Midiri
- 1 DIBIMED - Sezione di Scienze Radiologiche, University of Palermo, Palermo, Italy
| |
Collapse
|