1
|
Fan L, Hong K, Allen BD, Paul R, Carr JC, Zhang S, Passman R, Robinson JD, Lee DC, Rigsby CK, Kim D. Ultra-rapid, Free-breathing, Real-time Cardiac Cine MRI Using GRASP Amplified with View Sharing and KWIC Filtering. Radiol Cardiothorac Imaging 2024; 6:e230107. [PMID: 38358330 PMCID: PMC10912880 DOI: 10.1148/ryct.230107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024]
Abstract
Purpose To achieve ultra-high temporal resolution (approximately 20 msec) in free-breathing, real-time cardiac cine MRI using golden-angle radial sparse parallel (GRASP) reconstruction amplified with view sharing (VS) and k-space-weighted image contrast (KWIC) filtering. Materials and Methods Fourteen pediatric patients with congenital heart disease (mean age [SD], 9 years ± 2; 13 male) and 10 adult patients with arrhythmia (mean age, 62 years ± 8; nine male) who underwent both standard breath-hold cine and free-breathing real-time cine using GRASP were retrospectively identified. To achieve high temporal resolution, each time frame was reconstructed using six radial spokes, corresponding to acceleration factors ranging from 24 to 32. To compensate for loss in spatial resolution resulting from over-regularization in GRASP, VS and KWIC filtering were incorporated. The blur metric, visual image quality scores, and biventricular parameters were compared between clinical and real-time cine images. Results In pediatric patients, the incorporation of VS and KWIC into GRASP (ie, GRASP + VS + KWIC) produced significantly (P < .05) sharper x-y-t (blur metric: 0.36 ± 0.03, 0.41 ± 0.03, 0.48 ± 0.03, respectively) and x-y-f (blur metric: 0.28 ± 0.02, 0.31 ± 0.03, 0.37 ± 0.03, respectively) component images compared with GRASP + VS and conventional GRASP. Only the noise score differed significantly between GRASP + VS + KWIC and clinical cine; all visual scores were above the clinically acceptable (3.0) cutoff point. Biventricular volumetric parameters strongly correlated (R2 > 0.85) between clinical and real-time cine images reconstructed with GRASP + VS + KWIC and were in good agreement (relative error < 6% for all parameters). In adult patients, the visual scores of all categories were significantly lower (P < .05) for clinical cine compared with real-time cine with GRASP + VS + KWIC, except for noise (P = .08). Conclusion Incorporating VS and KWIC filtering into GRASP reconstruction enables ultra-high temporal resolution (approximately 20 msec) without significant loss in spatial resolution. Keywords: Cine, View Sharing, k-Space-weighted Image Contrast Filtering, Radial k-Space, Pediatrics, Arrhythmia, GRASP, Compressed Sensing, Real-Time, Free-Breathing Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Lexiaozi Fan
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - KyungPyo Hong
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - Bradley D. Allen
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - Rupsa Paul
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - James C. Carr
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - Sarah Zhang
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - Rod Passman
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - Joshua D. Robinson
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - Daniel C. Lee
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - Cynthia K. Rigsby
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| | - Daniel Kim
- From the Department of Radiology (L.F., K.P.H., B.D.A., R.P., J.C.C.,
S.Z., J.D.R., C.K.R., D.K.), Department of Preventive Medicine, Bluhm
Cardiovascular Institute (R.P.), Department of Pediatrics (J.D.R., C.K.R.), and
Division of Cardiology, Department of Internal Medicine (D.C.L.), Northwestern
University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago,
IL 60611; Department of Biomedical Engineering, Northwestern University,
Evanston, Ill (L.F., D.K.); and Division of Cardiology (J.D.R.) and Department
of Medical Imaging (C.K.R.), Ann & Robert H. Lurie Children’s
Hospital of Chicago, Chicago, Ill
| |
Collapse
|
2
|
Craft J, Li Y, Nashta NF, Weber J. Comparison between compressed sensing and segmented cine cardiac magnetic resonance: a meta-analysis. BMC Cardiovasc Disord 2023; 23:473. [PMID: 37735355 PMCID: PMC10512640 DOI: 10.1186/s12872-023-03426-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/01/2023] [Indexed: 09/23/2023] Open
Abstract
PURPOSE Highly accelerated compressed sensing cine has allowed for quantification of ventricular function in a single breath hold. However, compared to segmented breath hold techniques, there may be underestimation or overestimation of LV volumes. Furthermore, a heterogeneous sample of techniques have been used in volunteers and patients for pre-clinical and clinical use. This can complicate individual comparisons where small, but statistically significant differences exist in left ventricular morphological and/or functional parameters. This meta-analysis aims to provide a comparison of conventional cine versus compressed sensing based reconstruction techniques in patients and volunteers. METHODS Two investigators performed systematic searches for eligible studies using PubMed/MEDLINE and Web of Science to identify studies published 1/1/2010-3/1/2021. Ultimately, 15 studies were included for comparison between compressed sensing cine and conventional imaging. RESULTS Compared to conventional cine, there were small, statistically significant overestimation of LV mass, underestimation of stroke volume and LV end diastolic volume (mean difference 2.65 g [CL 0.57-4.73], 2.52 mL [CL 0.73-4.31], and 2.39 mL [CL 0.07-4.70], respectively). Attenuated differences persisted across studies using prospective gating (underestimated stroke volume) and non-prospective gating (underestimation of stroke volume, overestimation of mass). There were no significant differences in LV volumes or LV mass with high or low acceleration subgroups in reference to conventional cine except slight underestimation of ejection fraction among high acceleration studies. Reduction in breath hold acquisition time ranged from 33 to 64%, while reduction in total scan duration ranged from 43 to 97%. CONCLUSION LV volume and mass assessment using compressed sensing CMR is accurate compared to conventional parallel imaging cine.
Collapse
Affiliation(s)
- Jason Craft
- DeMatteis Cardiovascular Institute, St. Francis Hospital & Heart Center, 100 Port Washington Blvd, Roslyn, NY, 11576, USA.
| | - Yulee Li
- DeMatteis Cardiovascular Institute, St. Francis Hospital & Heart Center, 100 Port Washington Blvd, Roslyn, NY, 11576, USA
| | - Niloofar Fouladi Nashta
- Sol Price School of Public Policy and Leonard D. Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles, CA, USA
| | - Jonathan Weber
- DeMatteis Cardiovascular Institute, St. Francis Hospital & Heart Center, 100 Port Washington Blvd, Roslyn, NY, 11576, USA
| |
Collapse
|
3
|
Free-breathing cardiac cine MRI with compressed sensing real-time imaging and retrospective motion correction: clinical feasibility and validation. Eur Radiol 2023; 33:2289-2300. [PMID: 36357691 DOI: 10.1007/s00330-022-09210-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/04/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES To prospectively evaluate the feasibility and biventricular assessment accuracy of a free-breathing cardiac cine imaging technique (RTCSCineMoCo) combined with highly accelerated real-time (RT) acquisition, compressed sensing (CS) reconstruction, and fully automated non-rigid respiratory motion correction. METHODS We evaluated 80 patients scheduled for clinical cardiac MRI. Cardiac cine images of the same long-axis and short-axis stacks were acquired using three techniques: (1) SegBH: standard segmented cine with breath-hold; (2) RTCSCineMoCo; (3) RTCSCine: single-shot RT CS cine at 3.0 T. Image quality (IQ) was evaluated using a qualitative 5-point Likert scale and the European CMR registry standardized criteria. Quantitative parameters including left (LV) and right ventricular (RV) ejection fractions (EF), end-diastolic volumes (EDV), end-systolic volumes (ESV), stroke volumes (SV), and LV mass (LVM) were measured and compared. RESULTS RTCSCineMoCo and SegBH had equivalent IQ scores (4.4 ± 0.7 vs. 4.2 ± 0.8, p = 0.066), while RTCSCine had a significantly lower IQ score than SegBH (4.0 ± 0.8 vs. 4.2 ± 0.8, p = 0.031). In a quantitative analysis, RTCSCineMoCo and SegBH yielded similar measurements for all parameters, while the majority of RTCSCine parameters were significantly different compared with SegBH, except for LVEDV. CONCLUSION RTCSCineMoCo is a promising method for robust free-breathing cardiac cine imaging, achieving better IQ and more precise quantitative analysis results for both ventricles compared with RTCSCine. KEY POINTS • RTCSCineMoCo is a promising method for free-breathing cardiac MR cine imaging in daily practice. • RTCSCineMoCo provided better IQ and more precise quantitative measurements compared with RTCSCine, by extending RT data acquisition to multiple heartbeats, performing non-rigid respiratory motion correction, and signal averaging. • RTCSCineMoCo may be suitable for routine clinical use for vulnerable patients who may otherwise pose a challenge to image successfully with the conventional segmented cine technique.
Collapse
|
4
|
Hatipoglu S, Gatehouse P, Krupickova S, Banya W, Daubeney P, Almogheer B, Izgi C, Weale P, Hayes C, Firmin D, Pennell DJ. Reliability of pediatric ventricular function analysis by short-axis "single-cycle-stack-advance" single-shot compressed-sensing cines in minimal breath-hold time. Eur Radiol 2022; 32:2581-2593. [PMID: 34713331 PMCID: PMC8921124 DOI: 10.1007/s00330-021-08335-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Cardiovascular magnetic resonance (CMR) cine imaging by compressed sensing (CS) is promising for patients unable to tolerate long breath-holding. However, the need for a steady-state free-precession (SSFP) preparation cardiac cycle for each slice extends the breath-hold duration (e.g. for 10 slices, 20 cardiac cycles) to an impractical length. We investigated a method reducing breath-hold duration by half and assessed its reliability for biventricular volume analysis in a pediatric population. METHODS Fifty-five consecutive pediatric patients (median age 12 years, range 7-17) referred for assessment of congenital heart disease or cardiomyopathy were included. Conventional multiple breath-hold SSFP short-axis (SAX) stack cines served as the reference. Real-time CS SSFP cines were applied without the steady-state preparation cycle preceding each SAX cine slice, accepting the limitation of omitting late diastole. The total acquisition time was 1 RR interval/slice. Volumetric analysis was performed for conventional and "single-cycle-stack-advance" (SCSA) cine stacks. RESULTS Bland-Altman analyses [bias (limits of agreement)] showed good agreement in left ventricular (LV) end-diastolic volume (EDV) [3.6 mL (- 5.8, 12.9)], LV end-systolic volume (ESV) [1.3 mL (- 6.0, 8.6)], LV ejection fraction (EF) [0.1% (- 4.9, 5.1)], right ventricular (RV) EDV [3.5 mL (- 3.34, 10.0)], RV ESV [- 0.23 mL (- 7.4, 6.9)], and RV EF [1.70%, (- 3.7, 7.1)] with a trend toward underestimating LV and RV EDVs with the SCSA method. Image quality was comparable for both methods (p = 0.37). CONCLUSIONS LV and RV volumetric parameters agreed well between the SCSA and the conventional sequences. The SCSA method halves the breath-hold duration of the commercially available CS sequence and is a reliable alternative for volumetric analysis in a pediatric population. KEY POINTS • Compressed sensing is a promising accelerated cardiovascular magnetic resonance imaging technique. • We omitted the steady-state preparation cardiac cycle preceding each cine slice in compressed sensing and achieved an acquisition speed of 1 RR interval/slice. • This modification called "single-cycle-stack-advance" enabled the acquisition of an entire short-axis cine stack in a single short breath hold. • When tested in a pediatric patient group, the left and right ventricular volumetric parameters agreed well between the "single-cycle-stack-advance" and the conventional sequences.
Collapse
Affiliation(s)
- Suzan Hatipoglu
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, London, UK.
| | - Peter Gatehouse
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Sylvia Krupickova
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Winston Banya
- Research Office, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Piers Daubeney
- Pediatric Cardiology Department, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Batool Almogheer
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Cemil Izgi
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | | | | | - David Firmin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, London, UK
- National Heart & Lung Institute, Imperial College, London, UK
| | - Dudley J Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, London, UK
- National Heart & Lung Institute, Imperial College, London, UK
| |
Collapse
|
5
|
60-S Retrogated Compressed Sensing 2D Cine of the Heart: Sharper Borders and Accurate Quantification. J Clin Med 2021; 10:jcm10112417. [PMID: 34072464 PMCID: PMC8199407 DOI: 10.3390/jcm10112417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/28/2022] Open
Abstract
Background and objective: Real-time compressed sensing cine (CSrt) provides reliable quantification for both ventricles but may alter image quality. The aim of this study was to assess image quality and the accuracy of left (LV) and right ventricular (RV) volumes, ejection fraction and mass quantifications based on a retrogated segmented compressed sensing 2D cine sequence (CSrg). Methods: Thirty patients were enrolled. Each patient underwent the reference retrogated segmented steady-state free precession cine sequence (SSFPref), the real-time CSrt cine and the segmented retrogated prototype CSrg sequence providing the same slices. Functional parameters quantification and image quality rating were performed on SSFPref and CSrg images sets. The edge sharpness, which is an estimate of the edge spread function, was assessed for the three sequences. Results: The mean scan time was: SSFPref = 485.4 ± 83.3 (SD) s (95% CI: 454.3–516.5) and CSrg = 58.3 ± 15.1 (SD) s (95% CI: 53.7–64.2) (p < 0.0001). CSrg subjective image quality score (median: 4; range: 2–4) was higher than the one provided by CSrt (median: 3; range: 2–4; p = 0.0008) and not different from SSFPref overall quality score (median: 4; range: 2–4; p = 0.31). CSrg provided similar LV and RV functional parameters to those assessed with SSFPref (p > 0.05). Edge sharpness was significantly better with CSrg (0.083 ± 0.013 (SD) pixel−1; 95% CI: 0.078–0.087) than with CSrt (0.070 ± 0.011 (SD) pixel−1; 95% CI: 0.066–0.074; p = 0.0004) and not different from the reference technique (0.075 ± 0.016 (SD) pixel−1; 95% CI: 0.069–0.081; p = 0.0516). Conclusions: CSrg cine provides in one minute an accurate quantification of LV and RV functional parameters without compromising subjective and objective image quality.
Collapse
|
6
|
Right Ventricular Volume and Function Assessment in Congenital Heart Disease Using CMR Compressed-Sensing Real-Time Cine Imaging. J Clin Med 2021; 10:jcm10091930. [PMID: 33947025 PMCID: PMC8125206 DOI: 10.3390/jcm10091930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/18/2022] Open
Abstract
Background and objective: To evaluate the reliability of compressed-sensing (CS) real-time single-breath-hold cine imaging for quantification of right ventricular (RV) function and volumes in congenital heart disease (CHD) patients in comparison with the standard multi-breath-hold technique. Methods: Sixty-one consecutive CHD patients (mean age = 22.2 ± 9.0 (SD) years) were prospectively evaluated during either the initial work-up or after repair. For each patient, two series of cine images were acquired: first, the reference segmented multi-breath-hold steady-state free-precession sequence (SSFPref), including a short-axis stack, one four-chamber slice, and one long-axis slice; then, an additional real-time compressed-sensing single-breath-hold sequence (CSrt) providing the same slices. Two radiologists independently assessed the image quality and RV volumes for both techniques, which were compared using the Wilcoxon test and paired Student’s t test, Bland–Altman, and linear regression analyses. The visualization of wall-motion disorders and tricuspid-regurgitation-related signal voids were also analyzed. Results: The mean acquisition time for CSrt was 22.4 ± 6.2 (SD) s (95% CI: 20.8–23.9 s) versus 442.2 ± 89.9 (SD) s (95% CI: 419.2–465.2 s) for SSFPref (p < 0.001). The image quality of CSrt was diagnostic in all examinations and was mostly rated as good (n = 49/61; 80.3%). There was a high correlation between SSFPref and CSrt images regarding RV ejection fraction (49.8 ± 7.8 (SD)% (95% CI: 47.8–51.8%) versus 48.7 ± 8.6 (SD)% (95% CI: 46.5–50.9%), respectively; r = 0.94) and RV end-diastolic volume (192.9 ± 60.1 (SD) mL (95% CI: 177.5–208.3 mL) versus 194.9 ± 62.1 (SD) mL (95% CI: 179.0–210.8 mL), respectively; r = 0.98). In CSrt images, tricuspid-regurgitation and wall-motion disorder visualization was good (area under receiver operating characteristic curve (AUC) = 0.87) and excellent (AUC = 1), respectively. Conclusions: Compressed-sensing real-time cine imaging enables, in one breath hold, an accurate assessment of RV function and volumes in CHD patients in comparison with standard SSFPref, allowing a substantial improvement in time efficiency.
Collapse
|
7
|
Longère B, Chavent MH, Coisne A, Gkizas C, Pagniez J, Simeone A, Silvestri V, Schmidt M, Forman C, Montaigne D, Pontana F. Single breath-hold compressed sensing real-time cine imaging to assess left ventricular motion in myocardial infarction. Diagn Interv Imaging 2020; 102:297-303. [PMID: 33308957 DOI: 10.1016/j.diii.2020.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To evaluate the reliability of a real-time compressed sensing (CS) cine sequence for the detection of left ventricular wall motion disorders after myocardial infarction in comparison with the reference steady-state free precession cine sequence. MATERIALS AND METHODS One hundred consecutive adult patients referred for either initial work-up or follow-up by cardiac magnetic resonance (CMR) in the context of myocardial infarction were prospectively included. There were 77 men and 23 women with a mean age of 63.12±11.3 (SD) years (range: 29-89 years). Each patient underwent the reference segmented multi-breath-hold steady-state free precession cine sequence including one short-axis stack and both vertical and horizontal long-axis slices (SSFPref) and the CS real-time single-breath-hold evaluated sequence (CSrt) providing the same slices. Wall motion disorders were independently and blindly assessed with both sequences by two radiologists, using the American Heart Association left ventricle segmentation. Paired Wilcoxon signed-rank test was used to search for differences in wall motion disorders conspicuity between both sequences and receiver operating characteristic curve (ROC) analysis was performed to assess the diagnosis performance of CSrt sequence using SSFPref as the reference method. RESULTS Each patient had at least one cardiac segment with wall motion abnormality on SSFPref and CSrt images. The 1700 segments analyzed with SSFPref were classified as normokinetic (360/1700; 21.2%), hypokinetic (783/1700; 46.1%), akinetic (526/1700; 30.9%) or dyskinetic (31/1700; 1.8%). Sensitivity and specificity of the CS sequence were 99.6% (95% CI: 99.1-99.9%) and 99.7% (95% CI: 98.5-100%), respectively. Area under ROC of CSrt diagnosis performance was 0.997 (95% CI: 0.993-0.999). CONCLUSION CS real-time cine imaging significantly reduces acquisition time without compromising the conspicuity of left ventricular -wall motion disorders in the context of myocardial infarction.
Collapse
Affiliation(s)
- Benjamin Longère
- Department of Cardiovascular Radiology, Institut Cœur-Poumon, CHU de Lille, Boulevard du Pr Jules Leclercq, 59037 Lille Cedex, France; INSERM UMR 1011, Institut Pasteur de Lille, EGID (European Genomic Institute for Diabetes), FR3508, Univ. Lille, 59000 Lille, France
| | - Marc-Henry Chavent
- Department of Cardiovascular Radiology, Institut Cœur-Poumon, CHU de Lille, Boulevard du Pr Jules Leclercq, 59037 Lille Cedex, France
| | - Augustin Coisne
- INSERM UMR 1011, Institut Pasteur de Lille, EGID (European Genomic Institute for Diabetes), FR3508, Univ. Lille, 59000 Lille, France; Department of Clinical Physiology and Echocardiography, CHU de Lille, Lille, France
| | - Christos Gkizas
- Department of Cardiovascular Radiology, Institut Cœur-Poumon, CHU de Lille, Boulevard du Pr Jules Leclercq, 59037 Lille Cedex, France
| | - Julien Pagniez
- Department of Cardiovascular Radiology, Institut Cœur-Poumon, CHU de Lille, Boulevard du Pr Jules Leclercq, 59037 Lille Cedex, France
| | - Arianna Simeone
- Department of Cardiovascular Radiology, Institut Cœur-Poumon, CHU de Lille, Boulevard du Pr Jules Leclercq, 59037 Lille Cedex, France
| | - Valentina Silvestri
- Department of Cardiovascular Radiology, Institut Cœur-Poumon, CHU de Lille, Boulevard du Pr Jules Leclercq, 59037 Lille Cedex, France
| | | | | | - David Montaigne
- INSERM UMR 1011, Institut Pasteur de Lille, EGID (European Genomic Institute for Diabetes), FR3508, Univ. Lille, 59000 Lille, France; Department of Clinical Physiology and Echocardiography, CHU de Lille, Lille, France
| | - François Pontana
- Department of Cardiovascular Radiology, Institut Cœur-Poumon, CHU de Lille, Boulevard du Pr Jules Leclercq, 59037 Lille Cedex, France; INSERM UMR 1011, Institut Pasteur de Lille, EGID (European Genomic Institute for Diabetes), FR3508, Univ. Lille, 59000 Lille, France.
| |
Collapse
|
8
|
Li YY, Zhang P, Rashid S, Cheng YJ, Li W, Schapiro W, Gliganic K, Yamashita AM, Grgas M, Haag E, Cao JJ. Real-time exercise stress cardiac MRI with Fourier-series reconstruction from golden-angle radial data. Magn Reson Imaging 2020; 75:89-99. [PMID: 33098934 DOI: 10.1016/j.mri.2020.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/30/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
Magnetic resonance imaging (MRI) can measure cardiac response to exercise stress for evaluating and managing heart patients in the practice of clinical cardiology. However, exercise stress cardiac MRI have been clinically limited by the ability of available MRI techniques to quantitatively measure fast and unstable cardiac dynamics during exercise. The presented work is to develop a new real-time MRI technique for improved quantitative performance of exercise stress cardiac MRI. This technique seeks to represent real-time cardiac images as a sparse Fourier-series along the time. With golden-angle radial acquisition, parallel imaging and compressed sensing can be integrated into a linear system of equations for resolving Fourier coefficients that are in turn used to generate real-time cardiac images from the Fourier-series representation. Fourier-series reconstruction from golden-angle radial data can effectively address data insufficiency due to MRI speed limitation, providing a real-time approach to exercise stress cardiac MRI. To demonstrate the feasibility, an exercise stress cardiac MRI experiment was run to investigate biventricular response to in-scanner biking exercise in a cohort of sixteen healthy volunteers. It was found that Fourier-series reconstruction from golden-angle radial data effectively detected exercise-induced increase in stroke volume and ejection fraction in a healthy heart. The presented work will improve the applications of exercise stress cardiac MRI in the practice of clinical cardiology.
Collapse
Affiliation(s)
- Yu Y Li
- St. Francis Hospital, DeMatteis Center for Research and Education, Cardiac Imaging, 101 Northern Blvd, Greenvale, NY 11548, USA.
| | - Pengyue Zhang
- St. Francis Hospital, DeMatteis Center for Research and Education, Cardiac Imaging, 101 Northern Blvd, Greenvale, NY 11548, USA
| | - Shams Rashid
- St. Francis Hospital, DeMatteis Center for Research and Education, Cardiac Imaging, 101 Northern Blvd, Greenvale, NY 11548, USA.
| | - Yang J Cheng
- St. Francis Hospital, DeMatteis Center for Research and Education, Cardiac Imaging, 101 Northern Blvd, Greenvale, NY 11548, USA.
| | - Wenhui Li
- St. Francis Hospital, DeMatteis Center for Research and Education, Cardiac Imaging, 101 Northern Blvd, Greenvale, NY 11548, USA
| | - William Schapiro
- St. Francis Hospital, DeMatteis Center for Research and Education, Cardiac Imaging, 101 Northern Blvd, Greenvale, NY 11548, USA.
| | - Kathleen Gliganic
- St. Francis Hospital, DeMatteis Center for Research and Education, Cardiac Imaging, 101 Northern Blvd, Greenvale, NY 11548, USA.
| | - Ann-Marie Yamashita
- St. Francis Hospital, DeMatteis Center for Research and Education, Cardiac Imaging, 101 Northern Blvd, Greenvale, NY 11548, USA.
| | - Marie Grgas
- St. Francis Hospital, DeMatteis Center for Research and Education, Cardiac Imaging, 101 Northern Blvd, Greenvale, NY 11548, USA.
| | - Elizabeth Haag
- St. Francis Hospital, DeMatteis Center for Research and Education, Cardiac Imaging, 101 Northern Blvd, Greenvale, NY 11548, USA.
| | - J Jane Cao
- St. Francis Hospital, DeMatteis Center for Research and Education, Cardiac Imaging, 101 Northern Blvd, Greenvale, NY 11548, USA.
| |
Collapse
|
9
|
Wang J, Li X, Lin L, Dai JW, Schmidt M, Forman C, An J, Jin ZY, Wang YN. Diagnostic efficacy of 2-shot compressed sensing cine sequence cardiovascular magnetic resonance imaging for left ventricular function. Cardiovasc Diagn Ther 2020; 10:431-441. [PMID: 32695623 DOI: 10.21037/cdt-20-135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Cardiac magnetic resonance cine images are conventionally acquired in breath-hold with a segmented balanced steady-state free precession (bSSFP) sequence, which requires a relatively long acquisition time and high patient cooperation. The single-shot compressed sensing (ss CS) cine sequence is a real-time sequence that has reasonable spatial and temporal resolution and can be applied during free breathing. However, the contrast between the myocardium and surrounding soft tissue is relatively reduced, and the epicardial delineation results are not as accurate with the ss CS cine sequence compared with the bSSFP sequence. In this study, we evaluated the use of a 2-shot CS cine technique in quickly acquiring high-quality images and accurately assessing cardiac function in clinical practice. Methods The patients enrolled in the study underwent cardiovascular magnetic resonance (CMR) on a 3T scanner from Jul. to Dec. 2018. Cine imaging was performed with 3 different methods: a standard segment cine sequence, a real-time ss CS cine sequence, and a 2-shot CS cine sequence prototype. Quantitative analysis of image quality was performed using a 0-4 scoring system, and also edge sharpness was measured, and cardiac function analysis was performed for all 3 types of cine images. Results Thirty-eight patients underwent imaging with the three types of cine sequences. The average scan time of the standard cine sequence was 101±20 s, the average scan time of the ss CS cine sequence was 20±4 s, and the average scan time of the 2-shot CS cine sequence was 30±6 s. The standard cine sequence image score was 3.68±0.64 and edge sharpness was (2.47±0.18) mm, the ss CS cine sequence image score was 3.13±0.35 and edge sharpness was (4.69±0.02) mm, and the 2-shot cine sequence image score was 3.54±0.51 and the edge sharpness was (2.51±0.13) mm. In terms of the quantitative study of cardiac function, the differences between the standard cine sequence and the ss CS cine sequence were not statistically significant, except for those of the imaging score and LV mass. There were no significant differences in the cardiac function parameters between the standard cine sequence and the 2-shot cine sequence. There was a strong correlation between the standard cine and ss CS cine sequences and between the standard cine and 2-shot CS cine sequences (P<0.01) of all the cardiac function parameters. Conclusions The 2-shot CS cine sequence can acquire images with a level of quality comparable to that of the standard cine sequence in a significantly shorter period of time. The functional parameters are similar between the 2-shot CS cine sequence and the standard cine sequence.
Collapse
Affiliation(s)
- Jian Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Li
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lu Lin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing-Wen Dai
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | - Jing An
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Zheng-Yu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi-Ning Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Abou Zahr R, Gooty V, Tandon A, Greil G, Pirolli T, Davies R, Jaquiss R, Ramaciotti C, Hussain T. Feasibility of real-time cine cardiac magnetic resonance imaging to predict the presence of significant retrosternal adhesions prior to redo-sternotomy. J Cardiovasc Magn Reson 2019; 21:67. [PMID: 31672164 PMCID: PMC6824134 DOI: 10.1186/s12968-019-0576-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/21/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Injury to vital structures posterior to the sternum is a complication associated with redo sternotomy in congenital cardiac surgery. The goal of our study was a novel evaluation of real-time cine cardiovascular magnetic resonance (CMR) to predict the presence of significant retrosternal adhesions of cardiac and vascular structures prior to redo sternotomy in patients with congenital heart disease. METHODS Twenty-three patients who had prior congenital heart surgery via median sternotomy had comprehensive CMR studies prior to redo sternotomy. The real time cine (RTC) sequence that was used is an ungated balanced steady-state free precession (bSSFP) sequence using SENSitivity Encoding for acceleration with real-time reconstruction. Spontaneously breathing patients were instructed to take deep breaths during the acquisition whilst increased tidal volumes were delivered to mechanically ventilated patients. All patients underwent redo cardiac surgery subsequently and the presence and severity of retrosternal adhesions were noted at the time of the redo sternotomies. RESULTS Median age at the time of CMR and operation were 5.5 years (range, 0.2-18.4y) and 6.1 years (range, 0.3-18.8y) respectively. There were 15 males and 8 females in the study group. Preoperative retrosternal adhesions were identified on RTC in 13 patients and confirmed in 11 (85%) at the time of surgery. In only 2 patients, no adhesions were identified on CMR but were found to have significant retrosternal adhesions at surgery; false positive rate 15% (CI 0.4-29.6%), false negative rate 20% (CI 3.7-36.4%). The total classification error of the real time cine sequence was 17% (CI 1.7-32.4%) with an overall accuracy of 83% (CI 67.7-98.4%). Standard breath-hold cine images correlated poorly with surgical findings and did not increase the diagnostic yield. CONCLUSIONS RTC imaging can predict the presence of significant retrosternal adhesions and thus help in risk assessment prior to redo sternotomy. These findings complement the surgical planning and potentially reduce surgical complications .
Collapse
Affiliation(s)
- Riad Abou Zahr
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, USA
| | - Vasu Gooty
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, USA
| | - Animesh Tandon
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, USA
| | - Gerald Greil
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, USA
| | - Timothy Pirolli
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, USA
| | - Ryan Davies
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, USA
| | - Robert Jaquiss
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, USA
| | - Claudio Ramaciotti
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, USA
| | - Tarique Hussain
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
11
|
Evaluating a novel free-breathing accelerated cardiac MRI cine sequence in patients with cardiomyopathy. Magn Reson Imaging 2019; 61:260-266. [DOI: 10.1016/j.mri.2019.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 11/23/2022]
|
12
|
Vermersch M, Longère B, Coisne A, Schmidt M, Forman C, Monnet A, Pagniez J, Silvestri V, Simeone A, Cheasty E, Montaigne D, Pontana F. Compressed sensing real-time cine imaging for assessment of ventricular function, volumes and mass in clinical practice. Eur Radiol 2019; 30:609-619. [DOI: 10.1007/s00330-019-06341-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/01/2019] [Accepted: 06/26/2019] [Indexed: 02/02/2023]
|
13
|
Accelerated real-time cardiac MRI using iterative sparse SENSE reconstruction: comparing performance in patients with sinus rhythm and atrial fibrillation. Eur Radiol 2018; 28:3088-3096. [DOI: 10.1007/s00330-017-5283-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/12/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022]
|
14
|
Goebel J, Nensa F, Schemuth HP, Maderwald S, Quick HH, Schlosser T, Nassenstein K. Real-time SPARSE-SENSE cine MR imaging in atrial fibrillation: a feasibility study. Acta Radiol 2017; 58:922-928. [PMID: 28273733 DOI: 10.1177/0284185116681037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Cardiac magnetic resonance imaging (MRI) relies on correct ECG-gating, which is hindered in arrhythmia. Purpose To examine whether a prototype free-breathing real-time cine sequence using SPARSE-SENSE (SPARSE) improves left ventricular quantification in atrial fibrillation. Material and Methods On a 1.5T MR system left ventricular short-axis stacks were acquired of the SPARSE sequence and of a "reference" steady-state free precession (SSFP) sequence with arrhythmia rejection in 20 patients with atrial fibrillation. Two radiologists independently rated arrhythmia-caused artifact severity in both sequences using a 4-point scale. Coefficients of variation of myocardial signal intensity for both sequences were acquired. Volumetry was performed twice by one reader and once by another reader. Correlation between artifact severity and employed sequence was analyzed by modified Fisher's exact test. Coefficients of variation and volumetric data were compared by paired t-test and intraclass correlation. Results Median arrhythmia-caused artifact severity was 2 in both readers for SSFP and 0 (reader 1)/1 (reader 2) for SPARSE, being significantly lower in SPARSE ( P < 0.001). Mean coefficient of variance was significantly smaller in SPARSE (0.11 ± 0.04) compared to SSFP (0.22 ± 0.13, P = 0.003), which was interpreted as a hint for fewer artifacts in SPARSE. Only a small difference of 9 ± 15 mL was seen for end-systolic volume ( P = 0.019) between sequences, otherwise no significant difference was detected (end-diastolic volume, P = 0.200; stroke volume, P = 0.554; ejection fraction, P = 0.136; myocardial mass, P = 0.353). Intraclass correlation between sequences was good to excellent (range, 0.80-0.97). Conclusion Real-time MRI with SPARSE data sampling is promising in atrial fibrillation because it reduces arrhythmia-caused artifacts.
Collapse
Affiliation(s)
- Juliane Goebel
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Felix Nensa
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Haemi P Schemuth
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Thomas Schlosser
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Kai Nassenstein
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| |
Collapse
|
15
|
Saito S, Masuda K, Mori Y, Nakatani S, Yoshioka Y, Murase K. Mapping of left ventricle wall thickness in mice using 11.7-T magnetic resonance imaging. Magn Reson Imaging 2017; 36:128-134. [DOI: 10.1016/j.mri.2016.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/26/2016] [Indexed: 11/28/2022]
|
16
|
Kido T, Kido T, Nakamura M, Watanabe K, Schmidt M, Forman C, Mochizuki T. Compressed sensing real-time cine cardiovascular magnetic resonance: accurate assessment of left ventricular function in a single-breath-hold. J Cardiovasc Magn Reson 2016; 18:50. [PMID: 27553656 PMCID: PMC4995641 DOI: 10.1186/s12968-016-0271-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/29/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Cardiovascular cine magnetic resonance (CMR) accelerated by compressed sensing (CS) is used to assess left ventricular (LV) function. However, it is difficult for prospective CS cine CMR to capture the complete end-diastolic phase, which can lead to underestimation of the end-diastolic volume (EDV), stroke volume (SV), and ejection fraction (EF), compared to retrospective standard cine CMR. This prospective study aimed to evaluate the diagnostic quality and accuracy of single-breath-hold full cardiac cycle CS cine CMR, acquired over two heart beats, to quantify LV volume in comparison to multi-breath-hold standard cine CMR. METHODS Eighty-one participants underwent standard segmented breath-hold cine and CS real-time cine CMR examinations to obtain a stack of eight contiguous short-axis images with same high spatial (1.7 × 1.7 mm(2)) and temporal resolution (41 ms). Two radiologists independently performed qualitative analysis of image quality (score, 1 [i.e., "nondiagnostic"] to 5 [i.e., "excellent"]) and quantitative analysis of the LV volume measurements. RESULTS The total examination time was 113 ± 7 s for standard cine CMR and 24 ± 4 s for CS cine CMR (p < 0.0001). The CS cine image quality was slightly lower than standard cine (4.8 ± 0.5 for standard vs. 4.4 ± 0.5 for CS; p < 0.0001). However, all image quality scores for CS cine were above 4 (i.e., good). No significant differences existed between standard and CS cine MR for all quantitative LV measurements. The mean differences with 95 % confidence interval (CI), based on Bland-Altman analysis, were 1.3 mL (95 % CI, -14.6 - 17.2) for LV end-diastolic volume, 0.2 mL (95 % CI, -9.8 to10.3) for LV end-systolic volume, 1.1 mL (95 % CI, -10.5 to 12.7) for LV stroke volume, 1.0 g (95 % CI, -11.2 to 13.3) for LV mass, and 0.4 % (95 % CI, -4.8 - 5.6) for LV ejection fraction. The interobserver and intraobserver variability for CS cine MR ranged from -4.8 - 1.6 % and from -7.3 - 9.3 %, respectively, with slopes of the regressions ranging 0.88-1.0 and 0.86-1.03, respectively. CONCLUSIONS Single-breath-hold full cardiac cycle CS real-time cine CMR could evaluate LV volume with excellent accuracy. It may replace multi-breath-hold standard cine CMR.
Collapse
Affiliation(s)
- Tomoyuki Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Masashi Nakamura
- Department of Radiology, Saiseikai Matsuyama Hospital, 880-2, Yamanishi, Matsuyama, Ehime 791-8026 Japan
| | - Kouki Watanabe
- Department of Cardiology, Saiseikai Matsuyama Hospital, 880-2, Yamanishi, Matsuyama, Ehime 791-8026 Japan
| | - Michaela Schmidt
- Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052 Erlangen, Germany
| | - Christoph Forman
- Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052 Erlangen, Germany
| | - Teruhito Mochizuki
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| |
Collapse
|