1
|
Huang LW, Pan JW, Li B, Wu WX, Guo L, Zhou XH, Zhang X, Gao MY, Xu ZF. Evaluation of radiation induced brain injury in nasopharyngeal carcinoma patients based on multi-parameter quantitative MRI: A prospective longitudinal study. Radiother Oncol 2025; 202:110621. [PMID: 39537033 DOI: 10.1016/j.radonc.2024.110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Three dimensional pulsed continuous arterial spin labeling (3D-pCASL) and incoherent movement within voxels (IVIM) imaging was combined to assess dynamic microscopic structure changes of the hippocampus and temporal lobe white matter (TLWM) of nasopharyngeal carcinoma (NPC) patients post intensity-modulated radiation therapy (IMRT). METHODS Forty-six patients who were first diagnosed with NPC and underwent IMRT were prospectively enrolled. 3D-CASL and IVIM were performed pre-RT, within 1 week (1 W) post-RT, 3 months (3 M) post-RT, 6 months (6 M) post-RT, and 18 months (18 M) post-RT. Twenty-seven patients completed follow-ups for all time periods, and their data were analyzed. The cerebral flow (CBF) derived from ASL, and apparent diffusion coefficient (ADC), pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (F) derived from IVIM of hippocampus and TLWM were analyzed. The quantitative parameters were measured before RT as the baseline, and the corresponding parameter values and change rates at each time point post-RT were compared using the non-parametric Wilcoxon rank sum test. RESULTS At 1 W post-RT, CBF showed a significant increase and peaked in both the hippocampus and TLWM (p < 0.05) with change rate of 30.3 % and 24.1 %. In the hippocampus, both D and D* were significantly increased from pre-RT to 6 M post-RT with change rate of 6.66 % and 34.7 %, while D*-values remained significantly higher than pre-RT at 12 months post-RT with change rate of 41.2 %. In the TLWM, the F firstly increased and then decreased, and was significantly decreased from pre-RT to 6 M post-RT with change rate of 20.2 %. CONCLUSION 3D-PCASL and IVIM can indirectly reflecting the developmental pattern and molecular mechanism of RT induced brain injury.
Collapse
Affiliation(s)
- Lin-Wen Huang
- Department of Radiology, The First People's Hospital of Foshan, No. 81 North Lingnan Avenue, Foshan, Guangdong, China
| | - Jia-Wei Pan
- Department of Information System, The First People's Hospital of Foshan, No. 81 North Lingnan Avenue, Foshan, Guangdong, China
| | - Bo Li
- Department of Radiology, The First People's Hospital of Foshan, No. 81 North Lingnan Avenue, Foshan, Guangdong, China
| | - Wen-Xiu Wu
- Department of Radiology, The First People's Hospital of Foshan, No. 81 North Lingnan Avenue, Foshan, Guangdong, China
| | - Li Guo
- Clinical Research Institute, The First People's Hospital of Foshan, No. 81 North Lingnan Avenue, Foshan, Guangdong, China
| | - Xin-Han Zhou
- Department of Radiology, The First People's Hospital of Foshan, No. 81 North Lingnan Avenue, Foshan, Guangdong, China
| | - Xianhai Zhang
- Department of Radiology, The First People's Hospital of Foshan, No. 81 North Lingnan Avenue, Foshan, Guangdong, China
| | - Ming-Yong Gao
- Department of Radiology, The First People's Hospital of Foshan, No. 81 North Lingnan Avenue, Foshan, Guangdong, China.
| | - Zhi-Feng Xu
- Department of Radiology, The First People's Hospital of Foshan, No. 81 North Lingnan Avenue, Foshan, Guangdong, China.
| |
Collapse
|
2
|
Kaandorp MPT, Zijlstra F, Karimi D, Gholipour A, While PT. Incorporating spatial information in deep learning parameter estimation with application to the intravoxel incoherent motion model in diffusion-weighted MRI. Med Image Anal 2024; 101:103414. [PMID: 39740472 DOI: 10.1016/j.media.2024.103414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025]
Abstract
In medical image analysis, the utilization of biophysical models for signal analysis offers valuable insights into the underlying tissue types and microstructural processes. In diffusion-weighted magnetic resonance imaging (DWI), a major challenge lies in accurately estimating model parameters from the acquired data due to the inherently low signal-to-noise ratio (SNR) of the signal measurements and the complexity of solving the ill-posed inverse problem. Conventional model fitting approaches treat individual voxels as independent. However, the tissue microenvironment is typically homogeneous in a local environment, where neighboring voxels may contain correlated information. To harness the potential benefits of exploiting correlations among signals in adjacent voxels, this study introduces a novel approach to deep learning parameter estimation that effectively incorporates relevant spatial information. This is achieved by training neural networks on patches of synthetic data encompassing plausible combinations of direct correlations between neighboring voxels. We evaluated the approach on the intravoxel incoherent motion (IVIM) model in DWI. We explored the potential of several deep learning architectures to incorporate spatial information using self-supervised and supervised learning. We assessed performance quantitatively using novel fractal-noise-based synthetic data, which provide ground truths possessing spatial correlations. Additionally, we present results of the approach applied to in vivo DWI data consisting of twelve repetitions from a healthy volunteer. We demonstrate that supervised training on larger patch sizes using attention models leads to substantial performance improvements over both conventional voxelwise model fitting and convolution-based approaches.
Collapse
Affiliation(s)
- Misha P T Kaandorp
- Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway; Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland.
| | - Frank Zijlstra
- Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Davood Karimi
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Gholipour
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter T While
- Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
3
|
Chikui T, Ohga M, Kami Y, Togao O, Kawano S, Kiyoshima T, Yoshiura K. Correlation between diffusion-weighted image-derived parameters and dynamic contrast-enhanced magnetic resonance imaging-derived parameters in the orofacial region. Acta Radiol Open 2024; 13:20584601241244777. [PMID: 38559449 PMCID: PMC10979534 DOI: 10.1177/20584601241244777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Background Diffusion-weighted imaging (DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) are widely used in the orofacial region. Furthermore, quantitative analyses have proven useful. However, a few reports have described the correlation between DWI-derived parameters and DCE-MRI-derived parameters, and the results have been controversial. Purpose To evaluate the correlation among parameters obtained by DWI and DCE-MRI and to compare them between benign and malignant lesions. Material and Methods Fifty orofacial lesions were analysed. The apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudodiffusion coefficient (D*) and perfusion fraction (f) were estimated by DWI. For DCE-MRI, TK model analysis was performed to estimate physiological parameters, for example, the influx forward volume transfer constant into the extracellular-extravascular space (EES) (Ktrans) and fractional volumes of EES and plasma components (ve and vp). Results Both ADC and D showed a moderate positive correlation with ve (ρ = 0.640 and 0.645, respectively). Ktrans showed a marginally weak correlation with f (ρ = 0.296), while vp was not correlated with f or D*; therefore, IVIM perfusion-related parameters and TK model perfusion-related parameters were not straightforward. Both D and ve yielded high diagnostic power between benign lesions and malignant tumours with areas under the curve (AUCs) of 0.830 and 0.782, respectively. Conclusion Both D and ve were reliable parameters that were useful for the differential diagnosis. In addition, the true diffusion coefficient (D) was affected by the fractional volume of EES.
Collapse
Affiliation(s)
- Toru Chikui
- Section of Oral and Maxillofacial Radiology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masahiro Ohga
- Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Yukiko Kami
- Section of Oral and Maxillofacial Radiology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Kawano
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kazunori Yoshiura
- Section of Oral and Maxillofacial Radiology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
4
|
Tunlayadechanont P, Panyaping T, Chansakul T, Hirunpat P, Kampaengtip A. Intravoxel incoherent motion for differentiating residual/recurrent tumor from post-treatment change in patients with high-grade glioma. Neuroradiol J 2023; 36:657-664. [PMID: 37105183 PMCID: PMC10649527 DOI: 10.1177/19714009231173108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
PURPOSE To investigate the diagnostic value of f derived from IVIM technique and to correlate it with rCBV derived from DSC for the differentiation of residual/recurrent tumor from post-treatment change in patients with high-grade glioma. MATERIALS AND METHODS Patients who underwent MR imaging with IVIM and DSC studies for evaluation of high-grade glioma after standard treatment were enrolled in this retrospective study. For qualitative analysis, the f and rCBV maps were interpreted as hypoperfused or hyperperfused in each parameter. Quantitative analysis was performed using ROI analysis in f and rCBV parameters. The lesions were divided into residual/recurrent tumor and post-treatment change groups. RESULTS Nineteen patients with high-grade glioma were included. In qualitative analysis, the f-map shows higher sensitivity (100.0%) than rCBV map (92.3%), while the rCBV map shows higher specificity (100.0%) than the f-map (83.3%). In quantitative analysis, the optimal cutoff values of 1.19 for f and 1.06 for rCBV are shown to provide high diagnostic value with high sensitivity (91.7%) for both parameters but slightly higher specificity of rCBV (85.7%) than f (71.4%). The correlation between f and rCBV was good with ICC of 0.810. CONCLUSION The f value measured by IVIM technique, non-contrast perfusion technique, has high diagnostic performance and potential to be an alternative method to CBV measured by DSC for differentiation between residual/recurrent tumor and post-treatment change in patients with high-grade glioma.
Collapse
Affiliation(s)
- Padcha Tunlayadechanont
- Division of Neurological Radiology, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Theeraphol Panyaping
- Division of Neurological Radiology, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thanissara Chansakul
- Division of Neurological Radiology, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pornrujee Hirunpat
- Division of Neurological Radiology, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Adun Kampaengtip
- Division of Neurological Radiology, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Liu M, Saadat N, Jeong Y, Roth S, Niekrasz M, Giurcanu M, Carroll T, Christoforidis G. Quantitative perfusion and water transport time model from multi b-value diffusion magnetic resonance imaging validated against neutron capture microspheres. J Med Imaging (Bellingham) 2023; 10:063501. [PMID: 38090645 PMCID: PMC10711680 DOI: 10.1117/1.jmi.10.6.063501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Purpose Quantification of perfusion in ml/100 g/min, rather than comparing relative values side-to-side, is critical at the clinical and research levels for large longitudinal and multi-center trials. Intravoxel incoherent motion (IVIM) is a non-contrast magnetic resonance imaging diffusion-based scan that uses a multitude of b -values to measure various speeds of molecular perfusion and diffusion, sidestepping inaccuracy of arterial input functions or bolus kinetics. Questions remain as to the original of the signal and whether IVIM returns quantitative and accurate perfusion in a pathology setting. This study tests a novel method of IVIM perfusion quantification compared with neutron capture microspheres. Approach We derive an expression for the quantification of capillary blood flow in ml/100 g/min by solving the three-dimensional Gaussian probability distribution and defining water transport time (WTT) as when 50% of the original water remains in the tissue of interest. Calculations were verified in a six-subject pre-clinical canine model of normocapnia, CO 2 induced hypercapnia, and middle cerebral artery occlusion (ischemic stroke) and compared with quantitative microsphere perfusion. Results Linear regression analysis of IVIM and microsphere perfusion showed agreement (slope = 0.55, intercept = 52.5, R 2 = 0.64 ) with a Bland-Altman mean difference of - 11.8 [ - 78,54 ] ml / 100 g / min . Linear regression between dynamic susceptibility contrast mean transit time and IVIM WTT asymmetry in infarcted tissue was excellent (slope = 0.59 , intercept = 0.3, R 2 = 0.93 ). Strong linear agreement was found between IVIM and reference standard infarct volume (slope = 1.01, R 2 = 0.79 ). The simulation of cerebrospinal fluid (CSF) suppression via inversion recovery returned a blood signal reduced by 82% from combined T1 and T2 effects. Conclusions The accuracy and sensitivity of IVIM provides evidence that observed signal changes reflect cytotoxic edema and tissue perfusion and can be quantified with WTT. Partial volume contamination of CSF may be better removed during post-processing rather than with inversion recovery.
Collapse
Affiliation(s)
- Mira Liu
- University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| | - Niloufar Saadat
- University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| | - Yong Jeong
- University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| | - Steven Roth
- University of Illinois, Department of Anesthesiology, Chicago, Illinois, United States
| | - Marek Niekrasz
- University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| | - Mihai Giurcanu
- University of Chicago, Department of Statistics, Chicago, Illinois, United States
| | - Timothy Carroll
- University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| | - Gregory Christoforidis
- University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois, United States
| |
Collapse
|
6
|
Wang J, Geng W, Wu J, Kang T, Wu Z, Lin J, Yang Y, Cai C, Cai S. Intravoxel incoherent motion magnetic resonance imaging reconstruction from highly under-sampled diffusion-weighted PROPELLER acquisition data via physics-informed residual feedback unrolled network. Phys Med Biol 2023; 68:175022. [PMID: 37541226 DOI: 10.1088/1361-6560/aced77] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/04/2023] [Indexed: 08/06/2023]
Abstract
Objective. The acquisition of diffusion-weighted images for intravoxel incoherent motion (IVIM) imaging is time consuming. This work aims to accelerate the scan through a highly under-sampling diffusion-weighted turbo spin echo PROPELLER (DW-TSE-PROPELLER) scheme and to develop a reconstruction method for accurate IVIM parameter mapping from the under-sampled data.Approach.The proposed under-sampling DW-TSE-PROPELLER scheme for IVIM imaging is that a few blades perb-value are acquired and rotated along theb-value dimension to cover high-frequency information. A physics-informed residual feedback unrolled network (PIRFU-Net) is proposed to directly estimate distortion-free and artifact-free IVIM parametric maps (i.e., the perfusion-free diffusion coefficientDand the perfusion fractionf) from highly under-sampled DW-TSE-PROPELLER data. PIRFU-Net used an unrolled convolution network to explore data redundancy in the k-q space to remove under-sampling artifacts. An empirical IVIM physical constraint was incorporated into the network to ensure that the signal evolution curves along theb-value follow a bi-exponential decay. The residual between the realistic and estimated measurements was fed into the network to refine the parametric maps. Meanwhile, the use of synthetic training data eliminated the need for genuine DW-TSE-PROPELLER data.Main results.The experimental results show that the DW-TSE-PROPELLER acquisition was six times faster than full k-space coverage PROPELLER acquisition and within a clinically acceptable time. Compared with the state-of-the-art methods, the distortion-freeDandfmaps estimated by PIRFU-Net were more accurate and had better-preserved tissue boundaries on a simulated human brain and realistic phantom/rat brain/human brain data.Significance.Our proposed method greatly accelerates IVIM imaging. It is capable of directly and simultaneously reconstructing distortion-free, artifact-free, and accurateDandfmaps from six-fold under-sampled DW-TSE-PROPELLER data.
Collapse
Affiliation(s)
- Jiechao Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Wenhua Geng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Jian Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Taishan Kang
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, People's Republic of China
| | - Zhigang Wu
- Clinical & Technical Solutions, Philips Healthcare, Shenzhen, 518000, People's Republic of China
| | - Jianzhong Lin
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, People's Republic of China
| | - Yu Yang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Congbo Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, People's Republic of China
| |
Collapse
|
7
|
Pavilla A, Gambarota G, Signaté A, Arrigo A, Saint-Jalmes H, Mejdoubi M. Intravoxel incoherent motion and diffusion kurtosis imaging at 3T MRI: Application to ischemic stroke. Magn Reson Imaging 2023; 99:73-80. [PMID: 36669596 DOI: 10.1016/j.mri.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND PURPOSE The DKI-IVIM model that incorporates DKI (diffusional kurtosis imaging) into the IVIM (Intravoxel Incoherent Motion) concept was investigated to assess its utility for both enhanced diffusion characterization and perfusion measurements in ischemic stroke at 3 T. METHODS Fifteen stroke patients (71 ± 11 years old) were enrolled and DKI-IVIM analysis was performed using 9 b-values from 0 to 1500 s/mm2 chosen with the Cramer-Rao-Lower-Bound optimization approach. Pseudo-diffusion coefficient D*, perfusion fraction f, blood flow-related parameter fD*, the diffusion coefficient D and an additional parameter, the kurtosis, K were determined in the ischemic lesion and controlateral normal tissue based on a region of interest approach. The apparent diffusion coefficient (ADC) and arterial spin labelling (ASL) cerebral blood flow (CBF) parameters were also assessed and parametric maps were obtained for all parameters. RESULTS Significant differences were observed for all diffusion parameters with a significant decrease for D (p < 0.0001), ADC (p < 0.0001), and a significant increase for K (p < 0.0001) in the ischemic lesions of all patients. f decreased significantly in these regions (p = 0.0002). The fD* increase was not significant (p = 0.56). The same significant differences were found with a motion correction except for fD* (p = 0.47). CBF significantly decreased in the lesions. ADC was significantly positively correlated with D (p < 0.0001) and negatively with K (p = 0.0002); K was also negatively significantly correlated with D (p = 0.01). CONCLUSIONS DKI-IVIM model enables for simultaneous cerebral perfusion and enhanced diffusion characterization in an acceptable clinically acquisition time for the ischemic stroke diagnosis with the additional kurtosis factor estimation, that may better reflect the microstructure heterogeneity.
Collapse
Affiliation(s)
- Aude Pavilla
- Univ-Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France; Département de Neuroradiologie, CHU Martinique, F-97261 Fort de France, France.
| | | | - Aissatou Signaté
- Département de Neuroradiologie, CHU Martinique, F-97261 Fort de France, France
| | - Alessandro Arrigo
- Département de Neuroradiologie, CHU Martinique, F-97261 Fort de France, France
| | | | - Mehdi Mejdoubi
- Département de Neuroradiologie, CHU Martinique, F-97261 Fort de France, France
| |
Collapse
|
8
|
Takahashi T, Uwano I, Akamatsu Y, Chida K, Kobayashi M, Yoshida K, Fujiwara S, Kubo Y, Sasaki M, Ogasawara K. Prediction of cerebral hyperperfusion following carotid endarterectomy using intravoxel incoherent motion magnetic resonance imaging. J Stroke Cerebrovasc Dis 2023; 32:106909. [PMID: 36442280 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES One of the risk factors for cerebral hyperperfusion following carotid endarterectomy (CEA) is a chronic reduction in cerebral perfusion pressure due to internal carotid artery (ICA) stenosis, which is clinically detected as increased cerebral blood volume (CBV). The perfusion fraction (f) is one of the intra-voxel incoherent motion (IVIM) parameters obtained using magnetic resonance (MR) imaging that theoretically reflects CBV. The present study aimed to determine whether preoperative IVIM-f on MR imaging predicts development of cerebral hyperperfusion following CEA. MATERIALS AND METHODS Sixty-eight patients with unilateral ICA stenosis (≥ 70%) underwent preoperative diffusion-weighted 3-T MR imaging, and IVIM-f maps were generated from these data. Quantitative brain perfusion single-photon emission computed tomography (SPECT) was performed before and immediately after CEA. Regions-of-interest (ROIs) were automatically placed in the bilateral middle cerebral artery territories in all images using a three-dimensional stereotactic ROI template, and affected-to-contralateral ratios in the ROIs were calculated on IVIM-f maps. RESULTS Nine patients (13%) exhibited postoperative hyperperfusion (cerebral blood flow increases of ≥ 100% compared with preoperative values in the ROIs on brain perfusion SPECT). Only high IVIM-f ratios were significantly associated with the occurrence of postoperative hyperperfusion (95% confidence interval, 253.8-6774.2; p = 0.0031) on logistic regression analysis. The sensitivity, specificity, and positive and negative predictive values of the IVIM-f ratio to predict the occurrence of postoperative hyperperfusion were 100%, 81%, 45%, and 100%, respectively. CONCLUSIONS Preoperative IVIM-f on MR imaging can predict development of cerebral hyperperfusion following CEA.
Collapse
Affiliation(s)
- Tatsuhiko Takahashi
- Department of Neurosurgery, Iwate Medical University, Iwate, Japan; Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| | - Ikuko Uwano
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| | - Yosuke Akamatsu
- Department of Neurosurgery, Iwate Medical University, Iwate, Japan; Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| | - Kohei Chida
- Department of Neurosurgery, Iwate Medical University, Iwate, Japan; Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| | - Masakazu Kobayashi
- Department of Neurosurgery, Iwate Medical University, Iwate, Japan; Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| | - Kenji Yoshida
- Department of Neurosurgery, Iwate Medical University, Iwate, Japan; Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| | - Shunrou Fujiwara
- Department of Neurosurgery, Iwate Medical University, Iwate, Japan; Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| | - Yoshitaka Kubo
- Department of Neurosurgery, Iwate Medical University, Iwate, Japan; Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| | - Makoto Sasaki
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| | - Kuniaki Ogasawara
- Department of Neurosurgery, Iwate Medical University, Iwate, Japan; Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan.
| |
Collapse
|
9
|
Lee W, Choi G, Lee J, Park H. Registration and quantification network (RQnet) for IVIM-DKI analysis in MRI. Magn Reson Med 2022; 89:250-261. [PMID: 36121205 DOI: 10.1002/mrm.29454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE A deep learning method is proposed for aligning diffusion weighted images (DWIs) and estimating intravoxel incoherent motion-diffusion kurtosis imaging parameters simultaneously. METHODS We propose an unsupervised deep learning method that performs 2 tasks: registration and quantification for intravoxel incoherent motion-diffusion kurtosis imaging analysis. A common registration method in diffusion MRI is based on minimizing dissimilarity between various DWIs, which may result in registration errors due to different contrasts in different DWIs. We designed a novel unsupervised deep learning method for both accurate registration and quantification of various diffusion parameters. In order to generate motion-simulated training data and test data, 17 volunteers were scanned without moving their heads, and 4 volunteers moved their heads during the scan in a 3 Tesla MRI. In order to investigate the applicability of the proposed method to other organs, kidney images were also obtained. We compared the registration accuracy of the proposed method, statistical parametric mapping, and a deep learning method with a normalized cross-correlation loss. In the quantification part of the proposed method, a deep learning method that considered the diffusion gradient direction was used. RESULTS Simulations and experimental results showed that the proposed method accurately performed registration and quantification for intravoxel incoherent motion-diffusion kurtosis imaging analysis. The registration accuracy of the proposed method was high for all b values. Furthermore, quantification performance was analyzed through simulations and in vivo experiments, where the proposed method showed the best performance among the compared methods. CONCLUSION The proposed method aligns the DWIs and accurately quantifies the intravoxel incoherent motion-diffusion kurtosis imaging parameters.
Collapse
Affiliation(s)
- Wonil Lee
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Giyong Choi
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jongyeon Lee
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - HyunWook Park
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
10
|
Retinal microvascular function is associated with the cerebral microcirculation as determined by intravoxel incoherent motion MRI. J Neurol Sci 2022; 440:120359. [DOI: 10.1016/j.jns.2022.120359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
|
11
|
Gao F, Zhao W, Zheng Y, Duan Y, Ji M, Lin G, Zhu Z. Intravoxel Incoherent Motion Magnetic Resonance Imaging Used in Preoperative Screening of High-Risk Patients With Moyamoya Disease Who May Develop Postoperative Cerebral Hyperperfusion Syndrome. Front Neurosci 2022; 16:826021. [PMID: 35310102 PMCID: PMC8924456 DOI: 10.3389/fnins.2022.826021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Objective This study aimed to investigate the feasibility of preoperative intravoxel incoherent motion (IVIM) MRI for the screening of high-risk patients with moyamoya disease (MMD) who may develop postoperative cerebral hyperperfusion syndrome (CHS). Methods This study composed of two parts. In the first part 24 MMD patients and 24 control volunteers were enrolled. IVIM-MRI was performed. The relative pseudo-diffusion coefficient, perfusion fraction, apparent diffusion coefficient, and diffusion coefficient (rD*, rf, rADC, and rD) values of the IVIM sequence were compared according to hemispheres between MMD patient and healthy control groups. In the second part, 98 adult patients (124 operated hemispheres) with MMD who underwent surgery were included. Preoperative IVIM-MRI was performed. The rD*, rf, rADC, rD, and rfD* values of the IVIM sequence were calculated and analyzed. Operated hemispheres were divided into CHS and non-CHS groups. Patients’ age, sex, Matsushima type, Suzuki stage, and IVIM-MRI examination results were compared between CHS and non-CHS groups. Results Only the rf value was significantly higher in the healthy control group than in the MMD group (P < 0.05). Out of 124 operated hemispheres, 27 were assigned to the CHS group. Patients with clinical presentation of Matsushima types I–V were more likely to develop CHS after surgery (P < 0.05). The rf values of the ipsilateral hemisphere were significantly higher in the CHS group than in the non-CHS group (P < 0.05). The rfD* values of the ACA and MCA supply areas of the ipsilateral hemisphere were significantly higher in the CHS group than in the non-CHS group (P < 0.05). Only the rf value of the anterior cerebral artery supply area in the contralateral hemisphere was higher in the CHS group than in the non-CHS group (P < 0.05). The rf values of the middle and posterior cerebral artery supply areas and the rD, rD*, and rADC values of the both hemispheres were not significantly different between the CHS and non-CHS groups (P > 0.05). Conclusion Preoperative non-invasive IVIM-MRI analysis, particularly the f-value of the ipsilateral hemisphere, may be helpful in predicting CHS in adult patients with MMD after surgery. MMD patients with ischemic onset symptoms are more likely to develop CHS after surgery.
Collapse
Affiliation(s)
- Feng Gao
- Department of Radiology, Huadong Hospital Fudan University, Shanghai, China
- *Correspondence: Feng Gao,
| | - Wei Zhao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Zheng
- Department of Radiology, Chengdu Second People’s Hospital, Chengdu, China
| | - Yu Duan
- Department of Neurosurgery, Huadong Hospital Fudan University, Shanghai, China
| | - Ming Ji
- Department of Radiology, Huadong Hospital Fudan University, Shanghai, China
| | - Guangwu Lin
- Department of Radiology, Huadong Hospital Fudan University, Shanghai, China
| | - Zhenfang Zhu
- Department of Radiology, Huadong Hospital Fudan University, Shanghai, China
- Zhenfang Zhu,
| |
Collapse
|
12
|
Toward an Intravoxel Incoherent Motion 2-in-1 Magnetic Resonance Imaging Sequence for Ischemic Stroke Diagnosis? An Initial Clinical Experience With 1.5T Magnetic Resonance. J Comput Assist Tomogr 2021; 46:110-115. [DOI: 10.1097/rct.0000000000001243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Abstract
This article discusses new diffusion-weighted imaging (DWI) sequences, diffusion tensor imaging (DTI), and fiber tractography (FT), as well as more advanced diffusion imaging in pediatric brain and spine. Underlying disorder and pathophysiology causing diffusion abnormalities are discussed. Multishot echo planar imaging (EPI) DWI and non-EPI DWI provide higher spatial resolution with less susceptibility artifact and distortion, which are replacing conventional single-shot EPI DWI. DTI and FT have established clinical significance in pediatric brain and spine. This article discusses advanced diffusion imaging, including diffusion kurtosis imaging, neurite orientation dispersion and density imaging, diffusion spectrum imaging, intravoxel incoherent motion, and oscillating-gradient spin-echo.
Collapse
Affiliation(s)
- Toshio Moritani
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 East Medical Center Drive, UH B2 A209K, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
Wang DJJ, Le Bihan D, Krishnamurthy R, Smith M, Ho ML. Noncontrast Pediatric Brain Perfusion: Arterial Spin Labeling and Intravoxel Incoherent Motion. Magn Reson Imaging Clin N Am 2021; 29:493-513. [PMID: 34717841 DOI: 10.1016/j.mric.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Noncontrast magnetic resonance imaging techniques for measuring brain perfusion include arterial spin labeling (ASL) and intravoxel incoherent motion (IVIM). These techniques provide noninvasive and repeatable assessment of cerebral blood flow or cerebral blood volume without the need for intravenous contrast. This article discusses the technical aspects of ASL and IVIM with a focus on normal physiologic variations, technical parameters, and artifacts. Multiple pediatric clinical applications are presented, including tumors, stroke, vasculopathy, vascular malformations, epilepsy, migraine, trauma, and inflammation.
Collapse
Affiliation(s)
- Danny J J Wang
- USC Institute for Neuroimaging and Informatics, SHN, 2025 Zonal Avenue, Health Sciences Campus, Los Angeles, CA 90033, USA
| | - Denis Le Bihan
- NeuroSpin, Centre d'études de Saclay, Bâtiment 145, Gif-sur-Yvette 91191, France
| | - Ram Krishnamurthy
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA.
| |
Collapse
|
15
|
Loução R, Oros-Peusquens AM, Langen KJ, Ferreira HA, Shah NJ. A Fast Protocol for Multiparametric Characterisation of Diffusion in the Brain and Brain Tumours. Front Oncol 2021; 11:554205. [PMID: 34621664 PMCID: PMC8490752 DOI: 10.3389/fonc.2021.554205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Multi-parametric tissue characterisation is demonstrated using a 4-minute protocol based on diffusion trace acquisitions. Three diffusion regimes are covered simultaneously: pseudo-perfusion, Gaussian, and non-Gaussian diffusion. The clinical utility of this method for fast multi-parametric mapping for brain tumours is explored. A cohort of 17 brain tumour patients was measured on a 3T hybrid MR-PET scanner with a standard clinical MRI protocol, to which the proposed multi-parametric diffusion protocol was subsequently added. For comparison purposes, standard perfusion and a full diffusion kurtosis protocol were acquired. Simultaneous amino-acid (18F-FET) PET enabled the identification of active tumour tissue. The metrics derived from the proposed protocol included perfusion fraction, pseudo-diffusivity, apparent diffusivity, and apparent kurtosis. These metrics were compared to the corresponding metrics from the dedicated acquisitions: cerebral blood volume and flow, mean diffusivity and mean kurtosis. Simulations were carried out to assess the influence of fitting methods and noise levels on the estimation of the parameters. The diffusion and kurtosis metrics obtained from the proposed protocol show strong to very strong correlations with those derived from the conventional protocol. However, a bias towards lower values was observed. The pseudo-perfusion parameters showed very weak to weak correlations compared to their perfusion counterparts. In conclusion, we introduce a clinically applicable protocol for measuring multiple parameters and demonstrate its relevance to pathological tissue characterisation.
Collapse
Affiliation(s)
- Ricardo Loução
- Institute of Neurosciences and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany.,Institute of Neurosciences and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Jülich, Germany.,Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | | | - Karl-Josef Langen
- Institute of Neurosciences and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Hugo Alexandre Ferreira
- Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| | - N Jon Shah
- Institute of Neurosciences and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany.,Institute of Neurosciences and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Jülich, Germany.,Jülich Aachen Research Alliance (JARA) - BRAIN - Translational Medicine, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
16
|
Uwano I, Kobayashi M, Setta K, Ogasawara K, Yamashita F, Mori F, Matsuda T, Sasaki M. Assessment of Impaired Cerebrovascular Reactivity in Chronic Cerebral Ischemia using Intravoxel Incoherent Motion Magnetic Resonance Imaging. J Stroke Cerebrovasc Dis 2021; 30:106107. [PMID: 34562793 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/10/2021] [Accepted: 09/04/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The severity of chronic cerebral ischemia can be assessed using cerebrovascular reactivity (CVR) to acetazolamide (ACZ) challenge, which is measured by single-photon emission computed tomography (SPECT); however, this is an invasive method. We investigated whether intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) can assess impaired CVR in preoperative patients with chronic cerebral ischemia and compared it to SPECT-CVR. METHODS Forty-seven patients with unilateral cervical carotid artery stenosis underwent diffusion-weighted MRI with 11 b-values in the range of 0-800 s/mm2 and cerebral perfusion SPECT with the ACZ challenge. The perfusion fraction (f) and diffusion coefficient (D) of the IVIM parameters were calculated using a bi-exponential model. The f and D values and these ratios of the ipsilateral middle cerebral artery territory against the contralateral side were compared with the CVR values of the affected side calculated from the SPECT data. RESULTS The IVIM-f and D values in the affected side were significantly higher than those in the unaffected side (median: 7.74% vs. 7.45%, p = 0.027; 0.816 vs. 0.801 10-3mm2/s, p < 0.001; respectively). However, there were no significant correlations between the f or D values and SPECT-CVR values in the affected side. In contrast, the f ratio showed a moderate negative correlation with the SPECT-CVR values (r = -0.40, p = 0.006) and detected impaired CVR (< 18.4%) with a sensitivity/specificity of 0.71/0.90. CONCLUSION The IVIM perfusion parameter, f, can noninvasively assess impaired CVR with high sensitivity and specificity in patients with unilateral cervical carotid artery stenosis.
Collapse
Affiliation(s)
- Ikuko Uwano
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idai-dori, Yahaba, Iwate 028-3694, Japan.
| | - Masakazu Kobayashi
- Department of Neurosurgery, Iwate Medical University, Yahaba, Iwate, Japan
| | - Kengo Setta
- Department of Neurosurgery, Iwate Medical University, Yahaba, Iwate, Japan
| | - Kuniaki Ogasawara
- Department of Neurosurgery, Iwate Medical University, Yahaba, Iwate, Japan
| | - Fumio Yamashita
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idai-dori, Yahaba, Iwate 028-3694, Japan
| | - Futoshi Mori
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idai-dori, Yahaba, Iwate 028-3694, Japan
| | - Tsuyoshi Matsuda
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idai-dori, Yahaba, Iwate 028-3694, Japan
| | - Makoto Sasaki
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idai-dori, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
17
|
Merisaari H, Federau C. Signal to noise and b-value analysis for optimal intra-voxel incoherent motion imaging in the brain. PLoS One 2021; 16:e0257545. [PMID: 34555054 PMCID: PMC8459980 DOI: 10.1371/journal.pone.0257545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022] Open
Abstract
Intravoxel incoherent motion (IVIM) is a method that can provide quantitative information about perfusion in the human body, in vivo, and without contrast agent. Unfortunately, the IVIM perfusion parameter maps are known to be relatively noisy in the brain, in particular for the pseudo-diffusion coefficient, which might hinder its potential broader use in clinical applications. Therefore, we studied the conditions to produce optimal IVIM perfusion images in the brain. IVIM imaging was performed on a 3-Tesla clinical system in four healthy volunteers, with 16 b values 0, 10, 20, 40, 80, 110, 140, 170, 200, 300, 400, 500, 600, 700, 800, 900 s/mm2, repeated 20 times. We analyzed the noise characteristics of the trace images as a function of b-value, and the homogeneity of the IVIM parameter maps across number of averages and sub-sets of the acquired b values. We found two peaks of noise of the trace images as function of b value, one due to thermal noise at high b-value, and one due to physiological noise at low b-value. The selection of b value distribution was found to have higher impact on the homogeneity of the IVIM parameter maps than the number of averages. Based on evaluations, we suggest an optimal b value acquisition scheme for a 12 min scan as 0 (7), 20 (4), 140 (19), 300 (9), 500 (19), 700 (1), 800 (4), 900 (1) s/mm2.
Collapse
Affiliation(s)
- Harri Merisaari
- Department of Diagnostic Radiology, University of Turku, Turku, Finland
- Department of Future Technologies, University of Turku, Turku, Finland
| | - Christian Federau
- Institute for Biomedical Engineering, ETH, Zürich and University Zürich, Zürich, Switzerland
- AI Medical, Zürich, Switzerland
| |
Collapse
|
18
|
Scalco E, Mastropietro A, Bodini A, Marzi S, Rizzo G. A Multi-Variate framework to assess reliability and discrimination power of Bayesian estimation of Intravoxel Incoherent Motion parameters. Phys Med 2021; 89:11-19. [PMID: 34343762 DOI: 10.1016/j.ejmp.2021.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To propose a multivariate multi-step framework for a systematic assessment of the estimation reliability and discriminability of Intravoxel Incoherent Motion (IVIM) model parameters. METHODS Monte-Carlo simulations were generated on a range of SNRs and in different IVIM combinations considering: i) a dense discretization with 24 b-values; ii) a discretization with 9 b-values. A state-of-the-art Bayesian fitting method was adopted. The framework assessed: i) the best model between mono- and bi-exponential, through the BIC index; ii) the fitting accuracy; iii) the power in discriminating two different IVIM parameters distributions of estimated coefficients, using a multivariate test. Exemplificative oncologic cases were also presented. RESULTS The bi-exponential fitting was reliable for perfusion fraction higher than 5%, with high accuracy in D estimation, acceptable error for f, but high uncertainty in D*. The discrimination of two distributions is generally feasible if differences in D values (at least 0.3 x10-3 mm2/s) are present; in the case of similar D values, a minimal difference of 5% in f can be discriminated just in case of balanced sample size and dense b-values discretization, whereas the impact of D* is quite negligible. These results were also supported by clinical examples. CONCLUSIONS IVIM model is generally accurate in estimating diffusion, but uncertainties related to perfusion estimation are not negligible and compromise the discrimination power when different populations should be differentiated. The proposed framework should be adopted as interpretative guidelines to better understand when IVIM model applied on real data can provide reliable findings.
Collapse
Affiliation(s)
- E Scalco
- Institute of Biomedical Technologies, Italian National Research Council (ITB-CNR), Segrate, Italy
| | - A Mastropietro
- Institute of Biomedical Technologies, Italian National Research Council (ITB-CNR), Segrate, Italy.
| | - A Bodini
- Institute for Applied Mathematics and Information Technologies "E. Magenes", Italian National Research Council (IMATI-CNR), Milano, Italy
| | - S Marzi
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Roma, Italy
| | - G Rizzo
- Institute of Biomedical Technologies, Italian National Research Council (ITB-CNR), Segrate, Italy
| |
Collapse
|
19
|
Crossed cerebellar diaschisis after acute ischemic stroke detected by intravoxel incoherent motion magnetic resonance imaging. Neurol Sci 2021; 43:1135-1141. [PMID: 34213697 DOI: 10.1007/s10072-021-05425-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE To study the value of 3.0 T magnetic resonance imaging with intravoxel incoherent motion (IVIM) in the diagnosis of the crossed cerebellar diaschisis (CCD) after the unilateral supratentorial acute ischemic stroke. METHODS Seventy-four patients with acute ischemic stroke who underwent intravoxel incoherent motion (IVIM), arterial spin labeling (ASL), and conventional magnetic resonance imaging (MRI) scanning were enrolled. Intravoxel incoherent motion-derived perfusion-related parameters including fast diffusion coefficient (D*), slow diffusion coefficient (D), vascular volume fraction (f), and arterial spin-labeling-derived cerebral blood flow (CBF) of bilateral cerebellum were measured. RESULTS In the CCD-positive group, D*, D, and CBF values of the contralateral cerebellum decreased compared with those of the ipsilesional cerebellum (P < 0.05), whereas f significantly increased (P < 0.05). A positive correlation was detected between the slow diffusion coefficient-based asymmetry index (AI-D) and the cerebral blood flow-based asymmetry index (AI-CBF) (r = 0.515, P < 0.01), whereas the vascular volume fraction-based asymmetry index (AI-f) had a negative correlation with the cerebral blood flow-based asymmetry index (AI-CBF) (r = - 0.485, P < 0.01). Furthermore, the area under the receiver operating characteristic (ROC) curve value of AI-D and AI-f was 0.81 and 0.76, respectively. CONCLUSIONS The IVIM is feasible for the detection of CCD. This technique might provide opportunities to further investigate the pathophysiology of CCD.
Collapse
|
20
|
Spinner GR, Federau C, Kozerke S. Bayesian inference using hierarchical and spatial priors for intravoxel incoherent motion MR imaging in the brain: Analysis of cancer and acute stroke. Med Image Anal 2021; 73:102144. [PMID: 34261009 DOI: 10.1016/j.media.2021.102144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
The intravoxel incoherent motion (IVIM) model allows to map diffusion (D) and perfusion-related parameters (F and D*). Parameter estimation is, however, error-prone due to the non-linearity of the signal model, the limited signal-to-noise ratio (SNR) and the small volume fraction of perfusion in the in-vivo brain. In the present work, the performance of Bayesian inference was examined in the presence of brain pathologies characterized by hypo- and hyperperfusion. In particular, a hierarchical and a spatial prior were combined. Performance was compared relative to conventional segmented least squares regression, hierarchical prior only (non-segmented and segmented data likelihoods) and a deep learning approach. Realistic numerical brain IVIM simulations were conducted to assess errors relative to ground truth. In-vivo, data of 11 central nervous system cancer patients and 9 patients with acute stroke were acquired. The proposed method yielded reduced error in simulations for both the cancer and acute stroke scenarios compared to other methods across the whole investigated SNR range. The contrast-to-noise ratio of the proposed method was better or on par compared to the other techniques in-vivo. The proposed Bayesian approach hence improves IVIM parameter estimation in brain cancer and acute stroke.
Collapse
Affiliation(s)
- Georg Ralph Spinner
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - Christian Federau
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich 8092, Switzerland.
| |
Collapse
|
21
|
Liao YP, Urayama SI, Isa T, Fukuyama H. Optimal Model Mapping for Intravoxel Incoherent Motion MRI. Front Hum Neurosci 2021; 15:617152. [PMID: 33692677 PMCID: PMC7937866 DOI: 10.3389/fnhum.2021.617152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/11/2021] [Indexed: 11/30/2022] Open
Abstract
In general, only one diffusion model would be applied to whole field-of-view voxels in the intravoxel incoherent motion-magnetic resonance imaging (IVIM-MRI) study. However, the choice of the applied diffusion model can significantly influence the estimated diffusion parameters. The quality of the diffusion analysis can influence the reliability of the perfusion analysis. This study proposed an optimal model mapping method to improve the reliability of the perfusion parameter estimation in the IVIM study. Six healthy volunteers (five males and one female; average age of 38.3 ± 7.5 years). Volunteers were examined using a 3.0 Tesla scanner. IVIM-MRI of the brain was applied at 17 b-values ranging from 0 to 2,500 s/mm2. The Gaussian model, the Kurtosis model, and the Gamma model were found to be optimal for the CSF, white matter (WM), and gray matter (GM), respectively. In the mean perfusion fraction (fp) analysis, the GM/WM ratios were 1.16 (Gaussian model), 1.80 (Kurtosis model), 1.94 (Gamma model), and 1.54 (Optimal model mapping); in the mean pseudo diffusion coefficient (D*) analysis, the GM/WM ratios were 1.18 (Gaussian model), 1.19 (Kurtosis model), 1.56 (Gamma model), and 1.24 (Optimal model mapping). With the optimal model mapping method, the estimated fp and D* were reliable compared with the conventional methods. In addition, the optimal model maps, the associated products of this method, may provide additional information for clinical diagnosis.
Collapse
Affiliation(s)
- Yen-Peng Liao
- Division of Neurobiology and Physiology, Department of Neuroscience, Graduate School of Medicine in Kyoto University, Kyoto, Japan.,Human Brain Research Center, Graduate School of Medicine in Kyoto University, Kyoto, Japan
| | - Shin-Ichi Urayama
- Division of Neurobiology and Physiology, Department of Neuroscience, Graduate School of Medicine in Kyoto University, Kyoto, Japan.,Human Brain Research Center, Graduate School of Medicine in Kyoto University, Kyoto, Japan
| | - Tadashi Isa
- Division of Neurobiology and Physiology, Department of Neuroscience, Graduate School of Medicine in Kyoto University, Kyoto, Japan.,Human Brain Research Center, Graduate School of Medicine in Kyoto University, Kyoto, Japan.,Faculty of Medicine, Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Graduate School of Medicine in Kyoto University, Kyoto, Japan.,Department of Rehabilitation Medicine, Graduate School of Medicine, Nagoya City University, Nagoya, Japan
| |
Collapse
|
22
|
Lee W, Kim B, Park H. Quantification of intravoxel incoherent motion with optimized b-values using deep neural network. Magn Reson Med 2021; 86:230-244. [PMID: 33594783 DOI: 10.1002/mrm.28708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE To develop a framework for quantifying intravoxel incoherent motion (IVIM) parameters, where a neural network for quantification and b-values for diffusion-weighted imaging are simultaneously optimized. METHOD A deep neural network (DNN) method is proposed for accurate quantification of IVIM parameters from multiple diffusion-weighted images. In addition, optimal b-values are selected to acquire the multiple diffusion-weighted images. The proposed framework consists of an MRI signal generation part and an IVIM parameter quantification part. Monte-Carlo (MC) simulations were performed to evaluate the accuracy of the IVIM parameter quantification and the efficacy of b-value optimization. In order to analyze the effect of noise on the optimized b-values, simulations were performed with five different noise levels. For in vivo data, diffusion images were acquired with the b-values from four b-values selection methods for five healthy volunteers at 3T MRI system. RESULTS Experiment results showed that both the optimization of b-values and the training of DNN were simultaneously performed to quantify IVIM parameters. We found that the accuracies of the perfusion coefficient (Dp ) and perfusion fraction (f) were more sensitive to b-values than the diffusion coefficient (D) was. Furthermore, when the noise level changed, the optimized b-values also changed. Therefore, noise level has to be considered when optimizing b-values for IVIM quantification. CONCLUSION The proposed scheme can simultaneously optimize b-values and train DNN to minimize quantification errors of IVIM parameters. The trained DNN can quantify IVIM parameters from the diffusion-weighted images obtained with the optimized b-values.
Collapse
Affiliation(s)
- Wonil Lee
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Byungjai Kim
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - HyunWook Park
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
23
|
Guo J, OuYang L, Wang X, Liao W, Huang Q, He W, Zhou G, Yang S. Preliminary Study of Subclinical Brain Alterations in Patients With Asymptomatic Carotid Vulnerable Plaques Using Intravoxel Incoherent Motion Imaging by Voxelwise Comparison: A Study of Whole-Brain Imaging Measures. Front Neurosci 2021; 14:562830. [PMID: 33384576 PMCID: PMC7770145 DOI: 10.3389/fnins.2020.562830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/16/2020] [Indexed: 11/19/2022] Open
Abstract
Objective To preliminarily explore subclinical brain alterations in an asymptomatic carotid vulnerable plaque group based on intravoxel incoherent motion (IVIM) imaging through voxelwise comparison in the whole brain. Materials and Methods Forty-nine elderly participants underwent multi-b-value DWI, of whom 24 participants with asymptomatic carotid vulnerable plaques and <50% stenosis served as the test group, while the rest served as the healthy control group. After fitting the double-exponential model, slow ADC (Ds) and the fraction of fast ADC (f) values of the whole brain were obtained, which then were compared in a voxelwise manner by two-sample t-test. Multiple comparisons were corrected by the family-wise error (FWE) method with a corrected threshold of P < 0.05. Pearson correlations between IVIM parameters in altered brain regions and blood pressure, glucose, lipid, and homocysteine were calculated. Results For the test group, the Z-normalized Ds values were significantly higher in the left median cingulate and paracingulate gyrus (DCG.L), posterior cingulate gyrus (PCG. L), and left precuneus gyrus (PCUN.L) (cluster size = 156) and in the left middle frontal gyrus (MFG.L), orbital middle frontal gyrus (ORBmid.L), and superior frontal gyrus (SFG.L) (cluster size = 165); the Z-normalized Ds values were significantly lower in the right middle temporal gyrus (MTG.R) and inferior temporal gyrus (ITG.R) (cluster size = 116); and the Z-normalized f-values were significantly lower in the MTG.R and ITG.R (cluster size = 85) (p < 0.05, FWE correction). LDL-C was negatively correlated with the Z-normalized Ds values in the DCG.L, PCG.L, and PCUN.L (r = 0.601, p = 0.002). LDL-C was positively correlated with the Z-normalized f-value in the MTG.R and ITG.R (r = 0.405, p = 0.05). Systolic blood pressure was positively correlated with the Z-normalized Ds values in the MFG.L, ORBmid.L, and SFG.L (r = 0.433, p = 0.035). Conclusion This study was the first to detect subclinical brain alterations in asymptomatic carotid vulnerable plaque group through IVIM using whole-brain voxelwise comparisons, which were partially correlated with blood pressure and lipids. Thus, IVIM might be utilized as a noninvasive biomarker of microvascular and microstructural brain changes in the asymptomatic carotid vulnerable plaque group.
Collapse
Affiliation(s)
- Jiuqing Guo
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lirong OuYang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyi Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qing Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Gaofeng Zhou
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Yang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Rapid golden-angle diffusion-weighted propeller MRI for simultaneous assessment of ADC and IVIM. Neuroimage 2020; 223:117327. [PMID: 32882379 PMCID: PMC7792631 DOI: 10.1016/j.neuroimage.2020.117327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose: Golden-angle single-shot PROPLLER (GA-SS-PROP) is proposed to accelerate the PROPELLER acquisition for distortion-free diffusion-weighted (DW) imaging. Acceleration is achieved by acquiring one-shot per b-value and several b-values can be acquired along a diffusion direction, where the DW signal follows a bi-exponential decay (i.e. IVIM). Sparse reconstruction is used to reconstruct full resolution DW images. Consequently, apparent diffusion coefficient (ADC) map and IVIM maps (i.e., perfusion fraction (f) and the perfusion-free diffusion coefficient (D)) are obtained simultaneously. The performance of GA-SS-PROP was demonstrated with simulation and human experiments. Methods: A realistic numerical phantom of high-quality diffusion images of the brain was developed. The error of the reconstructed DW images and quantitative maps were compared to the ground truth. The pulse sequence was developed to acquire human brain data. For comparison, fully sampled PROPELLER and conventional single-shot echo planar imaging (SS-EPI) acquisitions were performed. Results: GA-SS-PROP was 5 times faster than conventional PROPELLER acquisition with comparable image quality. The simulation demonstrated that sparse reconstruction is effective in restoring contrast and resolution. The human experiments demonstrated that GA-SS-PROP achieved superior image fidelity compared to SS-EPI for the same acquisition time and same in-plane resolution (1 × 1 mm2). Conclusion: GA-SS-PROP offers fast, high-resolution and distortion-free DW images. The generated quantitative maps (f, D and ADC) can provide valuable information on tissue perfusion and diffusion properties simultaneously, which are desirable in many applications, especially in oncology. As a turbo spin-echo based technique, it can be applied in most challenging regions where SS-EPI is problematic.
Collapse
|
25
|
Simplified perfusion fraction from diffusion-weighted imaging in preoperative prediction of IDH1 mutation in WHO grade II-III gliomas: comparison with dynamic contrast-enhanced and intravoxel incoherent motion MRI. Radiol Oncol 2020; 54:301-310. [PMID: 32559177 PMCID: PMC7409598 DOI: 10.2478/raon-2020-0037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/13/2020] [Indexed: 11/20/2022] Open
Abstract
Background Effect of isocitr ate dehydrogenase 1 (IDH1) mutation in neovascularization might be linked with tissue perfusion in gliomas. At present, the need of injection of contrast agent and the increasing scanning time limit the application of perfusion techniques. We used a simplified intravoxel incoherent motion (IVIM)-derived perfusion fraction (SPF) calculated from diffusion-weighted imaging (DWI) using only three b-values to quantitatively assess IDH1-linked tissue perfusion changes in WHO grade II-III gliomas (LGGs). Additionally, by comparing accuracy with dynamic contrast-enhanced (DCE) and full IVIM MRI, we tried to find the optimal imaging markers to predict IDH1 mutation status. Patients and methods Thirty patients were prospectively examined using DCE and multi-b-value DWI. All parameters were compared between the IDH1 mutant and wild-type LGGs using the Mann-Whitney U test, including the DCE MRI-derived Ktrans, ve and vp, the conventional apparen t diffusion coefficient (ADC0,1000), IVIM-de rived perfusion fraction (f), diffusion coefficient (D) and pseudo-diffusion coefficient (D*), SPF. We evaluated the diagnostic performance by receive r operating characteristic (ROC) analysis. Results Significant differences were detected between WHO grade II-III gliomas for all perfusion and diffusion parameters (P < 0.05). When compared to IDH1 mutant LGGs, IDH1 wild-type LGGs exhibited significantly higher perfusion metrics (P < 0.05) and lower diffusion metrics (P < 0.05). Among all parameters, SPF showed a higher diagnostic performance (area under the curve 0.861), with 94.4% sensitivity and 75% specificity. Conclusions DWI, DCE and IVIM MRI may noninvasively help discriminate IDH1 mutation statuses in LGGs. Specifically, simplified DWI-derived SPF showed a superior diagnostic performance.
Collapse
|
26
|
Huang HM. Reliable estimation of brain intravoxel incoherent motion parameters using denoised diffusion-weighted MRI. NMR IN BIOMEDICINE 2020; 33:e4249. [PMID: 31922646 DOI: 10.1002/nbm.4249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
In this study, we evaluate whether diffusion-weighted magnetic resonance imaging (DW-MRI) data after denoising can provide a reliable estimation of brain intravoxel incoherent motion (IVIM) perfusion parameters. Brain DW-MRI was performed in five healthy volunteers on a 3 T clinical scanner with 12 different b-values ranging from 0 to 1000 s/mm2 . DW-MRI data denoised using the proposed method were fitted with a biexponential model to extract perfusion fraction (PF), diffusion coefficient (D) and pseudo-diffusion coefficient (D*). To further evaluate the accuracy and precision of parameter estimation, IVIM parametric images obtained from one volunteer were used to resimulate the DW-MRI data using the biexponential model with the same b-values. Rician noise was added to generate DW-MRI data with various signal-to-noise ratio (SNR) levels. The experimental results showed that the denoised DW-MRI data yielded precise estimates for all IVIM parameters. We also found that IVIM parameters were significantly different between gray matter and white matter (P < 0.05), except for D* (P = 0.6). Our simulation results show that the proposed image denoising method displays good performance in estimating IVIM parameters (both bias and coefficient of variation were <12% for PF, D and D*) in the presence of different levels of simulated Rician noise (SNRb=0 = 20-40). Simulations and experiments show that brain DW-MRI data after denoising can provide a reliable estimation of IVIM parameters.
Collapse
Affiliation(s)
- Hsuan-Ming Huang
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
27
|
Perfusion and diffusion in meningioma tumors: a preliminary multiparametric analysis with Dynamic Susceptibility Contrast and IntraVoxel Incoherent Motion MRI. Magn Reson Imaging 2020; 67:69-78. [DOI: 10.1016/j.mri.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/15/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022]
|
28
|
Chabert S, Verdu J, Huerta G, Montalba C, Cox P, Riveros R, Uribe S, Salas R, Veloz A. Impact of b-Value Sampling Scheme on Brain IVIM Parameter Estimation in Healthy Subjects. Magn Reson Med Sci 2019; 19:216-226. [PMID: 31611542 PMCID: PMC7553810 DOI: 10.2463/mrms.mp.2019-0061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose: Intravoxel incoherent motion (IVIM) analysis has attracted the interest of the clinical community due to its close relationship with microperfusion. Nevertheless, there is no clear reference protocol for its implementation; one of the questions being which b-value distribution to use. This study aimed to stress the importance of the sampling scheme and to show that an optimized b-value distribution decreases the variance associated with IVIM parameters in the brain with respect to a regular distribution in healthy volunteers. Methods: Ten volunteers were included in this study; images were acquired on a 1.5T MR scanner. Two distributions of 16 b-values were used: one considered ‘regular’ due to its close association with that used in other studies, and the other considered ‘optimized’ according to previous studies. IVIM parameters were adjusted according to the bi-exponential model, using two-step method. Analysis was undertaken in ROI defined using in the Automated Anatomical Labeling atlas, and parameters distributions were compared in a total of 832 ROI. Results: Maps with fewer speckles were obtained with the ‘optimized’ distribution. Coefficients of variation did not change significantly for the estimation of the diffusion coefficient D but decreased by approximately 39% for the pseudo-diffusion coefficient estimation and by 21% for the perfusion fraction. Distributions of adjusted parameters were found significantly different in 50% of the cases for the perfusion fraction, in 80% of the cases for the pseudo-diffusion coefficient and 17% of the cases for the diffusion coefficient. Observations across brain areas show that the range of average values for IVIM parameters is smaller in the ‘optimized’ case. Conclusion: Using an optimized distribution, data are sampled in a way that the IVIM signal decay is better described and less variance is obtained in the fitted parameters. The increased precision gained could help to detect small variations in IVIM parameters.
Collapse
Affiliation(s)
- Stéren Chabert
- CINGS Centro de Investigación y Desarrollo de Ingeniería para la Salud, Universidad de Valparaíso.,Escuela de Ingenieria Civil Biomedica, Universidad de Valparaíso.,Millennium Nucleus for Cardiovascular Magnetic Resonance
| | - Jorge Verdu
- Escuela de Ingenieria Civil Biomedica, Universidad de Valparaíso.,Universidad Politécnica de Valencia
| | - Gamaliel Huerta
- Escuela de Ingenieria Civil Biomedica, Universidad de Valparaíso
| | - Cristian Montalba
- Center for Biomedical Imaging, Pontificia Universidad Católica de Chile
| | - Pablo Cox
- Servicio de Imagenología, Hospital Carlos van Buren
| | - Rodrigo Riveros
- Servicio de Imagenología, Hospital Carlos van Buren.,Facultad de Medicina, Universidad de Valparaíso
| | - Sergio Uribe
- Millennium Nucleus for Cardiovascular Magnetic Resonance.,Center for Biomedical Imaging, Pontificia Universidad Católica de Chile.,Radiology Department, Pontificia Universidad Católica de Chile
| | - Rodrigo Salas
- CINGS Centro de Investigación y Desarrollo de Ingeniería para la Salud, Universidad de Valparaíso.,Escuela de Ingenieria Civil Biomedica, Universidad de Valparaíso
| | - Alejandro Veloz
- CINGS Centro de Investigación y Desarrollo de Ingeniería para la Salud, Universidad de Valparaíso.,Escuela de Ingenieria Civil Biomedica, Universidad de Valparaíso
| |
Collapse
|
29
|
Thiel S, Gaisl T, Lettau F, Boss A, Winklhofer S, Kohler M, Rossi C. Impact of hypertension on cerebral microvascular structure in CPAP-treated obstructive sleep apnoea patients: a diffusion magnetic resonance imaging study. Neuroradiology 2019; 61:1437-1445. [PMID: 31529145 DOI: 10.1007/s00234-019-02292-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/05/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE Obstructive sleep apnoea (OSA) is a highly prevalent sleep-related breathing disorder associated with hypertension, impaired peripheral vascular function and an increased risk of stroke. Evidence suggests that abnormalities of the cerebral microcirculation, such as capillary rarefication, may be present in these patients. We evaluated whether the presence of hypertension may affect the cerebral capillary architecture and function assessed by Intravoxel Incoherent Motion (IVIM) magnetic resonance imaging (MRI) in patients with continuous positive airway pressure (CPAP)-treated OSA. METHODS Forty-one patients (88% male, mean age 57 ± 10 years) with moderate-to-severe OSA were selected and divided into two groups (normotensive vs. hypertensive). All hypertensive OSA patients were adherent with their antihypertensive medication. Cerebral microvascular structure was assessed in grey (GM) and white matter (WM) using an echo-planar diffusion imaging sequence with 14 different b values. A step-wise IVIM analysis algorithm was applied to compute true diffusion (D), perfusion fraction (f) and pseudo-diffusion (D*) values. Group comparisons were performed with the Wilcoxon-Mann-Whitney-Test. Regression analysis was adjusted for age. RESULTS Diffusion- and perfusion-related indexes in middle-aged OSA normotensive patients were quantified in both tissue types (D [10-3 mm2/s]: GM = 0.83 ± 0.03; WM = 0.72 ± 0.03; f (%) GM = 0.09 ± 0.01; WM = 0.06 ± 0.01; D* [10-3 mm2/s]: GM = 7.72 ± 0.89; WM = 7.38 ± 0.98). In the examined tissue types, hypertension did not result in changes on the estimated MRI IVIM index values. CONCLUSION Based on IVIM analysis, cerebral microvascular structure and function showed no difference between hypertensive and normotensive patients with moderate-to-severe OSA treated with CPAP. Treatment adherence with antihypertensive drug regime and, in turn, controlled hypertension seems not to affect microvascular structure and perfusion of the brain. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02493673.
Collapse
Affiliation(s)
- Sira Thiel
- Department of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| | - Thomas Gaisl
- Department of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Franziska Lettau
- Department of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | - Andreas Boss
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Malcolm Kohler
- Department of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.,Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Cristina Rossi
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Zhu G, Federau C, Wintermark M, Chen H, Marcellus DG, Martin BW, Heit JJ. Comparison of MRI IVIM and MR perfusion imaging in acute ischemic stroke due to large vessel occlusion. Int J Stroke 2019; 15:332-342. [PMID: 31480940 DOI: 10.1177/1747493019873515] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Intravoxel incoherent motion is a diffusion-weighted imaging magnetic resonance imaging technique that measures microvascular perfusion from a multi-b value sequence. Intravoxel incoherent motion microvascular perfusion has not been directly compared to conventional dynamic susceptibility contrast perfusion-weighted imaging in the context of acute ischemic stroke. We determined the degree of correlation between perfusion-weighted imaging and intravoxel incoherent motion parameter maps in patients with acute ischemic stroke. METHODS We performed a retrospective cohort study of acute ischemic stroke patients undergoing thrombectomy treatment triage by magnetic resonance imaging. Intravoxel incoherent motion perfusion fraction maps were derived using two-step voxel-by-voxel post-processing. Ischemic core, penumbra, non-ischemia, and contralateral hemisphere were delineated based upon diffusion-weighted imaging and perfusion-weighted imaging using a Tmax >6 s threshold. Signal intensity within different brain compartments were measured on intravoxel incoherent motion (IVIM f, IVIM D*, IVIM fD*) parametric maps and compared the differences using one-way ANOVA. Ischemic volumes were measured on perfusion-weighted imaging and intravoxel incoherent motion parametric maps. Bland-Altman analysis and voxel-based volumetric comparison were used to determine the agreements among ischemic volumes of perfusion-weighted imaging and intravoxel incoherent motion perfusion parameters. Inter-rater reliability on intravoxel incoherent motion maps was also assessed. Significance level was set at α < 0.05. RESULTS Twenty patients (11 males, 55%; mean age 67.1 ± 13.8 years) were included. Vessel occlusions involved the internal carotid artery (6 patients, 30%) and M1 segment of the middle cerebral artery (14, 70%). Mean pre-treatment core infarct volume was 19.07 ± 23.56 ml. Mean pre-treatment ischemic volumes on perfusion-weighted imaging were 10.90 ± 13.33 ml (CBV), 24.83 ± 23.08 ml (CBF), 58.87 ± 37.85 ml (MTT), and 47.53 ± 26.78 ml (Tmax). Mean pre-treatment ischemic volumes on corresponding IVIM parameters were 23.20 ± 25.63 ml (IVIM f), 14.01 ± 16.81 ml (IVIM D*), and 27.41 ± 40.01 ml (IVIM fD*). IVIM f, D, and fD* demonstrated significant differences (P < 0.001). The best agreement in term of ischemic volumes and voxel-based overlap was between IVIM fD* and CBF with mean volume difference of 0.5 ml and mean dice similarity coefficient (DSC) of 0.630 ± 0.136. CONCLUSION There are moderate differences in brain perfusion assessment between intravoxel incoherent motion and perfusion-weighted imaging parametric maps, and IVIM fD* and perfusion-weighted imaging CBF show excellent agreement. Intravoxel incoherent motion is promising for cerebral perfusion assessment in acute ischemic stroke patients.
Collapse
Affiliation(s)
- Guangming Zhu
- Department of Radiology, Neuroradiology Section, Stanford, CA, USA
| | - Christian Federau
- ETH Zürich Institute for Biomedical Engineering, Zürich, Switzerland.,Department of Radiology, University of Basel, Diagnostic and Interventional Neuroradiology, Basel Switzerland
| | - Max Wintermark
- Department of Radiology, Neuroradiology Section, Stanford, CA, USA
| | - Hui Chen
- Department of Radiology, Neuroradiology Section, Stanford, CA, USA.,Encephalopathy Center, Beijing Chaoyang Integrative Medicine Emergency Medical Center, Beijing, China
| | | | - Blake W Martin
- Department of Radiology, Neuroradiology Section, Stanford, CA, USA
| | - Jeremy J Heit
- Department of Radiology, Neuroradiology Section, Stanford, CA, USA
| |
Collapse
|
31
|
Metcalfe-Smith E, Meeus EM, Novak J, Dehghani H, Peet AC, Zarinabad N. Auto-Regressive Discrete Acquisition Points Transformation for Diffusion Weighted MRI Data. IEEE Trans Biomed Eng 2019; 66:2617-2628. [DOI: 10.1109/tbme.2019.2893523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Hara S, Hori M, Ueda R, Hagiwara A, Hayashi S, Inaji M, Tanaka Y, Maehara T, Ishii K, Aoki S, Nariai T. Intravoxel incoherent motion perfusion in patients with Moyamoya disease: comparison with 15O-gas positron emission tomography. Acta Radiol Open 2019; 8:2058460119846587. [PMID: 31205752 PMCID: PMC6535913 DOI: 10.1177/2058460119846587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/05/2019] [Indexed: 12/02/2022] Open
Abstract
Background Intravoxel incoherent motion magnetic resonance imaging (IVIM) enables non-invasive measurement of brain perfusion. Purpose To investigate whether IVIM could be used to evaluate the hemodynamic disturbance of Moyamoya disease (MMD) by comparison with the gold-standard 15O-gas positron emission tomography (PET) method. Material and Methods Ten consecutive patients with MMD (six women; mean age = 42.8 years) and 10 age-matched healthy controls were evaluated by diffusion-weighted images with 12 different b values in the range of 0–900 s/mm2 and 15O-gas PET. Tomographic maps of IVIM parameters, perfusion fraction (f ), pseudo-diffusion coefficient (D*), and f・D*, as well as cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT) maps obtained with PET, were normalized and hemispheric gray and white matter values were calculated. IVIM parametric values were compared with PET parameters and with clinically assessed disease severity. Results There was significant correlation between D* and MTT (r = –0.74, P < 0.001) and between f・D* and CBF (r = 0.52, P = 0.02) in the cortical areas. The f values in the white matter were significantly higher in symptomatic MMD patients than in healthy controls (P = 0.01). Conclusion IVIM may be used to non-invasively investigate cerebral hemodynamic impairment in patients with MMD. Further evaluation is needed to establish IVIM usage in clinical settings.
Collapse
Affiliation(s)
- Shoko Hara
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Radiology, Juntendo University, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University, Tokyo, Japan
| | - Ryo Ueda
- Department of Radiology, Juntendo University, Tokyo, Japan.,Department of Radiological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | | | - Shihori Hayashi
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan.,Team for Neuroimaging Research, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan.,Team for Neuroimaging Research, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yoji Tanaka
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenji Ishii
- Team for Neuroimaging Research, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shigeki Aoki
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan.,Team for Neuroimaging Research, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
33
|
Isotropically weighted intravoxel incoherent motion brain imaging at 7T. Magn Reson Imaging 2018; 57:124-132. [PMID: 30472300 DOI: 10.1016/j.mri.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/30/2018] [Accepted: 11/17/2018] [Indexed: 12/13/2022]
Abstract
Perfusion magnetic resonance imaging (MRI) is a promising non-invasive technique providing insights regarding the brain's microvascular architecture in vivo. The scalar perfusion metrics can be used for quantitative diagnostics of various brain abnormalities, in particular, in the stroke cases and tumours. However, conventional MRI-based perfusion approaches such as dynamic contrast-enhanced perfusion imaging or arterial spin labelling have a few weaknesses, for instance, contrast agent deposition, low signal-to-noise ratio, limited temporal and spatial resolution, and specific absorption rate constraints. As an alternative, the intravoxel incoherent motion (IVIM) approach exploits an extension of diffusion MRI in order to estimate perfusion parameters in the human brain. Application of IVIM imaging at ultra-high field MRI might employ the advantage of a higher signal-to-noise ratio, and thereby the use of higher spatial and temporal resolutions. In the present work, we demonstrate an application of recently developed isotropic diffusion weighted sequences to the evaluation of IVIM parameters at an ultra-high 7T field. The used sequence exhibits high immunity to image degrading factors and allows one to acquire the data in a fast and efficient way. Utilising the bi-exponential fitting model of the signal attenuation, we performed an extensive analysis of the IVIM scalar metrics obtained by a isotropic diffusion weighted sequence in vivo and compared results with a conventional pulsed gradient sequence at 7T. In order to evaluate a possible metric bias originating from blood flows, we additionally used a truncated b-value protocol (b-values from 100 to 200 s/mm2 with the step 20 s/mm2) accompanied to the full range (b-values from 0 to 200 s/mm2). The IVIM scalar metrics have been assessed and analysed together with a large and middle vessel density atlas of the human brain. We found that the diffusion coefficients and perfusion fractions of the voxels consisting of large and middle vessels have higher values in contrast to other tissues. Additionally, we did not find a strong dependence of the IVIM metrics on the density values of the vessel atlas. Perspectives and limitations of the developed isotropic diffusion weighted perfusion are presented and discussed.
Collapse
|
34
|
Leibfarth S, Winter RM, Lyng H, Zips D, Thorwarth D. Potentials and challenges of diffusion-weighted magnetic resonance imaging in radiotherapy. Clin Transl Radiat Oncol 2018; 13:29-37. [PMID: 30294681 PMCID: PMC6169338 DOI: 10.1016/j.ctro.2018.09.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/20/2018] [Accepted: 09/03/2018] [Indexed: 02/09/2023] Open
Abstract
Discussion of DW imaging protocols and imaging setup. Discussion of mono- and bi-exponential models for quantitative parameter extraction. Review of recent publications investigating potential benefits of using DWI in RT, including detailed synoptic table. Detailed discussion of geometric and quantitative accuracy of DW imaging and DW-derived parameters.
Purpose To review the potential and challenges of integrating diffusion weighted magnetic resonance imaging (DWI) into radiotherapy (RT). Content Details related to image acquisition of DWI for RT purposes are discussed, along with the challenges with respect to geometric accuracy and the robustness of quantitative parameter extraction. An overview of diffusion- and perfusion-related parameters derived from mono- and bi-exponential models is provided, and their role as potential RT biomarkers is discussed. Recent studies demonstrating potential of DWI in different tumor sites such as the head and neck, rectum, cervix, prostate, and brain, are reviewed in detail. Conclusion DWI has shown promise for RT outcome prediction, response assessment, as well as for tumor delineation and characterization in several cancer types. Geometric and quantification robustness is challenging and has to be addressed adequately. Evaluation in larger clinical trials with well designed imaging protocol and advanced analysis models is needed to develop the optimal strategy for integrating DWI in RT.
Collapse
Affiliation(s)
- Sara Leibfarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, Germany
| | - René M Winter
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, Germany
| | - Heidi Lyng
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tübingen, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, Germany
| |
Collapse
|
35
|
Paschoal AM, Leoni RF, Dos Santos AC, Paiva FF. Intravoxel incoherent motion MRI in neurological and cerebrovascular diseases. Neuroimage Clin 2018; 20:705-714. [PMID: 30221622 PMCID: PMC6141267 DOI: 10.1016/j.nicl.2018.08.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022]
Abstract
Intravoxel Incoherent Motion (IVIM) is a recently rediscovered noninvasive magnetic resonance imaging (MRI) method based on diffusion-weighted imaging. It enables the separation of the intravoxel signal into diffusion due to Brownian motion and perfusion-related contributions and provides important information on microperfusion in the tissue and therefore it is a promising tool for applications in neurological and neurovascular diseases. This review focuses on the basic principles and outputs of IVIM and details it major applications in the brain, such as stroke, tumor, and cerebral small vessel disease. A bi-exponential model that considers two different compartments, namely capillaries, and medium-sized vessels, has been frequently used for the description of the IVIM signal and may be important in those clinical applications cited before. Moreover, the combination of IVIM and arterial spin labeling MRI enables the estimation of water permeability across the blood-brain barrier (BBB), suggesting a potential imaging biomarker for disrupted-BBB diseases.
Collapse
Affiliation(s)
- André M Paschoal
- Inbrain Lab, Department de Física, FFCLRP, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Renata F Leoni
- Inbrain Lab, Department de Física, FFCLRP, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Antonio C Dos Santos
- Departamento de Clínica Médica, FMRP, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Fernando F Paiva
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
36
|
Measurement and scan reproducibility of parameters of intravoxel incoherent motion in renal tumor and normal renal parenchyma: a preliminary research at 3.0 T MR. Abdom Radiol (NY) 2018; 43:1739-1748. [PMID: 29071436 DOI: 10.1007/s00261-017-1361-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE To prospectively estimate measurement and scan reproducibility of parameters of intravoxel incoherent motion (IVIM) in renal tumors, normal renal cortex, and medulla. METHODS Twenty-four consecutive patients (twelve males and twelve females; median age 56.7 years, range 32-71 years) with 25 renal tumors (20 renal cell carcinomas, one urothelium carcinoma, three angiomyolipomas, and one oncocytoma) were examined twice using IVIM1 and IVIM2 with 9 and 16 b values, respectively, at 3.0 T. All the patients were re-scanned in 24-48 h. Regions of interest (ROIs) were placed in solid part of tumor, normal cortex, and medulla to derive IVIM parameters D (true diffusion coefficient), D* (pseudodiffusion coefficient), and f (perfusion fraction of pseudodiffusion). Differences in parameters between two IVIM sets and intra-observer, inter-observer, and scan-rescan differences were assessed using paired t tests. Intra-observer, inter-observer, and scan-rescan reproducibility were assessed by measuring coefficient of variation and Bland-Altman limits of agreements. RESULTS Intra-observer reproducibility of renal tumors, normal renal cortex, and medulla was excellent for apparent diffusion coefficient (ADC; CV: 3.45%-5.34%, BA-LA: -14% to 18%) and D (CV: 3.65% to 6.04%, BA-LA: -18% to 19%), good for f (CV: 11.96%-16.08%, BA-LA: -76.4% to 92.1% except f of medulla with CV of 32.59% and BA-LA of -76.4% to 92.1% in IVIM1), and poor for D* (CV: 25.0% to 75.4%, BA-LA: -111% to 150%). The same order was in inter-observer reproducibility analysis. Scan-rescan reproducibility was the worst of the three parameters. Renal medulla showed worse reproducibility than renal tumors and the normal cortex. The metrics of IVIM2 had better reproducibility than IVIM1. CONCLUSION Excellent reproducibility evaluation for ADC and D, good for f, and poor for D* derived from IVIM was performed in renal tumors, normal renal cortex, and medulla. D* has limited reliability and scan-rescan reproducibility should be improved.
Collapse
|
37
|
Nelander M, Hannsberger D, Sundström-Poromaa I, Bergman L, Weis J, Åkerud H, Wikström J, Wikström AK. Assessment of cerebral perfusion and edema in preeclampsia with intravoxel incoherent motion MRI. Acta Obstet Gynecol Scand 2018; 97:1212-1218. [PMID: 29786833 DOI: 10.1111/aogs.13383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/15/2018] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Cerebral complications are the main reasons for morbidity and mortality in preeclampsia and eclampsia. As yet, we do not know whether the pathophysiology entails hypo- or hyperperfusion of the brain, or how and when edema emerges, due to the difficulty of examining the cerebral circulation. MATERIAL AND METHODS We have used a non-invasive diffusion weighted-magnetic resonance imaging technique, intravoxel incoherent motion, to study cerebral perfusion on the capillary level and cerebral edema in women with preeclampsia (n = 30), normal pregnancy (n = 32), and non-pregnant women (n = 16). Estimates of cerebral blood volume, blood flow, and edema were measured in 5 different regions. These points were chosen to represent blood supply areas of both the carotid and vertebrobasilar arteries, and to include both white and gray matter. RESULTS Except for the caudate nucleus, we did not detect any differences in cerebral perfusion measures on a group level. In the caudate nucleus, we found lower cerebral blood volume and lower blood flow in preeclampsia than in either normal pregnancy (P = .01 and P = .03, respectively) or non-pregnant women (both P = .02). No differences in edema were detected between study groups. CONCLUSION The cerebral perfusion measures were comparable between the study groups, except for a portion of the basal ganglia where hypoperfusion was detected in preeclampsia but not in normal pregnancy or non-pregnant women.
Collapse
Affiliation(s)
- Maria Nelander
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | | | | | - Lina Bergman
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Center for Clinical Research Dalarna, Falun, Sweden
| | - Jan Weis
- Department of Radiology, Uppsala University, Uppsala, Sweden.,Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Helena Åkerud
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Johan Wikström
- Department of Radiology, Uppsala University, Uppsala, Sweden
| | - Anna-Karin Wikström
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
38
|
Becker AS, Boss A, Klarhoefer M, Finkenstaedt T, Wurnig MC, Rossi C. Investigation of the pulsatility of cerebrospinal fluid using cardiac-gated Intravoxel Incoherent Motion imaging. Neuroimage 2018; 169:126-133. [DOI: 10.1016/j.neuroimage.2017.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 02/09/2023] Open
|
39
|
Surer E, Rossi C, Becker AS, Finkenstaedt T, Wurnig MC, Valavanis A, Winklhofer S. Cardiac-gated intravoxel incoherent motion diffusion-weighted magnetic resonance imaging for the investigation of intracranial cerebrospinal fluid dynamics in the lateral ventricle: a feasibility study. Neuroradiology 2018; 60:413-419. [PMID: 29470603 DOI: 10.1007/s00234-018-1995-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/12/2018] [Indexed: 11/25/2022]
Abstract
PURPOSE Intravoxel incoherent motion (IVIM) in diffusion-weighted magnetic resonance imaging (DW-MRI) attributes the signal attenuation to the molecular diffusion and to a faster pseudo-diffusion. Purpose of the study was to demonstrate the feasibility of IVIM for the investigation of intracranial cerebrospinal fluid (CSF) dynamics. METHODS Cardiac-gated DW-MRI images with fifteen b-values (0-1300s/mm2) along three orthogonal directions (mediolateral (ML), anteroposterior (AP), and craniocaudal (CC)) were acquired during maximum systole and diastole in 10 healthy volunteers (6 males, mean age 36 ± 15 years). A pixel-wise bi-exponential fitting with an iterative nonparametric algorithm was carried out to calculate the following parameters: diffusion coefficient (D), fast diffusion coefficient (D*), and fraction of fast diffusion (f). Region of interest measurements were performed in both lateral ventricles. Comparison of IVIM parameters was performed among two cardiac cycle acquisitions and among the diffusion-encoding directions using a paired Student's t test. RESULTS f significantly (p < 0.05) depended on the diffusion-encoding direction and on the cardiac cycle (diastole AP 0.30 ± 0.13, ML 0.22 ± 0.12, CC 0.26 ± 0.17; systole AP 0.45 ± 0.17, ML 0.34 ± 0.15, CC 0.40 ± 0.21). Neither a cardiac cycle nor a direction dependency was found among mean D values (which is in line with the expected intraventricular isotropic diffusion) and D* values (p > 0.05 each). CONCLUSION The fraction of fast diffusion from IVIM is feasible to detect a direction-dependent and cardiac-dependent pulsatile CSF flow within the lateral ventricles allowing for quantitative monitoring of CSF dynamics. This technique might provide opportunities to further investigate the pathophysiology of various neurological disorders involving altered CSF dynamics.
Collapse
Affiliation(s)
- Eddie Surer
- Department of Neuroradiology, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Cristina Rossi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anton S Becker
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tim Finkenstaedt
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Radiology, School of Medicine, University of California, San Diego, California, USA
| | - Moritz C Wurnig
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Antonios Valavanis
- Department of Neuroradiology, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Sebastian Winklhofer
- Department of Neuroradiology, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.
| |
Collapse
|
40
|
Wong SM, Backes WH, Zhang CE, Staals J, van Oostenbrugge RJ, Jeukens CRLPN, Jansen JFA. On the Reproducibility of Inversion Recovery Intravoxel Incoherent Motion Imaging in Cerebrovascular Disease. AJNR Am J Neuroradiol 2018; 39:226-231. [PMID: 29217741 DOI: 10.3174/ajnr.a5474] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/03/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Intravoxel incoherent motion imaging can measure both microvascular and parenchymal abnormalities simultaneously. The contamination of CSF signal can be suppressed using inversion recovery preparation. The clinical feasibility of inversion recovery-intravoxel incoherent motion imaging was investigated in patients with cerebrovascular disease by studying its reproducibility. MATERIALS AND METHODS Sixteen patients with cerebrovascular disease (66 ± 8 years of age) underwent inversion recovery-intravoxel incoherent motion imaging twice. The reproducibility of the perfusion volume fraction and parenchymal diffusivity was calculated with the coefficient of variation, intraclass correlation coefficient, and the repeatability coefficient. ROIs included the normal-appearing white matter, cortex, deep gray matter, white matter hyperintensities, and vascular lesions. RESULTS Values for the perfusion volume fraction ranged from 2.42 to 3.97 ×10-2 and for parenchymal diffusivity from 7.20 to 9.11 × 10-4 mm2/s, with higher values found in the white matter hyperintensities and vascular lesions. Coefficients of variation were <3.70% in normal-appearing tissue and <9.15% for lesions. Intraclass correlation coefficients were good to excellent, showing values ranging from 0.82 to 0.99 in all ROIs, except the deep gray matter and cortex, with intraclass correlation coefficients of 0.66 and 0.54, respectively. The repeatability coefficients ranged from 0.15 to 0.96 × 10-2 and 0.10 to 0.37 × 10-4 mm2/s for perfusion volume fraction and parenchymal diffusivity, respectively. CONCLUSIONS Good reproducibility of inversion recovery-intravoxel incoherent motion imaging was observed with low coefficients of variation and high intraclass correlation coefficients in normal-appearing tissue and lesion areas in cerebrovascular disease. Good reproducibility of inversion recovery-intravoxel incoherent motion imaging in cerebrovascular disease is feasible in monitoring disease progression or treatment responses in the clinic.
Collapse
Affiliation(s)
- S M Wong
- From the Departments of Radiology and Nuclear Medicine (S.M.W., W.H.B., C.R.L.P.N.J., J.F.A.J.)
- School for Mental Health and Neuroscience (S.M.W., W.H.B., C.E.Z., R.J.v.O., J.F.A.J.)
| | - W H Backes
- From the Departments of Radiology and Nuclear Medicine (S.M.W., W.H.B., C.R.L.P.N.J., J.F.A.J.)
- School for Mental Health and Neuroscience (S.M.W., W.H.B., C.E.Z., R.J.v.O., J.F.A.J.)
| | - C E Zhang
- Neurology (C.E.Z., J.S., R.J.v.O.)
- School for Mental Health and Neuroscience (S.M.W., W.H.B., C.E.Z., R.J.v.O., J.F.A.J.)
- Cardiovascular Research Institute Maastricht (C.E.Z., J.S., R.J.v.O.), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - J Staals
- Neurology (C.E.Z., J.S., R.J.v.O.)
- Cardiovascular Research Institute Maastricht (C.E.Z., J.S., R.J.v.O.), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - R J van Oostenbrugge
- Neurology (C.E.Z., J.S., R.J.v.O.)
- School for Mental Health and Neuroscience (S.M.W., W.H.B., C.E.Z., R.J.v.O., J.F.A.J.)
- Cardiovascular Research Institute Maastricht (C.E.Z., J.S., R.J.v.O.), Maastricht University Medical Centre, Maastricht, the Netherlands
| | - C R L P N Jeukens
- From the Departments of Radiology and Nuclear Medicine (S.M.W., W.H.B., C.R.L.P.N.J., J.F.A.J.)
| | - J F A Jansen
- From the Departments of Radiology and Nuclear Medicine (S.M.W., W.H.B., C.R.L.P.N.J., J.F.A.J.)
- School for Mental Health and Neuroscience (S.M.W., W.H.B., C.E.Z., R.J.v.O., J.F.A.J.)
| |
Collapse
|
41
|
Measuring Cerebral Hypoperfusion Induced by Hyperventilation Challenge With Intravoxel Incoherent Motion Magnetic Resonance Imaging in Healthy Volunteers. J Comput Assist Tomogr 2018; 42:85-91. [PMID: 28708726 DOI: 10.1097/rct.0000000000000640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to demonstrate the feasibility to assess cerebral hypoperfusion with a hyperventilation (HV) challenge protocol using intravoxel incoherent motion (IVIM) magnetic resonance imaging. MATERIALS AND METHODS Magnetic resonance imaging experiments were performed on 10 healthy volunteers at 1.5 T, with a diffusion IVIM magnetic resonance imaging protocol using a set of b-values optimized by Cramer-Rao Lower Bound analysis. Hypoperfusion was induced by an HV maneuver. Measurements were performed in normoventilation and HV conditions. Biexponential curve fitting was used to obtain the perfusion fraction (f), pseudodiffusion coefficient (D*), and the product fD* in gray matter (GM) regions of interest (ROIs). Regional cerebral blood flow in the same ROIs was also assessed with arterial spin labeling. RESULTS The HV challenge led to a diminution of IVIM perfusion-related parameters, with a decrease of f and fD* in the cerebellum (P = 0.03 for f; P = 0.01 for fD*), thalamus GM (P = 0.09 for f; P = 0.01 for fD*), and lenticular nuclei (P = 0.03 for f; P = 0.02 for fD*). Mean GM cerebral blood flow (in mL/100 g tissue/min) measured with arterial spin labeling averaged over all ROIs also decreased (normoventilation: 42.7 ± 4.1 vs HV: 33.2 ± 2.2, P = 0.004) during the HV challenge. CONCLUSIONS The optimized IVIM protocol proposed in the current study allows for measurements of cerebral hypoperfusion that might be of great interest for pathologies diagnosis such as ischemic stroke.
Collapse
|
42
|
Cao M, Suo S, Han X, Jin K, Sun Y, Wang Y, Ding W, Qu J, Zhang X, Zhou Y. Application of a Simplified Method for Estimating Perfusion Derived from Diffusion-Weighted MR Imaging in Glioma Grading. Front Aging Neurosci 2018; 9:432. [PMID: 29358915 PMCID: PMC5766639 DOI: 10.3389/fnagi.2017.00432] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/15/2017] [Indexed: 01/21/2023] Open
Abstract
Purpose: To evaluate the feasibility of a simplified method based on diffusion-weighted imaging (DWI) acquired with three b-values to measure tissue perfusion linked to microcirculation, to validate it against from perfusion-related parameters derived from intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging, and to investigate its utility to differentiate low- from high-grade gliomas. Materials and Methods: The prospective study was approved by the local institutional review board and written informed consent was obtained from all patients. From May 2016 and May 2017, 50 patients confirmed with glioma were assessed with multi-b-value DWI and DCE MR imaging at 3.0 T. Besides conventional apparent diffusion coefficient (ADC0,1000) map, perfusion-related parametric maps for IVIM-derived perfusion fraction (f) and pseudodiffusion coefficient (D*), DCE MR imaging-derived pharmacokinetic metrics, including Ktrans, ve and vp, as well as a metric named simplified perfusion fraction (SPF), were generated. Correlation between perfusion-related parameters was analyzed by using the Spearman rank correlation. All imaging parameters were compared between the low-grade (n = 19) and high-grade (n = 31) groups by using the Mann-Whitney U test. The diagnostic performance for tumor grading was evaluated with receiver operating characteristic (ROC) analysis. Results: SPF showed strong correlation with IVIM-derived f and D* (ρ = 0.732 and 0.716, respectively; both P < 0.001). Compared with f, SPF was more correlated with DCE MR imaging-derived Ktrans (ρ = 0.607; P < 0.001) and vp (ρ = 0.397; P = 0.004). Among all parameters, SPF achieved the highest accuracy for differentiating low- from high-grade gliomas, with an area under the ROC curve value of 0.942, which was significantly higher than that of ADC0,1000 (P = 0.004). By using SPF as a discriminative index, the diagnostic sensitivity and specificity were 87.1% and 94.7%, respectively, at the optimal cut-off value of 19.26%. Conclusion: The simplified method to measure tissue perfusion based on DWI by using three b-values may be helpful to differentiate low- from high-grade gliomas. SPF may serve as a valuable alternative to measure tumor perfusion in gliomas in a noninvasive, convenient and efficient way.
Collapse
Affiliation(s)
- Mengqiu Cao
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiteng Suo
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Han
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Jin
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yawen Sun
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Wang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weina Ding
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
43
|
Bertleff M, Domsch S, Weingärtner S, Zapp J, O'Brien K, Barth M, Schad LR. Diffusion parameter mapping with the combined intravoxel incoherent motion and kurtosis model using artificial neural networks at 3 T. NMR IN BIOMEDICINE 2017; 30:e3833. [PMID: 28960549 DOI: 10.1002/nbm.3833] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Artificial neural networks (ANNs) were used for voxel-wise parameter estimation with the combined intravoxel incoherent motion (IVIM) and kurtosis model facilitating robust diffusion parameter mapping in the human brain. The proposed ANN approach was compared with conventional least-squares regression (LSR) and state-of-the-art multi-step fitting (LSR-MS) in Monte-Carlo simulations and in vivo in terms of estimation accuracy and precision, number of outliers and sensitivity in the distinction between grey (GM) and white (WM) matter. Both the proposed ANN approach and LSR-MS yielded visually increased parameter map quality. Estimations of all parameters (perfusion fraction f, diffusion coefficient D, pseudo-diffusion coefficient D*, kurtosis K) were in good agreement with the literature using ANN, whereas LSR-MS resulted in D* overestimation and LSR yielded increased values for f and D*, as well as decreased values for K. Using ANN, outliers were reduced for the parameters f (ANN, 1%; LSR-MS, 19%; LSR, 8%), D* (ANN, 21%; LSR-MS, 25%; LSR, 23%) and K (ANN, 0%; LSR-MS, 0%; LSR, 15%). Moreover, ANN enabled significant distinction between GM and WM based on all parameters, whereas LSR facilitated this distinction only based on D and LSR-MS on f, D and K. Overall, the proposed ANN approach was found to be superior to conventional LSR, posing a powerful alternative to the state-of-the-art method LSR-MS with several advantages in the estimation of IVIM-kurtosis parameters, which might facilitate increased applicability of enhanced diffusion models at clinical scan times.
Collapse
Affiliation(s)
- Marco Bertleff
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Domsch
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Weingärtner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Jascha Zapp
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kieran O'Brien
- Center for Advanced Imaging, University of Queensland, St Lucia, QLD, Australia
| | - Markus Barth
- Center for Advanced Imaging, University of Queensland, St Lucia, QLD, Australia
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
44
|
Lecler A, Savatovsky J, Balvay D, Zmuda M, Sadik JC, Galatoire O, Charbonneau F, Bergès O, Picard H, Fournier L. Repeatability of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0 Tesla in orbital lesions. Eur Radiol 2017; 27:5094-5103. [PMID: 28677061 PMCID: PMC5674133 DOI: 10.1007/s00330-017-4933-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To evaluate repeatability of intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) parameters in the orbit. METHODS From December 2015 to March 2016, 22 patients were scanned twice using an IVIM sequence with 15b values (0-2,000 s/mm2) at 3.0T. Two readers independently delineated regions of interest in an orbital mass and in different intra-orbital and extra-orbital structures. Short-term test-retest repeatability and inter-observer agreement were assessed using the intra-class correlation coefficient (ICC), the coefficient of variation (CV) and Bland-Altman limits of agreements (BA-LA). RESULTS Test-retest repeatability of IVIM parameters in the orbital mass was satisfactory for ADC and D (mean CV 12% and 14%, ICC 95% and 93%), poor for f and D*(means CV 43% and 110%, ICC 90% and 65%). Inter-observer repeatability agreement was almost perfect in the orbital mass for all the IVIM parameters (ICC = 95%, 93%, 94% and 90% for ADC, D, f and D*, respectively). CONCLUSIONS IVIM appeared to be a robust tool to measure D in orbital lesions with good repeatability, but this approach showed a poor repeatability of f and D*. KEY POINTS • IVIM technique is feasible in the orbit. • IVIM has a good-acceptable repeatability of D (CV range 12-25 %). • IVIM interobserver repeatability agreement is excellent (ICC range 90-95 %). • f or D* provide higher test-retest and interobserver variabilities.
Collapse
Affiliation(s)
- Augustin Lecler
- Department of Radiology, Fondation Ophtalmologique Adolphe de Rothschild, 29 rue Manin, 75019, Paris, France.
- Université Paris Descartes Sorbonne Paris Cité, INSERM UMR-S970, Cardiovascular Research Centre - PARCC, Paris, France.
| | - Julien Savatovsky
- Department of Radiology, Fondation Ophtalmologique Adolphe de Rothschild, 29 rue Manin, 75019, Paris, France
| | - Daniel Balvay
- Université Paris Descartes Sorbonne Paris Cité, INSERM UMR-S970, Cardiovascular Research Centre - PARCC, Paris, France
| | - Mathieu Zmuda
- Department of Orbitopalpebral Surgery, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - Jean-Claude Sadik
- Department of Radiology, Fondation Ophtalmologique Adolphe de Rothschild, 29 rue Manin, 75019, Paris, France
| | - Olivier Galatoire
- Department of Orbitopalpebral Surgery, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - Frédérique Charbonneau
- Department of Radiology, Fondation Ophtalmologique Adolphe de Rothschild, 29 rue Manin, 75019, Paris, France
| | - Olivier Bergès
- Department of Radiology, Fondation Ophtalmologique Adolphe de Rothschild, 29 rue Manin, 75019, Paris, France
| | - Hervé Picard
- Clinical Research Unit, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - Laure Fournier
- Université Paris Descartes Sorbonne Paris Cité, INSERM UMR-S970, Cardiovascular Research Centre - PARCC, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Radiology Department, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| |
Collapse
|
45
|
Spinner GR, von Deuster C, Tezcan KC, Stoeck CT, Kozerke S. Bayesian intravoxel incoherent motion parameter mapping in the human heart. J Cardiovasc Magn Reson 2017; 19:85. [PMID: 29110717 PMCID: PMC5770136 DOI: 10.1186/s12968-017-0391-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/04/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Intravoxel incoherent motion (IVIM) imaging of diffusion and perfusion in the heart suffers from high parameter estimation error. The purpose of this work is to improve cardiac IVIM parameter mapping using Bayesian inference. METHODS A second-order motion-compensated diffusion weighted spin-echo sequence with navigator-based slice tracking was implemented to collect cardiac IVIM data in early systole in eight healthy subjects on a clinical 1.5 T CMR system. IVIM data were encoded along six gradient optimized directions with b-values of 0-300 s/mm2. Subjects were scanned twice in two scan sessions one week apart to assess intra-subject reproducibility. Bayesian shrinkage prior (BSP) inference was implemented to determine IVIM parameters (diffusion D, perfusion fraction F and pseudo-diffusion D*). Results were compared to least-squares (LSQ) parameter estimation. Signal-to-noise ratio (SNR) requirements for a given fitting error were assessed for the two methods using simulated data. Reproducibility analysis of parameter estimation in-vivo using BSP and LSQ was performed. RESULTS BSP resulted in reduced SNR requirements when compared to LSQ in simulations. In-vivo, BSP analysis yielded IVIM parameter maps with smaller intra-myocardial variability and higher estimation certainty relative to LSQ. Mean IVIM parameter estimates in eight healthy subjects were (LSQ/BSP): 1.63 ± 0.28/1.51 ± 0.14·10-3 mm2/s for D, 13.13 ± 19.81/13.11 ± 5.95% for F and 201.45 ± 313.23/13.11 ± 14.53·10-3 mm2/s for D ∗. Parameter variation across all volunteers and measurements was lower with BSP compared to LSQ (coefficient of variation BSP vs. LSQ: 9% vs. 17% for D, 45% vs. 151% for F and 111% vs. 155% for D ∗). In addition, reproducibility of the IVIM parameter estimates was higher with BSP compared to LSQ (Bland-Altman coefficients of repeatability BSP vs. LSQ: 0.21 vs. 0.26·10-3 mm2/s for D, 5.55 vs. 6.91% for F and 15.06 vs. 422.80·10-3 mm2/s for D*). CONCLUSION Robust free-breathing cardiac IVIM data acquisition in early systole is possible with the proposed method. BSP analysis yields improved IVIM parameter maps relative to conventional LSQ fitting with fewer outliers, improved estimation certainty and higher reproducibility. IVIM parameter mapping holds promise for myocardial perfusion measurements without the need for contrast agents.
Collapse
Affiliation(s)
- Georg R Spinner
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092, Zurich, Switzerland.
| | - Constantin von Deuster
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092, Zurich, Switzerland
| | - Kerem C Tezcan
- Computer Vision Laboratory, ETH Zurich, Sternwartstrasse 7, 8092, Zurich, Switzerland
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092, Zurich, Switzerland
| |
Collapse
|
46
|
Federau C. Intravoxel incoherent motion MRI as a means to measure in vivo perfusion: A review of the evidence. NMR IN BIOMEDICINE 2017; 30. [PMID: 28885745 DOI: 10.1002/nbm.3780] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/19/2017] [Accepted: 07/07/2017] [Indexed: 05/07/2023]
Abstract
The idea that in vivo intravoxel incoherent motion magnetic resonance signal is influenced by blood motion in the microvasculature is exciting, because it suggests that local and quantitative perfusion information can be obtained in a simple and elegant way from a few diffusion-weighted images, without contrast injection. When the method was proposed in the late 1980s some doubts appeared as to its feasibility, and, probably because the signal to noise and image quality at the time was not sufficient, no obvious experimental evidence could be produced to alleviate them. Helped by the tremendous improvements seen in the last three decades in MR hardware, pulse design, and post-processing capabilities, an increasing number of encouraging reports on the value of intravoxel incoherent motion perfusion imaging have emerged. The aim of this article is to review the current published evidence on the feasibility of in vivo perfusion imaging with intravoxel incoherent motion MRI.
Collapse
Affiliation(s)
- Christian Federau
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Basel, Petersgraben, Basle, Switzerland
| |
Collapse
|
47
|
Meeus EM, Novak J, Dehghani H, Peet AC. Rapid measurement of intravoxel incoherent motion (IVIM) derived perfusion fraction for clinical magnetic resonance imaging. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:269-283. [PMID: 29075909 PMCID: PMC5871652 DOI: 10.1007/s10334-017-0656-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This study aimed to investigate the reliability of intravoxel incoherent motion (IVIM) model derived parameters D and f and their dependence on b value distributions with a rapid three b value acquisition protocol. MATERIALS AND METHODS Diffusion models for brain, kidney, and liver were assessed for bias, error, and reproducibility for the estimated IVIM parameters using b values 0 and 1000, and a b value between 200 and 900, at signal-to-noise ratios (SNR) 40, 55, and 80. Relative errors were used to estimate optimal b value distributions for each tissue scenario. Sixteen volunteers underwent brain DW-MRI, for which bias and coefficient of variation were determined in the grey matter. RESULTS Bias had a large influence in the estimation of D and f for the low-perfused brain model, particularly at lower b values, with the same trends being confirmed by in vivo imaging. Significant differences were demonstrated in vivo for estimation of D (P = 0.029) and f (P < 0.001) with [300,1000] and [500,1000] distributions. The effect of bias was considerably lower for the high-perfused models. The optimal b value distributions were estimated to be brain500,1000, kidney300,1000, and liver200,1000. CONCLUSION IVIM parameters can be estimated using a rapid DW-MRI protocol, where the optimal b value distribution depends on tissue characteristics and compromise between bias and variability.
Collapse
Affiliation(s)
- Emma M Meeus
- Physical Sciences of Imaging in Biomedical Sciences (PSIBS) Doctoral Training Centre, University of Birmingham, Birmingham, B15 2TT, UK.,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.,Department of Oncology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Jan Novak
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.,Department of Oncology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Hamid Dehghani
- Physical Sciences of Imaging in Biomedical Sciences (PSIBS) Doctoral Training Centre, University of Birmingham, Birmingham, B15 2TT, UK.,School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Andrew C Peet
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK. .,Department of Oncology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.
| |
Collapse
|
48
|
Xu XQ, Wu CJ, Lu SS, Gao QQ, Zu QQ, Liu XL, Shi HB, Liu S. Correlation between Intravoxel Incoherent Motion Magnetic Resonance Imaging Derived Metrics and Serum Soluble CD40 Ligand Level in an Embolic Canine Stroke Model. Korean J Radiol 2017; 18:835-843. [PMID: 28860901 PMCID: PMC5552467 DOI: 10.3348/kjr.2017.18.5.835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/22/2017] [Indexed: 12/18/2022] Open
Abstract
Objective To determine the relationship between intravoxel incoherent motion (IVIM) imaging derived quantitative metrics and serum soluble CD40 ligand (sCD40L) level in an embolic canine stroke model. Materials and Methods A middle cerebral artery occlusion model was established in 24 beagle dogs. Experimental dogs were divided into low- and high-sCD40L group according to serum sCD40L level at 4.5 hours after establishing the model. IVIM imaging was scanned at 4.5 hours after model establishment using 10 b values ranging from 0 to 900 s/mm2. Quantitative metrics diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) of ischemic lesions were calculated. Quantitative metrics of ischemic lesions were normalized by contralateral hemisphere using the following formula: normalized D = Dstroke / Dcontralateral. Differences in IVIM metrics between the low- and high-sCD40L groups were compared using t test. Pearson's correlation analyses were performed to determine the relationship between IVIM metrics and serum sCD40L level. Results The high-sCD40L group showed significantly lower f and normalized f values than the low-sCD40L group (f, p < 0.001; normalized f, p < 0.001). There was no significant difference in D*, normalized D*, D, or normalized D value between the two groups (All p > 0.05). Both f and normalized f values were negatively correlated with serum sCD40L level (f, r = −0.789, p < 0.001; normalized f, r = −0.823, p < 0.001). However, serum sCD40L level had no significant correlation with D*, normalized D*, D, or normalized D (All p > 0.05). Conclusion The f value derived from IVIM imaging was negatively correlated with serum sCD40L level. f value might serve as a potential imaging biomarker to assess the formation of microvascular thrombosis in hyperacute period of ischemic stroke.
Collapse
Affiliation(s)
- Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chen-Jiang Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shan-Shan Lu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qian-Qian Gao
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qing-Quan Zu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xing-Long Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hai-Bin Shi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Sheng Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
49
|
Pavilla A, Gambarota G, Arrigo A, Mejdoubi M, Duvauferrier R, Saint-Jalmes H. Diffusional kurtosis imaging (DKI) incorporation into an intravoxel incoherent motion (IVIM) MR model to measure cerebral hypoperfusion induced by hyperventilation challenge in healthy subjects. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 30:545-554. [PMID: 28608327 DOI: 10.1007/s10334-017-0629-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The objectives were to investigate the diffusional kurtosis imaging (DKI) incorporation into the intravoxel incoherent motion (IVIM) model for measurements of cerebral hypoperfusion in healthy subjects. MATERIALS AND METHODS Eight healthy subjects underwent a hyperventilation challenge with a 4-min diffusion weighted imaging protocol, using 8 b values chosen with the Cramer-Rao Lower Bound optimization approach. Four regions of interest in gray matter (GM) were analyzed with the DKI-IVIM model and the bi-exponential IVIM model, for normoventilation and hyperventilation conditions. RESULTS A significant reduction in the perfusion fraction (f) and in the product fD* of the perfusion fraction with the pseudodiffusion coefficient (D*) was found with the DKI-IVIM model, during the hyperventilation challenge. In the cerebellum GM, the percentage changes were f: -43.7 ± 40.1, p = 0.011 and fD*: -50.6 ± 32.1, p = 0.011; in thalamus GM, f: -47.7 ± 34.7, p = 0.012 and fD*: -47.2 ± 48.7, p = 0.040. In comparison, using the bi-exponential IVIM model, only a significant decrease in the parameter fD* was observed for the same regions of interest. In frontal-GM and posterior-GM, the reduction in f and fD* did not reach statistical significance, either with DKI-IVIM or the bi-exponential IVIM model. CONCLUSION When compared to the bi-exponential IVIM model, the DKI-IVIM model displays a higher sensitivity to detect changes in perfusion induced by the hyperventilation condition.
Collapse
Affiliation(s)
- Aude Pavilla
- INSERM, UMR 1099, 35000, Rennes, France. .,Université de Rennes 1, LTSI, 35000, Rennes, France. .,Department of Neuroradiology, Pierre-Zobda-Quitman Hospital, University Hospital of Martinique, Fort-de- France, Martinique, France.
| | - Giulio Gambarota
- INSERM, UMR 1099, 35000, Rennes, France.,Université de Rennes 1, LTSI, 35000, Rennes, France
| | - Alessandro Arrigo
- Department of Neuroradiology, Pierre-Zobda-Quitman Hospital, University Hospital of Martinique, Fort-de- France, Martinique, France
| | - Mehdi Mejdoubi
- Department of Neuroradiology, Pierre-Zobda-Quitman Hospital, University Hospital of Martinique, Fort-de- France, Martinique, France
| | - Régis Duvauferrier
- Department of Neuroradiology, Pierre-Zobda-Quitman Hospital, University Hospital of Martinique, Fort-de- France, Martinique, France
| | - Hervé Saint-Jalmes
- INSERM, UMR 1099, 35000, Rennes, France.,Université de Rennes 1, LTSI, 35000, Rennes, France.,CRLCC, Centre Eugène Marquis, 35000, Rennes, France
| |
Collapse
|
50
|
Lu P, Sha Y, Wan H, Wang F, Tian G, Tang W. Assessment of nonarteritic anterior ischemic optic neuropathy with intravoxel incoherent motion diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging, and 2D navigator-based reacquisition. J Magn Reson Imaging 2017; 46:1760-1766. [PMID: 28513892 DOI: 10.1002/jmri.25760] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ping Lu
- Shanghai Institution of Medical Imaging; Zhongshan Hospital, Fudan University; Shanghai P.R. China
- Department of Radiology; Eye & ENT Hospital of Fudan University; Shanghai P.R. China
| | - Yan Sha
- Department of Radiology; Eye & ENT Hospital of Fudan University; Shanghai P.R. China
| | - Hailin Wan
- Department of Radiology; Eye & ENT Hospital of Fudan University; Shanghai P.R. China
| | - Feng Wang
- Department of Radiology; Eye & ENT Hospital of Fudan University; Shanghai P.R. China
| | - Guohong Tian
- Department of Ophthalmology; Eye & ENT Hospital of Fudan University; Shanghai P.R. China
| | | |
Collapse
|