1
|
Oosterbos C, Weerdt OD, Lembrechts M, Radwan A, Brys P, Brusselmans M, Bogaerts K, Peeters R, Van Hoylandt A, Hoornaert S, Lemmens R, Theys T. Diagnostic accuracy of ultrasound and MR imaging in peroneal neuropathy: A prospective, single-center study. Muscle Nerve 2024; 70:360-370. [PMID: 38934723 DOI: 10.1002/mus.28187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION/AIMS Magnetic resonance imaging (MRI) findings in peroneal neuropathy are not well documented and the prognostic value of imaging remains uncertain. Upper limits of cross-sectional area (CSA) on ultrasound (US) have been established, but uncertainty regarding generalizability remains. We aimed to describe MRI findings of the peroneal nerve in patients and healthy controls and to compare these results to US findings and clinical characteristics. METHODS We prospectively included patients with foot drop and electrodiagnostically confirmed peroneal neuropathy, and performed clinical follow-up, US and MRI of both peroneal nerves. We compared MRI findings to healthy controls. Two radiologists evaluated MRI features in an exploratory analysis after images were anonymized and randomized. RESULTS Twenty-two patients and 38 healthy controls were included. Whereas significant increased MRI CSA values were documented in patients (mean CSA 20 mm2 vs. 13 mm2 in healthy controls), intra- and interobserver variability was substantial (variability of, respectively, 7 and 9 mm2 around the mean in 95% of repeated measurements). A pathological T2 hyperintense signal of the nerve was found in 52.6% of patients (50% interobserver agreement). Increased CSA measurements (MRI/US), pathological T2 hyperintensity of the nerve and muscle edema were not predictive for recovery. DISCUSSION Imaging is recommended in all patients with peroneal neuropathy to exclude compressive intrinsic and extrinsic masses but we do not advise routine MRI for diagnosis or prediction of outcome in patients with peroneal neuropathy due to high observer variability. Further studies should aim at reducing MRI observer variability potentially by semi-automation.
Collapse
Affiliation(s)
- Christophe Oosterbos
- Research Group Experimental Neurosurgery and Neuroanatomy, Leuven Brain Institute, Leuven, Belgium
- Department of Neurosurgery, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Olaf De Weerdt
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | | | - Ahmed Radwan
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Peter Brys
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Marius Brusselmans
- Department of Public Health and Primary Care, I-BioStat, Leuven, Belgium
- I-BioStat, UHasselt, Hasselt, Belgium
| | - Kris Bogaerts
- Department of Public Health and Primary Care, I-BioStat, Leuven, Belgium
- I-BioStat, UHasselt, Hasselt, Belgium
| | - Ronald Peeters
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Anaïs Van Hoylandt
- Research Group Experimental Neurosurgery and Neuroanatomy, Leuven Brain Institute, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Sophie Hoornaert
- Research Group Experimental Neurosurgery and Neuroanatomy, Leuven Brain Institute, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Robin Lemmens
- Department of Neurosciences, Experimental Neurology, KU Leuven - University of Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Tom Theys
- Research Group Experimental Neurosurgery and Neuroanatomy, Leuven Brain Institute, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Kimura M, Nagata S, Suzuki M, Nashiki K, Kawata H, Abe T. The relationship between diffusion tensor imaging and the clinical classification of cubital tunnel syndrome. Radiol Phys Technol 2024; 17:645-650. [PMID: 38782839 DOI: 10.1007/s12194-024-00813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
The purpose of the study was to investigate the relationship between diffusion tensor imaging (DTI) and the clinical classification of cubital tunnel syndrome (CuTS). Ten patients with CuTS (7 men and 3 women; mean age: 52.7 years) and 5 patients without ulnar neuropathy (2 men and 3 women; mean age: 38.0 years) were enrolled in this retrospective study. Fifteen patients were clinically classified into three groups: "Normal", "1 and 2A", and "2B and 3" by an orthopedic surgeon using the modified McGowan stages. DTI was acquired using a 3.0-T MRI. Fractional anisotropy (FA) of the ulnar nerve was measured in slices covering 20 mm proximal to 20 mm distal to ulnar sulcus. Median FA values in each group were compared by Kruskal-Wallis and Steel-Dwass test (P < 0.05). Five patients with CuTS were classified as "1 and 2A" and five patients as "2B and 3". The FA values, proximal 12 mm to the ulnar sulcus were 0.486 ± 0.117, 0.425 ± 0.166 and 0.298 ± 0.0386 in the "Normal", "1 and 2A" and "2B and 3" groups, respectively. The FA values of patients classified as "Normal" were significantly higher than those classified as "2B and 3" (P = 0.0326 in Steel-Dwass test). FA proximal to the ulnar sulcus might be associated to the modified McGowan stages for the clinical classification of CuTS.
Collapse
Affiliation(s)
- Mitsuhiro Kimura
- Department of Radiology, Kurume University Hospital, Fukuoka, Japan.
| | - Shuji Nagata
- Department of Radiology, Kurume University School of Medicine, Fukuoka, Japan
| | - Makoto Suzuki
- Department of Radiology, Kurume University Hospital, Fukuoka, Japan
| | - Kazutaka Nashiki
- Department of Radiology, Kurume University Hospital, Fukuoka, Japan
| | - Hidemichi Kawata
- Department of Radiology, Kurume University Hospital, Fukuoka, Japan
| | - Toshi Abe
- Department of Radiology, Kurume University School of Medicine, Fukuoka, Japan
| |
Collapse
|
3
|
Beste NC, Jende J, Kronlage M, Kurz F, Heiland S, Bendszus M, Meredig H. Automated peripheral nerve segmentation for MR-neurography. Eur Radiol Exp 2024; 8:97. [PMID: 39186183 PMCID: PMC11347527 DOI: 10.1186/s41747-024-00503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Magnetic resonance neurography (MRN) is increasingly used as a diagnostic tool for peripheral neuropathies. Quantitative measures enhance MRN interpretation but require nerve segmentation which is time-consuming and error-prone and has not become clinical routine. In this study, we applied neural networks for the automated segmentation of peripheral nerves. METHODS A neural segmentation network was trained to segment the sciatic nerve and its proximal branches on the MRN scans of the right and left upper leg of 35 healthy individuals, resulting in 70 training examples, via 5-fold cross-validation (CV). The model performance was evaluated on an independent test set of one-sided MRN scans of 60 healthy individuals. RESULTS Mean Dice similarity coefficient (DSC) in CV was 0.892 (95% confidence interval [CI]: 0.888-0.897) with a mean Jaccard index (JI) of 0.806 (95% CI: 0.799-0.814) and mean Hausdorff distance (HD) of 2.146 (95% CI: 2.184-2.208). For the independent test set, DSC and JI were lower while HD was higher, with a mean DSC of 0.789 (95% CI: 0.760-0.815), mean JI of 0.672 (95% CI: 0.642-0.699), and mean HD of 2.118 (95% CI: 2.047-2.190). CONCLUSION The deep learning-based segmentation model showed a good performance for the task of nerve segmentation. Future work will focus on extending training data and including individuals with peripheral neuropathies in training to enable advanced peripheral nerve disease characterization. RELEVANCE STATEMENT The results will serve as a baseline to build upon while developing an automated quantitative MRN feature analysis framework for application in routine reading of MRN examinations. KEY POINTS Quantitative measures enhance MRN interpretation, requiring complex and challenging nerve segmentation. We present a deep learning-based segmentation model with good performance. Our results may serve as a baseline for clinical automated quantitative MRN segmentation.
Collapse
Affiliation(s)
- Nedim Christoph Beste
- Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany.
| | - Johann Jende
- Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Moritz Kronlage
- Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Felix Kurz
- DKFZ German Cancer Research Center, Heidelberg, Germany
| | - Sabine Heiland
- Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Hagen Meredig
- Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Li G, Lan L, He T, Tang Z, Liu S, Li Y, Huang Z, Guan Y, Li X, Zhang Y, Lai HY. Comprehensive Assessment of Ischemic Stroke in Nonhuman Primates: Neuroimaging, Behavioral, and Serum Proteomic Analysis. ACS Chem Neurosci 2024; 15:1548-1559. [PMID: 38527459 PMCID: PMC10996879 DOI: 10.1021/acschemneuro.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
Ischemic strokes, prevalence and impactful, underscore the necessity of advanced research models closely resembling human physiology. Our study utilizes nonhuman primates (NHPs) to provide a detailed exploration of ischemic stroke, integrating neuroimaging data, behavioral outcomes, and serum proteomics to elucidate the complex interplay of factors involved in stroke pathophysiology. We observed a consistent pattern in infarct volume, peaking at 1-month postmiddle cerebral artery occlusion (MCAO) and then stabilized. This pattern was strongly correlated to notable changes in motor function and working memory performance. Using diffusion tensor imaging (DTI), we detected significant alterations in fractional anisotropy (FA) and mean diffusivity (MD) values, signaling microstructural changes in the brain. These alterations closely correlated with the neurological and cognitive deficits that we observed, highlighting the sensitivity of DTI metrics in stroke assessment. Behaviorally, the monkeys exhibited a reliance on their unaffected limb for compensatory movements, a common response to stroke impairment. This adaptation, along with consistent DTI findings, suggests a significant impact of stroke on motor function and spatial perception. Proteomic analysis through MS/MS functional enrichment identified two distinct groups of proteins with significant changes post-MCAO. Notably, MMP9, THBS1, MB, PFN1, and YWHAZ were identified as potential biomarkers and therapeutic targets for ischemic stroke. Our results underscore the complex nature of stroke and advocate for an integrated approach, combining neuroimaging, behavioral studies, and proteomics, for advancing our understanding and treatment of this condition.
Collapse
Affiliation(s)
- Ge Li
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Lan Lan
- Department
of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang
University School of Medicine, Hangzhou 310029, China
- Department
of Psychology and Behavior Science, Zhejiang
University, Hangzhou 310029, China
| | - Tingting He
- Department
of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang
University School of Medicine, Hangzhou 310029, China
- College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310029, China
| | - Zheng Tang
- Department
of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang
University School of Medicine, Hangzhou 310029, China
| | - Shuhua Liu
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Yunfeng Li
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Zhongqiang Huang
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Yalun Guan
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Xuejiao Li
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Yu Zhang
- Guangdong
Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Hsin-Yi Lai
- Department
of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang
University School of Medicine, Hangzhou 310029, China
- College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310029, China
- Liangzhu
Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine
Integration, State Key Laboratory of Brain-machine Intelligence, School
of Brain Science and Brain Medicine, Zhejiang
University, Hangzhou 310029, China
- Affiliated
Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
5
|
Jende JME, Heutehaus L, Preisner F, Verez Sola CM, Mooshage CM, Heiland S, Rupp R, Bendszus M, Weidner N, Kurz FT, Franz S. Magnetic resonance neurography in spinal cord injury: Imaging findings and clinical significance. Eur J Neurol 2024; 31:e16198. [PMID: 38235932 PMCID: PMC11235803 DOI: 10.1111/ene.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND AND PURPOSE It is unknown whether changes to the peripheral nervous system following spinal cord injury (SCI) are relevant for functional recovery or the development of neuropathic pain below the level of injury. Magnetic resonance neurography (MRN) at 3 T allows detection and localization of structural and functional nerve damage. This study aimed to combine MRN and clinical assessments in individuals with chronic SCI and nondisabled controls. METHODS Twenty participants with chronic SCI and 20 controls matched for gender, age, and body mass index underwent MRN of the L5 dorsal root ganglia (DRG) and the sciatic nerve. DRG volume, sciatic nerve mean cross-sectional area (CSA), fascicular lesion load, and fractional anisotropy (FA), a marker for functional nerve integrity, were calculated. Results were correlated with clinical assessments and nerve conduction studies. RESULTS Sciatic nerve CSA and lesion load were higher (21.29 ± 5.82 mm2 vs. 14.08 ± 4.62 mm2 , p < 0.001; and 8.70 ± 7.47% vs. 3.60 ± 2.45%, p < 0.001) in individuals with SCI compared to controls, whereas FA was lower (0.55 ± 0.11 vs. 0.63 ± 0.08, p = 0.022). DRG volumes were larger in individuals with SCI who suffered from neuropathic pain compared to those without neuropathic pain (223.7 ± 53.08 mm3 vs. 159.7 ± 55.66 mm3 , p = 0.043). Sciatic MRN parameters correlated with electrophysiological results but did not correlate with the extent of myelopathy or clinical severity of SCI. CONCLUSIONS Individuals with chronic SCI are subject to a decline of structural peripheral nerve integrity that may occur independently from the clinical severity of SCI. Larger volumes of DRG in SCI with neuropathic pain support existing evidence from animal studies on SCI-related neuropathic pain.
Collapse
Affiliation(s)
- Johann M. E. Jende
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - Laura Heutehaus
- Spinal Cord Injury CenterHeidelberg University HospitalHeidelbergGermany
| | - Fabian Preisner
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | | | | | - Sabine Heiland
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
- Division of Experimental Radiology, Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - Rüdiger Rupp
- Spinal Cord Injury CenterHeidelberg University HospitalHeidelbergGermany
| | - Martin Bendszus
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - Norbert Weidner
- Spinal Cord Injury CenterHeidelberg University HospitalHeidelbergGermany
| | - Felix T. Kurz
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
- German Cancer Research CenterHeidelbergGermany
| | - Steffen Franz
- Spinal Cord Injury CenterHeidelberg University HospitalHeidelbergGermany
- Department for Spinal Cord InjuryAllgemeine Unfallversicherungsanstalt ‐ Austrain Workers' Compensation Board, Rehabilitation Center Weisser HofKlosterneuburgAustria
| |
Collapse
|
6
|
Yoon D, Lutz AM. Diffusion Tensor Imaging of Peripheral Nerves: Current Status and New Developments. Semin Musculoskelet Radiol 2023; 27:641-648. [PMID: 37935210 DOI: 10.1055/s-0043-1775742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Diffusion tensor imaging (DTI) is an emerging technique for peripheral nerve imaging that can provide information about the microstructural organization and connectivity of these nerves and complement the information gained from anatomical magnetic resonance imaging (MRI) sequences. With DTI it is possible to reconstruct nerve pathways and visualize the three-dimensional trajectory of nerve fibers, as in nerve tractography. More importantly, DTI allows for quantitative evaluation of peripheral nerves by the calculation of several important parameters that offer insight into the functional status of a nerve. Thus DTI has a high potential to add value to the work-up of peripheral nerve pathologies, although it is more technically demanding. Peripheral nerves pose specific challenges to DTI due to their small diameter and DTI's spatial resolution, contrast, location, and inherent field inhomogeneities when imaging certain anatomical locations. Numerous efforts are underway to resolve these technical challenges and thus enable wider acceptance of DTI in peripheral nerve MRI.
Collapse
Affiliation(s)
- Daehyun Yoon
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California at San Francisco, San Francisco, California
| | - Amelie M Lutz
- Department of Radiology, Kantonal Hospital Thurgau, Muensterlingen, Switzerland
| |
Collapse
|
7
|
Shao Y, Li L, Peng W, Lu W, Wang Y. Age-related changes in the healthy adult visual pathway: evidence from diffusion tensor imaging with fixel-based analysis. RADIOLOGIE (HEIDELBERG, GERMANY) 2023; 63:73-81. [PMID: 37603069 DOI: 10.1007/s00117-023-01192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/06/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND AND PURPOSE Fixel-based analysis (FBA) is a new method that overcomes the technical limitations of diffusion tensor imaging (DTI) by enabling the characterization of multiple fiber populations within a voxel, and provides biologically meaningful indicators. This study aimed to explore age-related changes in the visual pathway in healthy adults and to observe differences in imaging quality between data collected using different b‑values. METHODS In this prospective cross-sectional study, brain DTI scans which were collected with more than six uniformly distributed gradient directions and higher b‑values (up to 2000 s/mm2) than traditional DTI were performed in 72 healthy adults across the adult lifespan (20-79 years). After image preprocessing, FBA was used to process the dataset. At the same time, conventional DTI metrics were also calculated. RESULTS Pearson's correlation analysis showed that DTI parameters of white matter (optic nerve, optic chiasma, optic tract, and optic radiation) in the optic pathway were correlated with age. FA values were negatively correlated with age, while MD/AD/RD showed a positive correlation (P < 0.05). FBA showed that the index including FD/FC/FDC tended to decline with age (P < 0.05). Linear regression analysis showed a linear relationship between DTI metrics of the dataset collected by b‑values of 1000 and 2000 s/mm2 (P < 0.05). CONCLUSION FBA provides a useful method to assess age-related changes in the visual pathway, which is sensitive to diffusion. In addition, the b‑value influences DTI parameters and signal-to-noise ratio of the image.
Collapse
Affiliation(s)
- Yan Shao
- The Second Affiliated Hospital of Shandong First Medical University, 271000, Taian, Shandong, China
| | - Li Li
- The Second Affiliated Hospital of Shandong First Medical University, 271000, Taian, Shandong, China
| | - Wei Peng
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000, Wuhan, Hubei, China
| | - Weizhao Lu
- The Second Affiliated Hospital of Shandong First Medical University, 271000, Taian, Shandong, China
| | - Yi Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, 271000, Taian, Shandong, China.
| |
Collapse
|
8
|
Gasparotti R, Salvalaggio A, Corbo D, Agazzi G, Cacciavillani M, Lozza A, Fenu S, De Vigili G, Tagliapietra M, Fabrizi GM, Pareyson D, Obici L, Briani C. Magnetic resonance neurography and diffusion tensor imaging of the sciatic nerve in hereditary transthyretin amyloidosis polyneuropathy. J Neurol 2023; 270:4827-4840. [PMID: 37329346 PMCID: PMC10511361 DOI: 10.1007/s00415-023-11813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
The therapeutic advance in hereditary transthyretin amyloidosis (ATTRv amyloidosis) requires quantitative biomarkers of nerve involvement in order to foster early diagnosis and monitor therapy response. We aimed at quantitatively assessing Magnetic Resonance Neurography (MRN) and Diffusion Tensor Imaging (DTI) properties of the sciatic nerve in subjects with ATTRv-amyloidosis-polyneuropathy (ATTRv-PN) and pre-symptomatic carriers (ATTRv-C). Twenty subjects with pathogenic variants of the TTR gene (mean age 62.20 ± 12.04 years), 13 ATTRv-PN, and 7 ATTRv-C were evaluated and compared with 20 healthy subjects (mean age 60.1 ± 8.27 years). MRN and DTI sequences were performed at the right thigh from the gluteal region to the popliteal fossa. Cross-sectional-area (CSA), normalized signal intensity (NSI), and DTI metrics, including fractional anisotropy (FA), mean (MD), axial (AD), and radial diffusivity (RD) of the right sciatic nerve were measured. Increased CSA, NSI, RD, and reduced FA of sciatic nerve differentiated ATTRv-PN from ATTRv-C and healthy subjects at all levels (p < 0.01). NSI differentiated ATTRv-C from controls at all levels (p < 0.05), RD at proximal and mid-thigh (1.04 ± 0.1 vs 0.86 ± 0.11 p < 0.01), FA at mid-thigh (0.51 ± 0.02 vs 0.58 ± 0.04 p < 0.01). According to receiver operating characteristic (ROC) curve analysis, cutoff values differentiating ATTRv-C from controls (and therefore identifying subclinical sciatic involvement) were defined for FA, RD, and NSI. Significant correlations between MRI measures, clinical involvement and neurophysiology were found. In conclusion, the combination of quantitative MRN and DTI of the sciatic nerve can reliably differentiate ATTRv-PN, ATTRv-C, and healthy controls. More important, MRN and DTI were able to non-invasively identify early subclinical microstructural changes in pre-symptomatic carriers, thus representing a potential tool for early diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Roberto Gasparotti
- Neuroradiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili Hospital, P.Le Spedali Civili 1, 25123, Brescia, Italy.
| | - Alessandro Salvalaggio
- Department of Neurosciences, University of Padova, Via Giustiniani 5, 35128, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| | - Daniele Corbo
- Neuroradiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili Hospital, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Giorgio Agazzi
- Neuroradiology Unit, ASST Santi Paolo e Carlo Hospital, Milan, Italy
| | | | - Alessandro Lozza
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Silvia Fenu
- Rare Neurological Diseases Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Grazia De Vigili
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Matteo Tagliapietra
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gian Maria Fabrizi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Davide Pareyson
- Rare Neurological Diseases Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Obici
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Briani
- Department of Neurosciences, University of Padova, Via Giustiniani 5, 35128, Padua, Italy
| |
Collapse
|
9
|
Zhang X, Zhang F. Peripheral Neuropathy in Diabetes: What Can MRI Do? Diabetes 2023; 72:1060-1069. [PMID: 37471598 DOI: 10.2337/db22-0912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/24/2023] [Indexed: 07/22/2023]
Abstract
Diabetes peripheral neuropathy (DPN) is commonly asymptomatic in the early stage. However, once symptoms and obvious defects appear, recovery is not possible. Diagnosis of neuropathy is based on physical examinations, questionnaires, nerve conduction studies, skin biopsies, and so on. However, the diagnosis of DPN is still challenging, and early diagnosis and immediate intervention are very important for prevention of the development and progression of diabetic neuropathy. The advantages of MRI in the diagnosis of DPN are obvious: the peripheral nerve imaging is clear, the lesions can be found intuitively, and the quantitative evaluation of the lesions is the basis for the diagnosis, classification, and follow-up of DPN. With the development of magnetic resonance technology, more and more studies have been conducted on detection of DPN. This article reviews the research field of MRI in DPN.
Collapse
Affiliation(s)
- Xianchen Zhang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Fulong Zhang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Shandong, China
| |
Collapse
|
10
|
Boonsuth R, Battiston M, Grussu F, Samlidou CM, Calvi A, Samson RS, Gandini Wheeler-Kingshott CAM, Yiannakas MC. Feasibility of in vivo multi-parametric quantitative magnetic resonance imaging of the healthy sciatic nerve with a unified signal readout protocol. Sci Rep 2023; 13:6565. [PMID: 37085693 PMCID: PMC10121559 DOI: 10.1038/s41598-023-33618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/15/2023] [Indexed: 04/23/2023] Open
Abstract
Magnetic resonance neurography (MRN) has been used successfully over the years to investigate the peripheral nervous system (PNS) because it allows early detection and precise localisation of neural tissue damage. However, studies demonstrating the feasibility of combining MRN with multi-parametric quantitative magnetic resonance imaging (qMRI) methods, which provide more specific information related to nerve tissue composition and microstructural organisation, can be invaluable. The translation of emerging qMRI methods previously validated in the central nervous system to the PNS offers real potential to characterise in patients in vivo the underlying pathophysiological mechanisms involved in a plethora of conditions of the PNS. The aim of this study was to assess the feasibility of combining MRN with qMRI to measure diffusion, magnetisation transfer and relaxation properties of the healthy sciatic nerve in vivo using a unified signal readout protocol. The reproducibility of the multi-parametric qMRI protocol as well as normative qMRI measures in the healthy sciatic nerve are reported. The findings presented herein pave the way to the practical implementation of joint MRN-qMRI in future studies of pathological conditions affecting the PNS.
Collapse
Affiliation(s)
- Ratthaporn Boonsuth
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK.
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| | - Marco Battiston
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Francesco Grussu
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Christina Maria Samlidou
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Alberto Calvi
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Center of Neuroimmunology, Hospital Clinic Barcelona, Fundació Clinic Per a La Recerca Biomedica, Barcelona, Spain
| | - Rebecca S Samson
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- Brain Connectivity Research Centre, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Marios C Yiannakas
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
11
|
Foesleitner O, Knop KC, Lindenau M, Preisner F, Bäumer P, Heiland S, Bendszus M, Kronlage M. Quantitative MR Neurography in Multifocal Motor Neuropathy and Amyotrophic Lateral Sclerosis. Diagnostics (Basel) 2023; 13:diagnostics13071237. [PMID: 37046455 PMCID: PMC10093201 DOI: 10.3390/diagnostics13071237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Background: The aim of this study was to assess the phenotype of multifocal motor neuropathy (MMN) and amyotrophic lateral sclerosis (ALS) in quantitative MR neurography. Methods: In this prospective study, 22 patients with ALS, 8 patients with MMN, and 10 healthy volunteers were examined with 3T MR neurography, using a high-resolution fat-saturated T2-weighted sequence, diffusion-tensor imaging (DTI), and a multi-echo T2-relaxometry sequence. The quantitative biomarkers fractional anisotropy (FA), radial and axial diffusivity (RD, AD), mean diffusivity (MD), cross-sectional area (CSA), T2-relaxation time, and proton spin density (PSD) were measured in the tibial nerve at the thigh and calf, and in the median, radial, and ulnar nerves at the mid-upper arm. Results: MMN showed a characteristic imaging pattern of decreased FA (p = 0.018), increased RD (p = 0.014), increased CSA (p < 0.001), increased T2-relaxation time (p < 0.001), and increased PSD (p = 0.025) in the upper arm nerves compared to ALS and controls. ALS patients did not differ from controls in any imaging marker, nor were there any group differences in the tibial nerve (p > 0.05). Conclusions: MMN shows a characteristic pattern of quantitative DTI and T2-relaxometry parameters in the upper-arm nerves, primarily indicating demyelination. Peripheral nerve changes in ALS seem to be below the detection level of current state-of-the-art quantitative MR neurography.
Collapse
|
12
|
Wade RG, Lu F, Poruslrani Y, Karia C, Feltbower RG, Plein S, Bourke G, Teh I. Meta-analysis of the normal diffusion tensor imaging values of the peripheral nerves in the upper limb. Sci Rep 2023; 13:4852. [PMID: 36964186 PMCID: PMC10039047 DOI: 10.1038/s41598-023-31307-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
Peripheral neuropathy affects 1 in 10 adults over the age of 40 years. Given the absence of a reliable diagnostic test for peripheral neuropathy, there has been a surge of research into diffusion tensor imaging (DTI) because it characterises nerve microstructure and provides reproducible proxy measures of myelination, axon diameter, fibre density and organisation. Before researchers and clinicians can reliably use diffusion tensor imaging to assess the 'health' of the major nerves of the upper limb, we must understand the "normal" range of values and how they vary with experimental conditions. We searched PubMed, Embase, medRxiv and bioRxiv for studies which reported the findings of DTI of the upper limb in healthy adults. Four review authors independently triple extracted data. Using the meta suite of Stata 17, we estimated the normal fractional anisotropy (FA) and diffusivity (mean, MD; radial, RD; axial AD) values of the median, radial and ulnar nerve in the arm, elbow and forearm. Using meta-regression, we explored how DTI metrics varied with age and experimental conditions. We included 20 studies reporting data from 391 limbs, belonging to 346 adults (189 males and 154 females, ~ 1.2 M:1F) of mean age 34 years (median 31, range 20-80). In the arm, there was no difference in the FA (pooled mean 0.59 mm2/s [95% CI 0.57, 0.62]; I2 98%) or MD (pooled mean 1.13 × 10-3 mm2/s [95% CI 1.08, 1.18]; I2 99%) of the median, radial and ulnar nerves. Around the elbow, the ulnar nerve had a 12% lower FA than the median and radial nerves (95% CI - 0.25, 0.00) and significantly higher MD, RD and AD. In the forearm, the FA (pooled mean 0.55 [95% CI 0.59, 0.64]; I2 96%) and MD (pooled mean 1.03 × 10-3 mm2/s [95% CI 0.94, 1.12]; I2 99%) of the three nerves were similar. Multivariable meta regression showed that the b-value, TE, TR, spatial resolution and age of the subject were clinically important moderators of DTI parameters in peripheral nerves. We show that subject age, as well as the b-value, TE, TR and spatial resolution are important moderators of DTI metrics from healthy nerves in the adult upper limb. The normal ranges shown here may inform future clinical and research studies.
Collapse
Affiliation(s)
- Ryckie G Wade
- Leeds Institute for Medical Research, The Advanced Imaging Centre, Leeds General Infirmary, University of Leeds, Leeds, LS1 3EX, UK.
- Department of Plastic and Reconstructive Surgery, Leeds Teaching Hospitals Trust, Leeds, UK.
| | - Fangqing Lu
- Leeds Institute for Medical Research, The Advanced Imaging Centre, Leeds General Infirmary, University of Leeds, Leeds, LS1 3EX, UK
| | - Yohan Poruslrani
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Chiraag Karia
- Department of Plastic and Reconstructive Surgery, Leeds Teaching Hospitals Trust, Leeds, UK
| | | | - Sven Plein
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- The Advanced Imaging Centre, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Grainne Bourke
- Leeds Institute for Medical Research, The Advanced Imaging Centre, Leeds General Infirmary, University of Leeds, Leeds, LS1 3EX, UK
- Department of Plastic and Reconstructive Surgery, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Irvin Teh
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- The Advanced Imaging Centre, Leeds Teaching Hospitals Trust, Leeds, UK
| |
Collapse
|
13
|
Kender Z, Jende JME, Kurz FT, Tsilingiris D, Schimpfle L, Sulaj A, von Rauchhaupt E, Bartl H, Mooshage C, Göpfert J, Nawroth P, Herzig S, Szendroedi J, Bendszus M, Kopf S. Sciatic nerve fractional anisotropy and neurofilament light chain protein are related to sensorimotor deficit of the upper and lower limbs in patients with type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1046690. [PMID: 37008917 PMCID: PMC10053786 DOI: 10.3389/fendo.2023.1046690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/06/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Diabetic sensorimotor polyneuropathy (DSPN) is one of the most prevalent and poorly understood diabetic microvascular complications. Recent studies have found that fractional anisotropy (FA), a marker for microstructural nerve integrity, is a sensitive parameter for the structural and functional nerve damage in DSPN. The aim of this study was to investigate the significance of proximal sciatic nerve's FA on different distal nerve fiber deficits of the upper and lower limbs and its correlation with the neuroaxonal biomarker, neurofilament light chain protein (NfL). MATERIALS AND METHODS Sixty-nine patients with type 2 diabetes (T2DM) and 30 healthy controls underwent detailed clinical and electrophysiological assessments, complete quantitative sensory testing (QST), and diffusion-weighted magnetic resonance neurography of the sciatic nerve. NfL was measured in the serum of healthy controls and patients with T2DM. Multivariate models were used to adjust for confounders of microvascular damage. RESULTS Patients with DSPN showed a 17% lower sciatic microstructural integrity compared to healthy controls (p<0.001). FA correlated with tibial and peroneal motor nerve conduction velocity (NCV) (r=0.6; p<0.001 and r=0.6; p<0.001) and sural sensory NCV (r=0.50; p<0.001). Participants with reduced sciatic nerve´s FA showed a loss of function of mechanical and thermal sensation of upper (r=0.3; p<0.01 and r=0.3; p<0.01) and lower (r=0.5; p<0.001 and r=0.3; p=<0.01) limbs and reduced functional performance of upper limbs (Purdue Pegboard Test for dominant hand; r=0.4; p<0.001). Increased levels of NfL and urinary albumin-creatinine ratio (ACR) were associated with loss of sciatic nerve´s FA (r=-0.5; p<0.001 and r= -0.3, p= 0.001). Of note, there was no correlation between sciatic FA and neuropathic symptoms or pain. CONCLUSION This is the first study showing that microstructural nerve integrity is associated with damage of different nerve fiber types and a neuroaxonal biomarker in DSPN. Furthermore, these findings show that proximal nerve damage is related to distal nerve function even before clinical symptoms occur. The microstructure of the proximal sciatic nerve and is also associated with functional nerve fiber deficits of the upper and lower limbs, suggesting that diabetic neuropathy involves structural changes of peripheral nerves of upper limbs too.
Collapse
Affiliation(s)
- Zoltan Kender
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
- *Correspondence: Zoltan Kender,
| | - Johann M. E. Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix T. Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Dimitrios Tsilingiris
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
| | - Lukas Schimpfle
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Alba Sulaj
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
| | - Ekaterina von Rauchhaupt
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
| | - Hannelore Bartl
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Christoph Mooshage
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jens Göpfert
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Peter Nawroth
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
- Joint-IDC Institute for Diabetes and Cancer, Heidelberg University, Heidelberg, Germany
| | - Stephan Herzig
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
- Joint-IDC Institute for Diabetes and Cancer, Heidelberg University, Heidelberg, Germany
- Joint-IDC Institute for Diabetes and Cancer, Helmholtz-Zentrum Munich, Munich, Germany
| | - Julia Szendroedi
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
- Joint-IDC Institute for Diabetes and Cancer, Heidelberg University, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kopf
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
| |
Collapse
|
14
|
Pušnik L, Serša I, Umek N, Cvetko E, Snoj Ž. Correlation between diffusion tensor indices and fascicular morphometric parameters of peripheral nerve. Front Physiol 2023; 14:1070227. [PMID: 36909220 PMCID: PMC9995878 DOI: 10.3389/fphys.2023.1070227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that measures the anisotropy of water diffusion. Clinical magnetic resonance imaging scanners enable visualization of the structural integrity of larger axonal bundles in the central nervous system and smaller structures like peripheral nerves; however, their resolution for the depiction of nerve fascicular morphology is limited. Accordingly, high-field strength MRI and strong magnetic field gradients are needed to depict the fascicular pattern. The study aimed to quantify diffusion tensor indices with high-field strength MRI within different anatomical compartments of the median nerve and determine if they correlate with nerve structure at the fascicular level. Methods: Three-dimensional pulsed gradient spin-echo (PGSE) imaging sequence in 19 different gradient directions and b value 1,150 s/mm2 was performed on a 9.4T wide-bore vertical superconducting magnet. Nine-millimeter-long segments of five median nerve samples were obtained from fresh cadavers and acquired in sixteen 0.625 mm thick slices. Each nerve sample had the fascicles, perineurium, and interfascicular epineurium segmented. The diffusion tensor was calculated from the region-average diffusion-weighted signals for all diffusion gradient directions. Subsequently, correlations between diffusion tensor indices of segmentations and nerve structure at the fascicular level (number of fascicles, fascicular ratio, and cross-sectional area of fascicles or nerve) were assessed. The acquired diffusion tensor imaging data was employed for display with trajectories and diffusion ellipsoids. Results: The nerve fascicles proved to be the most anisotropic nerve compartment with fractional anisotropy 0.44 ± 0.05. In the interfascicular epineurium, the diffusion was more prominent in orthogonal directions with fractional anisotropy 0.13 ± 0.02. Diffusion tensor indices within the fascicles and perineurium differed significantly between the subjects (p < 0.0001); however, there were no differences within the interfascicular epineurium (p ≥ 0.37). There were no correlations between diffusion tensor indices and nerve structure at the fascicular level (p ≥ 0.29). Conclusion: High-field strength MRI enabled the depiction of the anisotropic diffusion within the fascicles and perineurium. Diffusion tensor indices of the peripheral nerve did not correlate with nerve structure at the fascicular level. Future studies should investigate the relationship between diffusion tensor indices at the fascicular level and axon- and myelin-related parameters.
Collapse
Affiliation(s)
- Luka Pušnik
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Igor Serša
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Nejc Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Erika Cvetko
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Žiga Snoj
- Department of Radiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Clinical Institute of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Dorsal Root Ganglia Volume—Normative Values, Correlation with Demographic Determinants and Reliability of Three Different Methods of Volumetry. Diagnostics (Basel) 2022; 12:diagnostics12071570. [PMID: 35885475 PMCID: PMC9323629 DOI: 10.3390/diagnostics12071570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Dorsal root ganglia (DRG) volume assessment by MR-Neurography (MRN) has evolved to an important imaging marker in the diagnostic workup of various peripheral neuropathies and pain syndromes. The aim of this study was (1) to assess normal values of DRG volume and correlations with demographic determinants and (2) to quantify the inter-reader and inter-method reliability of three different methods of DRG volumetry. Methods: Sixty healthy subjects (mean age: 59.1, range 23–79) were examined using a 3D T2-weighted MRN of the lumbosacral plexus at 3 Tesla. Normal values of DRG L3 to S2 were obtained after exact volumetry based on manual 3D segmentation and correlations with demographic variables were assessed. For the assessment of inter-reader and inter-method reliability, DRG volumes in a subset of 25 participants were measured by two independent readers, each applying (1) exact volumetry based on 3D segmentation, (2) axis-corrected, and (3) non-axis-corrected volume estimation. Intraclass correlation coefficients were reported and the Bland–Altman analysis was conducted. Results: Mean DRG volumes ranged from 124.8 mm3 for L3 to 323.3 mm3 for S1 and did not differ between right and left DRG. DRG volume (mean of L3 to S1) correlated with body height (r = 0.42; p = 0.0008) and weight (r = 0.34; p = 0.0087). DRG of men were larger than of women (p = 0.0002); however, no difference remained after correction for body height. Inter-reader reliability was high for all three methods but best for exact volumetry (ICC = 0.99). While axis-corrected estimation was not associated with a relevant bias, non-axis-corrected estimation systematically overestimated DRG volume by on average of 15.55 mm3 (reader 1) or 18.00 mm3 (reader 2) when compared with exact volumetry. Conclusion: The here presented normal values of lumbosacral DRG volume and the correlations with height and weight may be considered in future disease specific studies and possible clinical applications. Exact volumetry was most reliable and should be considered the gold standard. However, the reliability of axis-corrected and non-axis-corrected volume estimation was also high and might still be sufficient, depending on the degree of the required measurement accuracy.
Collapse
|
16
|
Sun X, Liu X, Zhao Q, Zhang M, Zhang L, Yuan H. Proximal nerve MR neurography with diffusion tensor imaging in differentiating subtypes of Charcot-Marie-Tooth disease. Eur Radiol 2022; 32:3855-3862. [PMID: 35084519 DOI: 10.1007/s00330-021-08506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To evaluate the feasibility of proximal nerve MR neurography with diffusion tensor imaging (DTI) for differentiating Charcot-Marie-Tooth (CMT) 1A, CMT2, and healthy controls. METHODS The diameters, fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of L4-L5 nerve roots, femoral nerve (FN), and sciatic nerve (SN) were compared. Receiver operating characteristic (ROC) curve analyses were conducted to evaluate the diagnostic performance. DeLong's tests were applied to compare multiple ROC curves. Intraclass correlation coefficients were calculated for interobserver agreement assessment. RESULTS The diameters of the L4 nerve root, L5 nerve root, and SN of CMT1A patients were significantly larger than those of CMT2 patients and healthy controls. The FA values of all measured proximal nerves were significantly higher in controls (0.46 ± 0.09, 0.46 ± 0.08, 0.45 ± 0.07, and 0.48 ± 0.08) than in CMT1A patients (0.30 ± 0.09, 0.29 ± 0.06, 0.35 ± 0.08, and 0.29 ± 0.09). The FA values of the L5 nerve root, FN, and SN were significantly higher in controls (0.46 ± 0.08, 0.45 ± 0.07, and 0.48 ± 0.08) than in CMT2 patients (0.36 ± 0.06, 0.34 ± 0.07, and 0.34 ± 0.10). The MD and RD values of the L5 nerve root in CMT1A patients (1.59 ± 0.21 and 1.37 ± 0.21) were higher than those in CMT2 patients (1.31 ± 0.17 and 1.05 ± 0.14). The AUCs of the above parameters ranged from 0.780 to 1.000. For the measurements of nerve diameters, the ICC ranged from 0.91 to 0.97. For the measurements of DTI metrics, the ICC ranged from 0.87 to 0.97. CONCLUSIONS MR neurography with DTI is able to differentiate CMT1A patients, CMT2 patients, and healthy controls. KEY POINTS • MR neurography with diffusion tensor imaging of the L4-5 nerve roots, proximal femoral nerve, and proximal sciatic nerve is able to discriminate CMT1A, CMT2, and healthy controls. • This method provides an alternative for the diagnosis and discrimination of CMT1A and CMT2, which is crucial for clinical management.
Collapse
Affiliation(s)
- Xingwen Sun
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Qiang Zhao
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Mengze Zhang
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Lihua Zhang
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.
| |
Collapse
|
17
|
Jende JME, Kender Z, Morgenstern J, Renn P, Mooshage C, Juerchott A, Kopf S, Nawroth PP, Bendszus M, Kurz FT. Fractional Anisotropy and Troponin T Parallel Structural Nerve Damage at the Upper Extremities in a Group of Patients With Prediabetes and Type 2 Diabetes – A Study Using 3T Magnetic Resonance Neurography. Front Neurosci 2022; 15:741494. [PMID: 35140582 PMCID: PMC8818845 DOI: 10.3389/fnins.2021.741494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Recent studies have found that troponin T parallels the structural and functional decay of peripheral nerves at the level of the lower limbs in patients with type 2 diabetes (T2D). The aim of this study was to determine whether this finding can also be reproduced at the level of the upper limbs. Methods Ten patients with fasting glucose levels >100 mg/dl (five with prediabetes and five with T2D) underwent magnetic resonance neurography of the right upper arm comprising T2-weighted and diffusion weighted sequences. The fractional anisotropy (FA), an indicator for the structural integrity of peripheral nerves, was calculated in an automated approach for the median, ulnar, and radial nerve. All participants underwent additional clinical, serological, and electrophysiological assessments. Results High sensitivity Troponin T (hsTNT) and HbA1c were negatively correlated with the average FA of the median, ulnar and radial nerve (r = −0.84; p = 0.002 and r = −0.68; p = 0.032). Both FA and hsTNT further showed correlations with items of the Michigan Hand Outcome Questionnaire (r = −0.76; p = 0.010 and r = 0.87; p = 0.001, respectively). A negative correlation was found for hsTNT and HbA1c with the total Purdue Pegboard Test Score (r = −0.87; p = 0.001 and r = −0.68; p = 0.031). Conclusion This study is the first to find that hsTNT and HbA1c are associated with functional and structural parameters of the nerves at the level of the upper limbs in patients with impaired glucose tolerance and T2D. Our results support the hypothesis that hyperglycemia-related microangiopathy, represented by elevated hsTNT levels, is a contributor to nerve damage in diabetic polyneuropathy.
Collapse
Affiliation(s)
- Johann M. E. Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Zoltan Kender
- Department of Endocrinology, Diabetology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Endocrinology, Diabetology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Pascal Renn
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Alexander Juerchott
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kopf
- Department of Endocrinology, Diabetology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research, München, Germany
| | - Peter P. Nawroth
- Department of Endocrinology, Diabetology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research, München, Germany
- Joint Institute for Diabetes and Cancer at Helmholtz-Zentrum Munich and Heidelberg University, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix T. Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center, Radiology E010, Heidelberg, Germany
- *Correspondence: Felix T. Kurz,
| |
Collapse
|
18
|
Holmes SA, Staffa SJ, Karapanagou A, Lopez N, Karian V, Borra R, Zurakowski D, Lebel A, Borsook D. Biological laterality and peripheral nerve DTI metrics. PLoS One 2021; 16:e0260256. [PMID: 34914714 PMCID: PMC8675689 DOI: 10.1371/journal.pone.0260256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
Background and purpose Clinical comparisons do not usually take laterality into account and thus may report erroneous or misleading data. The concept of laterality, well evaluated in brain and motor systems, may also apply at the level of peripheral nerves. Therefore, we sought to evaluate the extent to which we could observe an effect of laterality in MRI-collected white matter indices of the sciatic nerve and its two branches (tibial and fibular). Materials and methods We enrolled 17 healthy persons and performed peripheral nerve diffusion weighted imaging (DWI) and magnetization transfer imaging (MTI) of the sciatic, tibial and fibular nerve. Participants were scanned bilaterally, and findings were divided into ipsilateral and contralateral nerve fibers relative to self-reporting of hand dominance. Generalized estimating equation modeling was used to evaluate nerve fiber differences between ipsilateral and contralateral legs while controlling for confounding variables. All findings controlled for age, sex and number of scans performed. Results A main effect of laterality was found in radial, axial, and mean diffusivity for the tibial nerve. Axial diffusivity was found to be lateralized in the sciatic nerve. When evaluating mean MTR, a main effect of laterality was found for each nerve division. A main effect of sex was found in the tibial and fibular nerve fiber bundles. Conclusion For the evaluation of nerve measures using DWI and MTI, in either healthy or disease states, consideration of underlying biological metrics of laterality in peripheral nerve fiber characteristics need to considered for data analysis. Integrating knowledge regarding biological laterality of peripheral nerve microstructure may be applied to improve how we diagnosis pain disorders, how we track patients’ recovery and how we forecast pain chronification.
Collapse
Affiliation(s)
- Scott A. Holmes
- Center for Pain and the Brain, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| | - Steven J. Staffa
- Center for Pain and the Brain, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Anastasia Karapanagou
- Center for Pain and the Brain, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Natalia Lopez
- Center for Pain and the Brain, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Victoria Karian
- Center for Pain and the Brain, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Ronald Borra
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - David Zurakowski
- Center for Pain and the Brain, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Alyssa Lebel
- Center for Pain and the Brain, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - David Borsook
- Center for Pain and the Brain, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
19
|
Xia X, Dai L, Zhou H, Chen P, Liu S, Yang W, Zuo Z, Xu X. Assessment of peripheral neuropathy in type 2 diabetes by diffusion tensor imaging: A case-control study. Eur J Radiol 2021; 145:110007. [PMID: 34758418 DOI: 10.1016/j.ejrad.2021.110007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/16/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES This study aimed to evaluate diabetes peripheral neuropathy (DPN) by diffusion tensor imaging (DTI) and explore the correlation between DTI parameters and electrophysiological parameters. METHODS We examined tibial nerve (TN) and common peroneal nerve (CPN) of 32 DPN patients and 23 healthy controls using T1-weighted magnetic resonance imaging and DTI. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) of TN and CPN were measured and compared between groups. Spearman correlation coefficient was used to explore the relationship between DTI parameters and electrophysiology parameters in the DPN group. Diagnostic value was assessed by receiver operating characteristic (ROC) analysis. RESULTS In the DPN group, FA was decreased (p < 0.0001) and MD and RD were increased (p < 0.05, p < 0.001) in the TN and CPN compared with the values of healthy control group. Moreover, in the DPN group, FA was positively correlated with motor nerve conduction velocity (MCV) (p < 0.0001), and both MD and RD were negatively correlated with MCV (p < 0.05, p < 0.001). However, there was no correlation between AD and any electrophysiological parameters. Among all DTI parameters, FA displayed the best diagnostic accuracy, with an area under the ROC curve of 0.882 in TN and 0.917 in CPN. CONCLUSION FA and RD demonstrate appreciable diagnostic accuracy. Furthermore, they both have a moderate correlation with MCV.
Collapse
Affiliation(s)
- Xinyue Xia
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China; Department of Radiology, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Lisong Dai
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Hongmei Zhou
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Panpan Chen
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Shuhua Liu
- Burn Department, Department of Burns, Tongren Hospital of Wuhan University and Wuhan Third Hospital, Wuhan 430060, China
| | - Wenzhong Yang
- Department of Radiology, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain and Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiangyang Xu
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| |
Collapse
|
20
|
Rojoa D, Raheman F, Rassam J, Wade RG. Meta-analysis of the normal diffusion tensor imaging values of the median nerve and how they change in carpal tunnel syndrome. Sci Rep 2021; 11:20935. [PMID: 34686721 PMCID: PMC8536657 DOI: 10.1038/s41598-021-00353-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Carpal tunnel syndrome (CTS) leads to distortion of axonal architecture, demyelination and fibrosis within the median nerve. Diffusion tensor imaging (DTI) characterises tissue microstructure and generates reproducible proxy measures of nerve 'health' which are sensitive to myelination, axon diameter, fiber density and organisation. This meta-analysis summarises the normal DTI values of the median nerve, and how they change in CTS. This systematic review included studies reporting DTI of the median nerve at the level of the wrist in adults. The primary outcome was to determine the normal fractional anisotropy (FA) and mean diffusivity (MD) of the median nerve. Secondarily, we show how the FA and MD differ between asymptomatic adults and patients with CTS, and how these differences are independent of the acquisition methods. We included 32 studies of 2643 wrists, belonging to 1575 asymptomatic adults and 1068 patients with CTS. The normal FA was 0.58 (95% CI 0.56, 0.59) and the normal MD was 1.138 × 10-3 mm2/s (95% CI 1.101, 1.174). Patients with CTS had a significantly lower FA than controls (mean difference 0.12 [95% CI 0.09, 0.16]). Similarly, the median nerve of patients with CTS had a significantly higher mean diffusivity (mean difference 0.16 × 10-3 mm2/s [95% CI 0.05, 0.27]). The differences were independent of experimental factors. We provide summary estimates of the normal FA and MD of the median nerve in asymptomatic adults. Furthermore, we show that diffusion throughout the length of the median nerve becomes more isotropic in patients with CTS.
Collapse
Affiliation(s)
- Djamila Rojoa
- grid.419248.20000 0004 0400 6485Department of Plastic and Reconstructive Surgery, Leicester Royal Infirmary, Leicester, UK
| | - Firas Raheman
- grid.419248.20000 0004 0400 6485Department of Plastic and Reconstructive Surgery, Leicester Royal Infirmary, Leicester, UK
| | - Joseph Rassam
- grid.419248.20000 0004 0400 6485Department of Plastic and Reconstructive Surgery, Leicester Royal Infirmary, Leicester, UK
| | - Ryckie G. Wade
- grid.415967.80000 0000 9965 1030Department of Plastic and Reconstructive Surgery, Leeds Teaching Hospitals Trust, Leeds, UK ,grid.9909.90000 0004 1936 8403Leeds Institute for Medical Research, Advanced Imaging Centre, University of Leeds, Leeds, LS1 3EX UK
| |
Collapse
|
21
|
Foesleitner O, Sulaj A, Sturm V, Kronlage M, Godel T, Preisner F, Nawroth PP, Bendszus M, Heiland S, Schwarz D. Diffusion MRI in Peripheral Nerves: Optimized b Values and the Role of Non-Gaussian Diffusion. Radiology 2021; 302:153-161. [PMID: 34665029 DOI: 10.1148/radiol.2021204740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Diffusion-weighted imaging (DWI) provides specific in vivo information about tissue microstructure, which is increasingly recognized for various applications outside the central nervous system. However, standard sequence parameters are commonly adopted from optimized central nervous system protocols, thus potentially neglecting differences in tissue-specific diffusional behavior. Purpose To characterize the optimal tissue-specific diffusion imaging weighting scheme over the b domain in peripheral nerves under physiologic and pathologic conditions. Materials and Methods In this prospective cross-sectional study, 3-T MR neurography of the sciatic nerve was performed in healthy volunteers (n = 16) and participants with type 2 diabetes (n = 12). For DWI, 16 b values in the range of 0-1500 sec/mm2 were acquired in axial and radial diffusion directions of the nerve. With a region of interest-based approach, diffusion-weighted signal behavior as a function of b was estimated using standard monoexponential, biexponential, and kurtosis fitting. Goodness of fit was assessed to determine the optimal b value for two-point DWI/diffusion tensor imaging (DTI). Results Non-Gaussian diffusional behavior was observed beyond b values of 600 sec/mm2 in the axial and 800 sec/mm2 in the radial diffusion direction in both participants with diabetes and healthy volunteers. Accordingly, the biexponential and kurtosis models achieved a better curve fit compared with the standard monoexponential model (Akaike information criterion >99.9% in all models), but the kurtosis model was preferred in the majority of cases. Significant differences between healthy volunteers and participants with diabetes were found in the kurtosis-derived parameters Dk and K. The results suggest an upper bound b value of approximately 700 sec/mm2 for optimal standard DWI/DTI in peripheral nerve applications. Conclusion In MR neurography, an ideal standard diffusion-weighted imaging/diffusion tensor imaging protocol with b = 700 sec/mm2 is suggested. This is substantially lower than in the central nervous system due to early-occurring non-Gaussian diffusion behavior and emphasizes the need for tissue-specific b value optimization. Including higher b values, kurtosis-derived parameters may represent promising novel imaging markers of peripheral nerve disease. ©RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Jang and Du in this issue.
Collapse
Affiliation(s)
- Olivia Foesleitner
- From the Department of Neuroradiology (O.F., V.S., M.K., T.G., F.P., M.B., S.H., D.S.) and Department of Internal Medicine I and Clinical Chemistry (A.S., P.P.N.), Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany (P.P.N.); Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg Center for Molecular Biology (ZMBH), Heidelberg, Germany (P.P.N.); and Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany (P.P.N.)
| | - Alba Sulaj
- From the Department of Neuroradiology (O.F., V.S., M.K., T.G., F.P., M.B., S.H., D.S.) and Department of Internal Medicine I and Clinical Chemistry (A.S., P.P.N.), Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany (P.P.N.); Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg Center for Molecular Biology (ZMBH), Heidelberg, Germany (P.P.N.); and Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany (P.P.N.)
| | - Volker Sturm
- From the Department of Neuroradiology (O.F., V.S., M.K., T.G., F.P., M.B., S.H., D.S.) and Department of Internal Medicine I and Clinical Chemistry (A.S., P.P.N.), Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany (P.P.N.); Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg Center for Molecular Biology (ZMBH), Heidelberg, Germany (P.P.N.); and Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany (P.P.N.)
| | - Moritz Kronlage
- From the Department of Neuroradiology (O.F., V.S., M.K., T.G., F.P., M.B., S.H., D.S.) and Department of Internal Medicine I and Clinical Chemistry (A.S., P.P.N.), Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany (P.P.N.); Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg Center for Molecular Biology (ZMBH), Heidelberg, Germany (P.P.N.); and Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany (P.P.N.)
| | - Tim Godel
- From the Department of Neuroradiology (O.F., V.S., M.K., T.G., F.P., M.B., S.H., D.S.) and Department of Internal Medicine I and Clinical Chemistry (A.S., P.P.N.), Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany (P.P.N.); Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg Center for Molecular Biology (ZMBH), Heidelberg, Germany (P.P.N.); and Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany (P.P.N.)
| | - Fabian Preisner
- From the Department of Neuroradiology (O.F., V.S., M.K., T.G., F.P., M.B., S.H., D.S.) and Department of Internal Medicine I and Clinical Chemistry (A.S., P.P.N.), Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany (P.P.N.); Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg Center for Molecular Biology (ZMBH), Heidelberg, Germany (P.P.N.); and Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany (P.P.N.)
| | - Peter Paul Nawroth
- From the Department of Neuroradiology (O.F., V.S., M.K., T.G., F.P., M.B., S.H., D.S.) and Department of Internal Medicine I and Clinical Chemistry (A.S., P.P.N.), Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany (P.P.N.); Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg Center for Molecular Biology (ZMBH), Heidelberg, Germany (P.P.N.); and Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany (P.P.N.)
| | - Martin Bendszus
- From the Department of Neuroradiology (O.F., V.S., M.K., T.G., F.P., M.B., S.H., D.S.) and Department of Internal Medicine I and Clinical Chemistry (A.S., P.P.N.), Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany (P.P.N.); Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg Center for Molecular Biology (ZMBH), Heidelberg, Germany (P.P.N.); and Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany (P.P.N.)
| | - Sabine Heiland
- From the Department of Neuroradiology (O.F., V.S., M.K., T.G., F.P., M.B., S.H., D.S.) and Department of Internal Medicine I and Clinical Chemistry (A.S., P.P.N.), Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany (P.P.N.); Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg Center for Molecular Biology (ZMBH), Heidelberg, Germany (P.P.N.); and Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany (P.P.N.)
| | - Daniel Schwarz
- From the Department of Neuroradiology (O.F., V.S., M.K., T.G., F.P., M.B., S.H., D.S.) and Department of Internal Medicine I and Clinical Chemistry (A.S., P.P.N.), Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany (P.P.N.); Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg Center for Molecular Biology (ZMBH), Heidelberg, Germany (P.P.N.); and Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany (P.P.N.)
| |
Collapse
|
22
|
Abstract
High-resolution isotropic volumetric three-dimensional (3D) magnetic resonance neurography (MRN) techniques enable multiplanar depiction of peripheral nerves. In addition, 3D MRN provides anatomical and functional tissue characterization of different disease conditions affecting the peripheral nerves. In this review article, we summarize clinically relevant technical considerations of 3D MRN image acquisition and review clinical applications of 3D MRN to assess peripheral nerve diseases, such as entrapments, trauma, inflammatory or infectious neuropathies, and neoplasms.
Collapse
Affiliation(s)
- Omid Khalilzadeh
- The Russell H. Morgan Department of Radiology & Radiological Science, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Laura M Fayad
- The Russell H. Morgan Department of Radiology & Radiological Science, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Shivani Ahlawat
- The Russell H. Morgan Department of Radiology & Radiological Science, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
23
|
Evans MC, Wade C, Hohenschurz-Schmidt D, Lally P, Ugwudike A, Shah K, Bangerter N, Sharp DJ, Rice ASC. Magnetic Resonance Imaging as a Biomarker in Diabetic and HIV-Associated Peripheral Neuropathy: A Systematic Review-Based Narrative. Front Neurosci 2021; 15:727311. [PMID: 34621152 PMCID: PMC8490874 DOI: 10.3389/fnins.2021.727311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Peripheral neuropathy can be caused by diabetes mellitus and HIV infection, and often leaves patients with treatment-resistant neuropathic pain. To better treat this condition, we need greater understanding of the pathogenesis, as well as objective biomarkers to predict treatment response. Magnetic resonance imaging (MRI) has a firm place as a biomarker for diseases of the central nervous system (CNS), but until recently has had little role for disease of the peripheral nervous system. Objectives: To review the current state-of-the-art of peripheral nerve MRI in diabetic and HIV symmetrical polyneuropathy. We used systematic literature search methods to identify all studies currently published, using this as a basis for a narrative review to discuss major findings in the literature. We also assessed risk of bias, as well as technical aspects of MRI and statistical analysis. Methods: Protocol was pre-registered on NIHR PROSPERO database. MEDLINE, Web of Science and EMBASE databases were searched from 1946 to 15th August 2020 for all studies investigating either diabetic or HIV neuropathy and MRI, focusing exclusively on studies investigating symmetrical polyneuropathy. The NIH quality assessment tool for observational and cross-sectional cohort studies was used for risk of bias assessment. Results: The search resulted in 18 papers eligible for review, 18 for diabetic neuropathy and 0 for HIV neuropathy. Risk of bias assessment demonstrated that studies generally lacked explicit sample size justifications, and some may be underpowered. Whilst most studies made efforts to balance groups for confounding variables (age, gender, BMI, disease duration), there was lack of consistency between studies. Overall, the literature provides convincing evidence that DPN is associated with larger nerve cross sectional area, T2-weighted hyperintense and hypointense lesions, evidence of nerve oedema on Dixon imaging, decreased fractional anisotropy and increased apparent diffusion coefficient compared with controls. Analysis to date is largely restricted to the sciatic nerve or its branches. Conclusions: There is emerging evidence that various structural MR metrics may be useful as biomarkers in diabetic polyneuropathy, and areas for future direction are discussed. Expanding this technique to other forms of peripheral neuropathy, including HIV neuropathy, would be of value. Systematic Review Registration: (identifier: CRD 42020167322) https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=167322.
Collapse
Affiliation(s)
- Matthew C. Evans
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Brain Sciences, Care Research and Technology Centre, UK Dementia Research Institute, London, United Kingdom
| | - Charles Wade
- Department of Brain Sciences, Care Research and Technology Centre, UK Dementia Research Institute, London, United Kingdom
| | - David Hohenschurz-Schmidt
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Pete Lally
- Department of Brain Sciences, Care Research and Technology Centre, UK Dementia Research Institute, London, United Kingdom
- Royal School of Mines, Imperial College London, London, United Kingdom
| | - Albert Ugwudike
- Royal School of Mines, Imperial College London, London, United Kingdom
| | - Kamal Shah
- Royal School of Mines, Imperial College London, London, United Kingdom
| | - Neal Bangerter
- Royal School of Mines, Imperial College London, London, United Kingdom
| | - David J. Sharp
- Department of Brain Sciences, Care Research and Technology Centre, UK Dementia Research Institute, London, United Kingdom
| | - Andrew S. C. Rice
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Lichtenstein T, Sprenger A, Weiss K, Große Hokamp N, Maintz D, Schlamann M, Fink GR, Lehmann HC, Henning TD. MRI DTI and PDFF as Biomarkers for Lower Motor Neuron Degeneration in ALS. Front Neurosci 2021; 15:682126. [PMID: 34512239 PMCID: PMC8428530 DOI: 10.3389/fnins.2021.682126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
Objective To evaluate the utility of nerve magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and muscle MRI multi-echo Dixon for assessing lower motor neuron (LMN) degeneration in amyotrophic lateral sclerosis (ALS). Methods In this prospective observational cohort study, 14 patients with ALS and 13 healthy controls underwent a multiparametric MRI protocol, including DTI of the sciatic nerve and assessment of muscle proton density fat fraction of the biceps femoris and the quadriceps femoris muscles by a multi-echo Dixon sequence. Results In ALS patients, mean fractional anisotropy values of the sciatic nerve were significantly lower than those of healthy controls. The quadriceps femoris, but not the biceps femoris muscle, showed significantly higher intramuscular fat fractions in ALS. Interpretation Our study provides evidence that multiparametric MRI protocols might help estimate structural nerve damage and neurogenic muscle changes in ALS.
Collapse
Affiliation(s)
- Thorsten Lichtenstein
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alina Sprenger
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Kilian Weiss
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Philips Healthcare, Hamburg, Germany
| | - Nils Große Hokamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Maintz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marc Schlamann
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Helmar C Lehmann
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Tobias D Henning
- Department of Neuroradiology, Center Hospital Luxembourg, Luxembourg City, Luxembourg
| |
Collapse
|
25
|
Magnetization Transfer Ratio of Peripheral Nerve and Skeletal Muscle : Correlation with Demographic Variables in Healthy Volunteers. Clin Neuroradiol 2021; 32:557-564. [PMID: 34374786 PMCID: PMC9187530 DOI: 10.1007/s00062-021-01067-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/06/2021] [Indexed: 11/27/2022]
Abstract
Purpose To assess the correlation of peripheral nerve and skeletal muscle magnetization transfer ratio (MTR) with demographic variables. Methods In this study 59 healthy adults evenly distributed across 6 decades (mean age 50.5 years ±17.1, 29 women) underwent magnetization transfer imaging and high-resolution T2-weighted imaging of the sciatic nerve at 3 T. Mean sciatic nerve MTR as well as MTR of biceps femoris and vastus lateralis muscles were calculated based on manual segmentation on six representative slices. Correlations of MTR with age, body height, body weight, and body mass index (BMI) were expressed by Pearson coefficients. Best predictors for nerve and muscle MTR were determined using a multiple linear regression model with forward variable selection and fivefold cross-validation. Results Sciatic nerve MTR showed significant negative correlations with age (r = −0.47, p < 0.001), BMI (r = −0.44, p < 0.001), and body weight (r = −0.36, p = 0.006) but not with body height (p = 0.55). The multiple linear regression model determined age and BMI as best predictors for nerve MTR (R2 = 0.40). The MTR values were different between nerve and muscle tissue (p < 0.0001), but similar between muscles. Muscle MTR was associated with BMI (r = −0.46, p < 0.001 and r = −0.40, p = 0.002) and body weight (r = −0.36, p = 0.005 and r = −0.28, p = 0.035). The BMI was selected as best predictor for mean muscle MTR in the multiple linear regression model (R2 = 0.26). Conclusion Peripheral nerve MTR decreases with higher age and BMI. Studies that assess peripheral nerve MTR should consider age and BMI effects. Skeletal muscle MTR is primarily associated with BMI but overall less dependent on demographic variables. Supplementary Information The online version of this article (10.1007/s00062-021-01067-5) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Park SY, Koh SH, Lee IJ, Lee K, Lee Y. Determination of optimum pixel size and slice thickness for tractography and ulnar nerve diffusion tensor imaging at the cubital tunnel using 3T MRI. Acta Radiol 2021; 62:1063-1071. [PMID: 32854528 DOI: 10.1177/0284185120951965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Small peripheral nerve tractography is challenging because of the trade-off among resolution, image acquisition time, and signal-to-noise ratio. PURPOSE To optimize pixel size and slice thickness parameters for fiber tractography and diffusion tensor imaging (DTI) of the ulnar nerve at the cubital tunnel using 3T magnetic resonance imaging (MRI). MATERIAL AND METHODS Fifteen healthy volunteers (mean age 30 ± 6.8 years) were recruited prospectively. Axial T2-weighted and DTI scans were acquired, covering the cubital tunnel, using different pixel sizes and slice thicknesses. Three-dimensional (3D) nerve tractography was evaluated for the median number and length of the reconstructed fiber tracts and visual score from 0 to 5. Two-dimensional (2D) cross-sectional DTI was evaluated for fractional anisotropy (FA) values throughout the length of the ulnar nerve. RESULTS A pixel size of 1.3 mm2 revealed the highest number of reconstructed nerve fibers compared to that of 1.1 mm2 (P = 0.048), with a good visual score. A slice thickness of 4 mm had the highest number of reconstructed nerve fibers and visual score compared with other thicknesses (all P < 0.05). In 2D cross-sectional images, the median FA values were in the range of 0.40-0.63 at the proximal, central, and distal portions of the cubital tunnel. Inter-observer agreement for all parameters was good to excellent. CONCLUSION For fiber tractography and DTI of the ulnar nerve at the cubital tunnel, optimal image quality was obtained using a 1.3-mm2 pixel size and 4-mm slice thickness under MR parameters of this study at 3T.
Collapse
Affiliation(s)
- Sun-Young Park
- Department of Radiology, Hallym University Sacred Heart Hospital, Gyeonggi-do, Republic of Korea
| | - Sung Hye Koh
- Department of Radiology, Hallym University Sacred Heart Hospital, Gyeonggi-do, Republic of Korea
| | - In Jae Lee
- Department of Radiology, Hallym University Sacred Heart Hospital, Gyeonggi-do, Republic of Korea
| | - Kwanseop Lee
- Department of Radiology, Hallym University Sacred Heart Hospital, Gyeonggi-do, Republic of Korea
| | - Yul Lee
- Department of Radiology, Hallym University Sacred Heart Hospital, Gyeonggi-do, Republic of Korea
| |
Collapse
|
27
|
Griffiths TT, Flather R, Teh I, Haroon HA, Shelley D, Plein S, Bourke G, Wade RG. Diffusion tensor imaging in cubital tunnel syndrome. Sci Rep 2021; 11:14982. [PMID: 34294771 PMCID: PMC8298404 DOI: 10.1038/s41598-021-94211-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/25/2021] [Indexed: 11/09/2022] Open
Abstract
Cubital tunnel syndrome (CuTS) is the 2nd most common compressive neuropathy. To improve both diagnosis and the selection of patients for surgery, there is a pressing need to develop a reliable and objective test of ulnar nerve 'health'. Diffusion tensor imaging (DTI) characterises tissue microstructure and may identify differences in the normal ulnar from those affected by CuTS. The aim of this study was to compare the DTI metrics from the ulnar nerves of healthy (asymptomatic) adults and patients with CuTS awaiting surgery. DTI was acquired at 3.0 T using single-shot echo-planar imaging (55 axial slices, 3 mm thick, 1.5 mm2 in-plane) with 30 diffusion sensitising gradient directions, a b-value of 800 s/mm2 and 4 signal averages. The sequence was repeated with the phase-encoding direction reversed. Data were combined and corrected using the FMRIB Software Library (FSL) and reconstructed using generalized q-sampling imaging in DSI Studio. Throughout the length of the ulnar nerve, the fractional anisotropy (FA), quantitative anisotropy (QA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) were extracted, then compared using mixed-effects linear regression. Thirteen healthy controls (8 males, 5 females) and 8 patients with CuTS (6 males, 2 females) completed the study. Throughout the length of the ulnar nerve, diffusion was more isotropic in patients with CuTS. Overall, patients with CuTS had a 6% lower FA than controls, with the largest difference observed proximal to the cubital tunnel (mean difference 0.087 [95% CI 0.035, 0.141]). Patients with CuTS also had a higher RD than controls, with the largest disparity observed within the forearm (mean difference 0.252 × 10-4 mm2/s [95% CI 0.085 × 10-4, 0.419 × 10-4]). There were no significant differences between patients and controls in QA, MD or AD. Throughout the length of the ulnar nerve, the fractional anisotropy and radial diffusivity in patients with CuTS are different to healthy controls. These findings suggest that DTI may provide an objective assessment of the ulnar nerve and potentially, improve the management of CuTS.
Collapse
Affiliation(s)
- Timothy T Griffiths
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
- Department of Plastic, Reconstructive and Hand Surgery, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Robert Flather
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
- Department of Plastic, Reconstructive and Hand Surgery, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Irvin Teh
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Hamied A Haroon
- Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester, UK
| | - David Shelley
- The Advanced Imaging Centre, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Sven Plein
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Grainne Bourke
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
- Department of Plastic, Reconstructive and Hand Surgery, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Ryckie G Wade
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK.
- Department of Plastic, Reconstructive and Hand Surgery, Leeds Teaching Hospitals Trust, Leeds, UK.
| |
Collapse
|
28
|
Jende JME, Kender Z, Mooshage C, Groener JB, Alvarez-Ramos L, Kollmer J, Juerchott A, Hahn A, Heiland S, Nawroth P, Bendszus M, Kopf S, Kurz FT. Diffusion Tensor Imaging of the Sciatic Nerve as a Surrogate Marker for Nerve Functionality of the Upper and Lower Limb in Patients With Diabetes and Prediabetes. Front Neurosci 2021; 15:642589. [PMID: 33746707 PMCID: PMC7966816 DOI: 10.3389/fnins.2021.642589] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 12/23/2022] Open
Abstract
Background Nerve damage in diabetic neuropathy (DN) is assumed to begin in the distal legs with a subsequent progression to hands and arms at later stages. In contrast, recent studies have found that lower limb nerve lesions in DN predominate at the proximal sciatic nerve and that, in the upper limb, nerve functions can be impaired at early stages of DN. Materials and Methods In this prospective, single-center cross-sectional study, participants underwent diffusion-weighted 3 Tesla magnetic resonance neurography in order to calculate the sciatic nerve’s fractional anisotropy (FA), a surrogate parameter for structural nerve integrity. Results were correlated with clinical and electrophysiological assessments of the lower limb and an examination of hand function derived from the Purdue Pegboard Test. Results Overall, 71 patients with diabetes, 11 patients with prediabetes and 25 age-matched control subjects took part in this study. In patients with diabetes, the sciatic nerve’s FA showed positive correlations with tibial and peroneal nerve conduction velocities (r = 0.62; p < 0.001 and r = 0.56; p < 0.001, respectively), and tibial and peroneal nerve compound motor action potentials (r = 0.62; p < 0.001 and r = 0.63; p < 0.001, respectively). Moreover, the sciatic nerve’s FA was correlated with the Pegboard Test results in patients with diabetes (r = 0.52; p < 0.001), prediabetes (r = 0.76; p < 0.001) and in controls (r = 0.79; p = 0.007). Conclusion This study is the first to show that the sciatic nerve’s FA is a surrogate marker for functional and electrophysiological parameters of both upper and lower limbs in patients with diabetes and prediabetes, suggesting that nerve damage in these patients is not restricted to the level of the symptomatic limbs but rather affects the entire peripheral nervous system.
Collapse
Affiliation(s)
- Johann M E Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Zoltan Kender
- Department of Endocrinology, Diabetology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Christoph Mooshage
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jan B Groener
- Department of Endocrinology, Diabetology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany.,Medicover Neuroendocrinology, Munich, Germany.,German Center of Diabetes Research (DZD), Associated Partner in the DZD, München-Neuherberg, Germany
| | - Lucia Alvarez-Ramos
- Department of Endocrinology, Diabetology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Jennifer Kollmer
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Juerchott
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Artur Hahn
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Experimental Radiology, Department of Neuroradiology, Heidelberg, Germany
| | - Peter Nawroth
- Department of Endocrinology, Diabetology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany.,German Center of Diabetes Research (DZD), Associated Partner in the DZD, München-Neuherberg, Germany.,Joint Institute for Diabetes and Cancer at Helmholtz-Zentrum Munich and Heidelberg University, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kopf
- Department of Endocrinology, Diabetology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany.,German Center of Diabetes Research (DZD), Associated Partner in the DZD, München-Neuherberg, Germany
| | - Felix T Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
29
|
Diffusion tensor imaging of the roots of the brachial plexus: a systematic review and meta-analysis of normative values. Clin Transl Imaging 2020; 8:419-431. [PMID: 33282795 PMCID: PMC7708343 DOI: 10.1007/s40336-020-00393-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Purpose Diffusion tensor magnetic resonance imaging (DTI) characterises tissue microstructure and provides proxy measures of myelination, axon diameter, fibre density and organisation. This may be valuable in the assessment of the roots of the brachial plexus in health and disease. Therefore, there is a need to define the normal DTI values. Methods The literature was systematically searched for studies of asymptomatic adults who underwent DTI of the brachial plexus. Participant characteristics, scanning protocols, and measurements of the fractional anisotropy (FA) and mean diffusivity (MD) of each spinal root were extracted by two independent review authors. Generalised linear modelling was used to estimate the effect of experimental conditions on the FA and MD. Meta-analysis of root-level estimates was performed using Cohen's method with random effects. Results Nine articles, describing 316 adults (1:1 male:female) of mean age 35 years (SD 6) were included. Increments of ten diffusion sensitising gradient directions reduced the mean FA by 0.01 (95% CI 0.01, 0.03). Each year of life reduced the mean MD by 0.03 × 10-3 mm2/s (95% CI 0.01, 0.04). At 3-T, the pooled mean FA of the roots was 0.36 (95% CI 0.34, 0.38; I 2 98%). The pooled mean MD of the roots was 1.51 × 10-3 mm2/s (95% CI 1.45, 1.56; I 2 99%). Conclusions The FA and MD of the roots of the brachial plexus vary according to experimental conditions and participant factors. We provide summary estimates of the normative values in different conditions which may be valuable to researchers and clinicians alike.
Collapse
|
30
|
Sagarwala R, Nasrallah HA. White matter pathology is shared across multiple psychiatric brain disorders: Is abnormal diffusivity a transdiagnostic biomarker for psychopathology? Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2019.100010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
31
|
Jende JME, Groener JB, Kender Z, Hahn A, Morgenstern J, Heiland S, Nawroth PP, Bendszus M, Kopf S, Kurz FT. Troponin T Parallels Structural Nerve Damage in Type 2 Diabetes: A Cross-sectional Study Using Magnetic Resonance Neurography. Diabetes 2020; 69:713-723. [PMID: 31974140 DOI: 10.2337/db19-1094] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/11/2020] [Indexed: 11/13/2022]
Abstract
Clinical studies have suggested that changes in peripheral nerve microcirculation may contribute to nerve damage in diabetic polyneuropathy (DN). High-sensitivity troponin T (hsTNT) assays have been recently shown to provide predictive values for both cardiac and peripheral microangiopathy in type 2 diabetes (T2D). This study investigated the association of sciatic nerve structural damage in 3 Tesla (3T) magnetic resonance neurography (MRN) with hsTNT and N-terminal pro-brain natriuretic peptide serum levels in patients with T2D. MRN at 3T was performed in 51 patients with T2D (23 without DN, 28 with DN) and 10 control subjects without diabetes. The sciatic nerve's fractional anisotropy (FA), a marker of structural nerve integrity, was correlated with clinical, electrophysiological, and serological data. In patients with T2D, hsTNT showed a negative correlation with the sciatic nerve's FA (r = -0.52, P < 0.001), with a closer correlation in DN patients (r = -0.66, P < 0.001). hsTNT further correlated positively with the neuropathy disability score (r = 0.39, P = 0.005). Negative correlations were found with sural nerve conduction velocities (NCVs) (r = -0.65, P < 0.001) and tibial NCVs (r = -0.44, P = 0.002) and amplitudes (r = -0.53, P < 0.001). This study is the first to show that hsTNT is a potential indicator for structural nerve damage in T2D. Our results indirectly support the hypothesis that microangiopathy contributes to structural nerve damage in T2D.
Collapse
Affiliation(s)
- Johann M E Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jan B Groener
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Zoltan Kender
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Artur Hahn
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter P Nawroth
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
- Joint Institute for Diabetes and Cancer at Helmholtz-Zentrum Munich and Heidelberg University, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kopf
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Felix T Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
32
|
Groener JB, Jende JME, Kurz FT, Kender Z, Treede RD, Schuh-Hofer S, Nawroth PP, Bendszus M, Kopf S. Understanding Diabetic Neuropathy-From Subclinical Nerve Lesions to Severe Nerve Fiber Deficits: A Cross-Sectional Study in Patients With Type 2 Diabetes and Healthy Control Subjects. Diabetes 2020; 69:436-447. [PMID: 31826867 DOI: 10.2337/db19-0197] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/05/2019] [Indexed: 11/13/2022]
Abstract
Studies on magnetic resonance neurography (MRN) in diabetic polyneuropathy (DPN) have found proximal sciatic nerve lesions. The aim of this study was to evaluate the functional relevance of sciatic nerve lesions in DPN, with the expectation of correlations with the impairment of large-fiber function. Sixty-one patients with type 2 diabetes (48 with and 13 without DPN) and 12 control subjects were enrolled and underwent MRN, quantitative sensory testing, and electrophysiological examinations. There were differences in mechanical detection (Aβ fibers) and mechanical pain (Aδ fibers) but not in thermal pain and thermal detection clusters (C fibers) among the groups. Lesion load correlated with lower Aα-, Aβ-, and Aδ-fiber but not with C-fiber function in all participants. Patients with lower function showed a higher load of nerve lesions than patients with elevated function or no measurable deficit despite apparent DPN. Longer diabetes duration was associated with higher lesion load in patients with DPN, suggesting that nerve lesions in DPN may accumulate over time and become clinically relevant once a critical amount of nerve fascicles is affected. Moreover, MRN is an objective method for determining lower function mainly in medium and large fibers in DPN.
Collapse
Affiliation(s)
- Jan B Groener
- Endocrinology and Clinical Chemistry, Internal Medicine Department I, University Hospital Heidelberg, Heidelberg, Germany
- Deutsches Zentrum für Diabetesforschung (DZD) e.V., München-Neuherberg, Germany
- Medicover Neuroendokrinologie, Munich, Germany
| | - Johann M E Jende
- Neuroradiology, Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix T Kurz
- Neuroradiology, Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Zoltan Kender
- Endocrinology and Clinical Chemistry, Internal Medicine Department I, University Hospital Heidelberg, Heidelberg, Germany
- Deutsches Zentrum für Diabetesforschung (DZD) e.V., München-Neuherberg, Germany
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sigrid Schuh-Hofer
- Department of Neurophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter P Nawroth
- Endocrinology and Clinical Chemistry, Internal Medicine Department I, University Hospital Heidelberg, Heidelberg, Germany
- Deutsches Zentrum für Diabetesforschung (DZD) e.V., München-Neuherberg, Germany
- Joint Heidelberg-ICD Translational Diabetes Program, Helmoltz-Zentrum, Munich, Germany
| | - Martin Bendszus
- Neuroradiology, Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kopf
- Endocrinology and Clinical Chemistry, Internal Medicine Department I, University Hospital Heidelberg, Heidelberg, Germany
- Deutsches Zentrum für Diabetesforschung (DZD) e.V., München-Neuherberg, Germany
| |
Collapse
|
33
|
Preisner F, Bäumer P, Wehrstein M, Friedmann-Bette B, Hackbusch M, Heiland S, Bendszus M, Kronlage M. Peripheral Nerve Diffusion Tensor Imaging : Interreader and Test-retest Reliability as Quantified by the Standard Error of Measurement. Clin Neuroradiol 2019; 30:679-689. [PMID: 31807812 DOI: 10.1007/s00062-019-00859-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/16/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE Diffusion tensor imaging (DTI) is increasingly being used in magnetic resonance neurography (MRN). The purpose of this study was to determine the interreader and test-retest reliability of peripheral nerve DTI in MRN with focus on the sciatic nerve. METHODS In this prospective study 27 healthy volunteers each underwent 3 scans of a short DTI protocol on separate days consisting of a T2-weighted turbo spin-echo and single-shot DTI sequence of the sciatic nerve of the dominant leg. The DTI parameters fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were obtained after manual nerve segmentation by two independent readers. Intraclass correlation coefficients (ICC), standard error of measurement (SEM), and Bland-Altman plots were calculated as measures for both interreader and test-retest agreement for all readout parameters. RESULTS The mean ± standard deviation was 0.507 ± 0.05 for FA, 1308.5 ± 162.4 × 10-6 mm2/s for MD, 905.6 ± 145.4 ×10-6 mm2/s for RD and 2114.1 ± 219.2 × 10-6 mm2/s for AD. The SEM for FA was 0.02 for interreader and test-retest agreement, the SEM for MD, RD, and AD ranged between 46.2 × 10-6 mm2/s (RD) and 70.1 × 10-6 mm2/s (AD) for interreader reliability and between 45.9 × 10-6 mm2/s (RD) and 70.1 × 10-6 mm2/s (AD) for test-retest reliability. The ICC for interreader reliability of DTI parameters ranged between 0.81 and 0.92 and ICC for test-retest reliability between 0.76 and 0.91. CONCLUSION Peripheral nerve DTI of the sciatic nerve is reliable and reproducible. The measures presented here may serve as first orientation values of measurement accuracy when interpreting parameters of sciatic nerve DTI.
Collapse
Affiliation(s)
- Fabian Preisner
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Philipp Bäumer
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Center for Radiology Dia.log, Vinzenz-von-Paul Str. 8, 84503, Altötting, Germany
| | - Michaela Wehrstein
- Department of Sports Medicine (Internal Medicine VII), Medical Clinic, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Birgit Friedmann-Bette
- Department of Sports Medicine (Internal Medicine VII), Medical Clinic, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Matthes Hackbusch
- Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Moritz Kronlage
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
34
|
Diffusion tensor imaging of the human thigh: consideration of DTI-based fiber tracking stop criteria. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:343-355. [DOI: 10.1007/s10334-019-00791-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/04/2019] [Accepted: 10/22/2019] [Indexed: 01/06/2023]
|
35
|
Abstract
Magnetic resonance imaging (MRI) has been used extensively in revealing pathological changes in the central nervous system. However, to date, MRI is very much underutilized in evaluating the peripheral nervous system (PNS). This underutilization is generally due to two perceived weaknesses in MRI: first, the need for very high resolution to image the small structures within the peripheral nerves to visualize morphological changes; second, the lack of normative data in MRI of the PNS and this makes reliable interpretation of the data difficult. This article reviews current state-of-the-art capabilities in
in vivo MRI of human peripheral nerves. It aims to identify areas where progress has been made and those that still require further improvement. In particular, with many new therapies on the horizon, this review addresses how MRI can be used to provide non-invasive and objective biomarkers in the evaluation of peripheral neuropathies. Although a number of techniques are available in diagnosing and tracking pathologies in the PNS, those techniques typically target the distal peripheral nerves, and distal nerves may be completely degenerated during the patient’s first clinic visit. These techniques may also not be able to access the proximal nerves deeply embedded in the tissue. Peripheral nerve MRI would be an alternative to circumvent these problems. In order to address the pressing clinical needs, this review closes with a clinical protocol at 3T that will allow high-resolution, high-contrast, quantitative MRI of the proximal peripheral nerves.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jun Li
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,John D. Dingell VA Medical Center, Detroit, MI, 48201, USA
| |
Collapse
|
36
|
Magnetic Resonance Imaging as a Biomarker in Rodent Peripheral Nerve Injury Models Reveals an Age-Related Impairment of Nerve Regeneration. Sci Rep 2019; 9:13508. [PMID: 31534149 PMCID: PMC6751200 DOI: 10.1038/s41598-019-49850-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/24/2019] [Indexed: 12/12/2022] Open
Abstract
Assessment of myelin integrity in peripheral nerve injuries and pathologies has largely been limited to post-mortem analysis owing to the difficulty in obtaining biopsies without affecting nerve function. This is further encumbered by the small size of the tissue and its location. Therefore, the development of robust, non-invasive methods is highly attractive. In this study, we used magnetic resonance imaging (MRI) techniques, including magnetization transfer ratio (MTR), to longitudinally and non-invasively characterize both the sciatic nerve crush and lysolecithin (LCP) demyelination models of peripheral nerve injury in rodents. Electrophysiological, gene expression and histological assessments complemented the extensive MRI analyses in young and aged animals. In the nerve crush model, MTR analysis indicated a slower recovery in regions distal to the site of injury in aged animals, as well as incomplete recovery at six weeks post-crush when analyzing across the entire nerve surface. Similar regional impairments were also found in the LCP demyelination model. This research underlines the power of MTR for the study of peripheral nerve injury in small tissues such as the sciatic nerve of rodents and contributes new knowledge to the effect of aging on recovery after injury. A particular advantage of the approach is the translational potential to human neuropathies.
Collapse
|
37
|
MR Neurography: Normative Values in Correlation to Demographic Determinants in Children and Adolescents. Clin Neuroradiol 2019; 30:671-677. [DOI: 10.1007/s00062-019-00834-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 08/19/2019] [Indexed: 01/30/2023]
|
38
|
Multimodal magnetic resonance imaging of peripheral nerves: Establishment and validation of brachial and lumbosacral plexi measurements in 163 healthy subjects. Eur J Radiol 2019; 117:41-48. [PMID: 31307651 DOI: 10.1016/j.ejrad.2019.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE This study aims to provide normal reference values for quantitative parameters for brachial and lumbosacral plexi on multimodal MRI. In addition, the parameter variations between the left and right sides, the individual nerve groups, genders and age groups were also evaluated. MATERIALS AND METHODS Multimodal MRI was evaluated in 163 healthy subjects, who were randomly divided into three groups: brachial plexus, lumbosacral plexus and diffusion tensor imaging groups. Nerve diameters, contrast ratios, T2 nerve-muscle signal ratios (nT2), fractional anisotropy (FA) values and apparent diffusion coefficients (ADC) were measured in both plexi. Parametric tests and Pearson correlation for normally distributed data, and non-parametric tests and Spearman correlation for non-normally distributed data were used. RESULTS There were no significant differences in parameters between the left and right sides. The diameters of the C7, L4-S1, sciatic, and femoral nerve roots were larger in men than in women (P < 0.05). The nT2 in the brachial and lumbosacral plexi and the contrast ratio in the lumbosacral plexus were significantly higher in the elderly. The diameter of the S1 nerve root was smaller in the elderly. There were no significant differences between the individual nerve groups in contrast ratios and in brachial plexus nT2. A gradual increase in the nT2 from the top to the bottom was observed in the L4-S1 nerve roots (P < 0.05). CONCLUSION This study provides multi-parameter normative data for the brachial and lumbosacral plexi while considering differences between the two sides, the individual nerves, genders, and the ages.
Collapse
|
39
|
Kronlage M, Knop KC, Schwarz D, Godel T, Heiland S, Bendszus M, Bäumer P. Amyotrophic Lateral Sclerosis versus Multifocal Motor Neuropathy: Utility of MR Neurography. Radiology 2019; 292:149-156. [PMID: 31063079 DOI: 10.1148/radiol.2019182538] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Differential diagnosis between amyotrophic lateral sclerosis (ALS) and multifocal motor neuropathy (MMN) relies on clinical examination and electrophysiological criteria. Peripheral nerve imaging might assist this differential diagnosis. Purpose To assess diagnostic accuracy of MR neurography in the differential diagnosis of ALS and MMN. Materials and Methods This prospective study was conducted between December 2015 and April 2017. Study participants with ALS or MMN underwent MR neurography of the lumbosacral plexus, midthigh, proximal calf, and midupper arm of the clinically more affected side using high-resolution T2-weighted sequences. Matched healthy study participants who underwent MR neurography served as a control group. Two blinded readers independently rated fascicular lesions and muscle denervation signs on a five-point scale and made an image-only diagnosis, which was compared with the clinical diagnosis to assess diagnostic accuracy (reported for ALS vs non-ALS and MMN vs non-MMN). The Kruskal-Wallis test was used to compare readers' scoring results. Results Twenty-two participants with ALS (12 men and 10 women; mean age ± standard deviation, 62.3 years ± 9.0), eight participants with MMN (seven men and one woman; mean age, 57.6 years ± 18.6), and 15 healthy participants (seven men and eight women; mean age, 59.1 years ± 10.9) were enrolled in this study. Nerves of participants with ALS either appeared normal or showed T2-weighted hyperintensities without fascicular enlargement (reader 1, 22 of 22 participants; reader 2, 21 of 22 participants). In contrast, nerves in MMN were characterized by fascicular swellings (reader 1, six of eight participants; reader 2, seven of eight participants). Muscle denervation signs were more prominent in ALS than in MMN. Inter-rater reliability for blinded diagnosis was κ of 0.82. By consensus, the sensitivity to diagnose ALS (vs MMN and healthy control participants) was 19 of 22 (86% [95% confidence interval {CI}: 67%, 95%]). The corresponding specificity was 23 of 23 (100% [95% CI: 86%, 100%]). The sensitivity to diagnose MMN (vs ALS and healthy control participants) was seven of eight (88% [95% CI: 53%, 99%]). The corresponding specificity was 37 of 37 (100% [95% CI: 91%, 100%]). Conclusion MR neurography is an accurate method for assisting in the differential diagnosis of amyotrophic lateral sclerosis and multifocal motor neuropathy. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Andreisek in this issue.
Collapse
Affiliation(s)
- Moritz Kronlage
- From the Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany (M.K., D.S., T.G., S.H., M.B., P.B.); Neurologie Neuer Wall, Hamburg, Germany (K.C.K.); Department of Radiology, German Cancer Research Center, Heidelberg, Germany (P.B.); and dia.log, Altoetting Center for Radiology, Altoetting, Germany (P.B.)
| | - Karl Christian Knop
- From the Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany (M.K., D.S., T.G., S.H., M.B., P.B.); Neurologie Neuer Wall, Hamburg, Germany (K.C.K.); Department of Radiology, German Cancer Research Center, Heidelberg, Germany (P.B.); and dia.log, Altoetting Center for Radiology, Altoetting, Germany (P.B.)
| | - Daniel Schwarz
- From the Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany (M.K., D.S., T.G., S.H., M.B., P.B.); Neurologie Neuer Wall, Hamburg, Germany (K.C.K.); Department of Radiology, German Cancer Research Center, Heidelberg, Germany (P.B.); and dia.log, Altoetting Center for Radiology, Altoetting, Germany (P.B.)
| | - Tim Godel
- From the Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany (M.K., D.S., T.G., S.H., M.B., P.B.); Neurologie Neuer Wall, Hamburg, Germany (K.C.K.); Department of Radiology, German Cancer Research Center, Heidelberg, Germany (P.B.); and dia.log, Altoetting Center for Radiology, Altoetting, Germany (P.B.)
| | - Sabine Heiland
- From the Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany (M.K., D.S., T.G., S.H., M.B., P.B.); Neurologie Neuer Wall, Hamburg, Germany (K.C.K.); Department of Radiology, German Cancer Research Center, Heidelberg, Germany (P.B.); and dia.log, Altoetting Center for Radiology, Altoetting, Germany (P.B.)
| | - Martin Bendszus
- From the Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany (M.K., D.S., T.G., S.H., M.B., P.B.); Neurologie Neuer Wall, Hamburg, Germany (K.C.K.); Department of Radiology, German Cancer Research Center, Heidelberg, Germany (P.B.); and dia.log, Altoetting Center for Radiology, Altoetting, Germany (P.B.)
| | - Philipp Bäumer
- From the Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany (M.K., D.S., T.G., S.H., M.B., P.B.); Neurologie Neuer Wall, Hamburg, Germany (K.C.K.); Department of Radiology, German Cancer Research Center, Heidelberg, Germany (P.B.); and dia.log, Altoetting Center for Radiology, Altoetting, Germany (P.B.)
| |
Collapse
|
40
|
Bruno F, Arrigoni F, Mariani S, Patriarca L, Palumbo P, Natella R, Ma L, Guglielmi G, Galzio RJ, Splendiani A, Di Cesare E, Masciocchi C, Barile A. Application of diffusion tensor imaging (DTI) and MR-tractography in the evaluation of peripheral nerve tumours: state of the art and review of the literature. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:68-76. [PMID: 31085975 PMCID: PMC6625568 DOI: 10.23750/abm.v90i5-s.8326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 12/18/2022]
Abstract
Peripheral nerves can be affected by a variety of benign and malignant tumour and tumour-like lesions. Besides clinical evaluation and electrophysiologic studies, MRI is the imaging modality of choice for the assessment of these soft tissue tumours. Conventional MR sequences, however, can fail to assess the histologic features of the lesions. Moreover, the precise topographical relationship between the peripheral nerve and the tumor must be delineated preoperatively for complete tumour resection minimizing nerve damage. Using Diffusion tensor imaging (DTI) and tractography, it is possible to obtain functional information on tumour and nerve structures, allowing the assess anatomy, function and biological features. In this article, we review the technical aspects and clinical application of DTI for the evaluation of peripheral nerve tumours. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Federico Bruno
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Prevalence of fascicular hyperintensities in peripheral nerves of healthy individuals with regard to cerebral white matter lesions. Eur Radiol 2019; 29:3480-3487. [DOI: 10.1007/s00330-019-06145-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/21/2019] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
|
42
|
Kim HS, Yoon YC, Choi BO, Jin W, Cha JG, Kim JH. Diffusion tensor imaging of the sciatic nerve in Charcot-Marie-Tooth disease type I patients: a prospective case-control study. Eur Radiol 2019; 29:3241-3252. [PMID: 30635758 DOI: 10.1007/s00330-018-5958-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/19/2018] [Accepted: 12/05/2018] [Indexed: 01/13/2023]
Abstract
OBJECTIVES This study aimed to evaluate whether diffusion tensor imaging (DTI) parameters and cross-sectional area (CSA) can differentiate between the sciatic nerve of Charcot-Marie-Tooth (CMT) disease type I (demyelinating form) patients and that of controls. METHODS This prospective comparison study included 18 CMT type I patients and 18 age/sex-matched volunteers. Magnetic resonance imaging including DTI and axial T2-weighted Dixon sequence was performed for each subject. Region of interest analysis was independently performed by two radiologists on each side of the sciatic nerve at four levels: hamstring tendon origin (level 1), lesser trochanter of the femur (level 2), gluteus maximus tendon insertion (level 3), and mid-femur (level 4). Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated. The CSA of the sciatic nerve bundle was measured using axial water-only image at each level. Comparisons of DTI parameters between the two groups were performed using the two-sample t test and Mann-Whitney U test. Interobserver agreement analysis was also conducted. RESULTS Interobserver agreement was excellent for all DTI parameter analyses. FA was significantly lower at all four levels in CMT patients than controls. RD, MD, and CSA were significantly higher at all four levels in CMT patients. AD was significantly higher at level 2 in CMT patients. CONCLUSION DTI assessment of the sciatic nerve is reproducible and can discriminate the demyelinating nerve pathology of CMT type I patients from normal nerves. The CSA of the sciatic nerve is also a potential parameter for diagnosing nerve abnormality in CMT type I patients. KEY POINTS • Diffusion tensor imaging parameters of the sciatic nerve at proximal to mid-femur level revealed significant differences between the Charcot-Marie-Tooth disease patients and controls. • The cross-sectional area of the sciatic nerve was significantly larger in the Charcot-Marie-Tooth disease patients. • Interobserver agreement was excellent (intraclass coefficient > 0.8) for all diffusion tensor imaging parameter analyses.
Collapse
Affiliation(s)
- Hyun Su Kim
- Department of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Ilwon-Ro, Gangnam-gu, Seoul, 135-710, South Korea
| | - Young Cheol Yoon
- Department of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Ilwon-Ro, Gangnam-gu, Seoul, 135-710, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Wook Jin
- Department of Radiology, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Jang Gyu Cha
- Department of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - Jae-Hun Kim
- Department of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Ilwon-Ro, Gangnam-gu, Seoul, 135-710, South Korea
| |
Collapse
|
43
|
Godel T, Pham M, Kele H, Kronlage M, Schwarz D, Brunée M, Heiland S, Bendszus M, Bäumer P. Diffusion tensor imaging in anterior interosseous nerve syndrome - functional MR Neurography on a fascicular level. NEUROIMAGE-CLINICAL 2019; 21:101659. [PMID: 30642759 PMCID: PMC6412076 DOI: 10.1016/j.nicl.2019.101659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 12/31/2022]
Abstract
Purpose By applying diffusor tensor imaging (DTI) in patients with anterior interosseous nerve syndrome (AINS), this proof of principle study aims to quantify the extent of structural damage of a peripheral nerve at the anatomical level of individual fascicles. Methods In this institutional review board approved prospective study 13 patients with spontaneous AINS were examined at 3 Tesla including a transversal T2-weighted turbo-spin-echo and a spin-echo echo-planar-imaging pulse sequence of the upper arm level. Calculations of quantitative DTI parameters including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) for median nerve lesion and non-lesion fascicles as well as ulnar and radial nerve were obtained. DTI values were compared to each other and to a previously published dataset of 58 healthy controls using one-way Analysis of Variance with Bonferroni correction and p-values <.05 were considered significant. Receiver operating characteristic (ROC) curves were performed to assess diagnostic accuracy. Results FA of median nerve lesion fascicles was decreased compared to median nerve non-lesion fascicles, ulnar nerve and radial nerve while MD, RD, and AD was increased (p < .001 for all parameters). Compared to median nerve values of healthy controls, lesion fascicles showed a significant decrease in FA while MD, RD, and AD was increased (p < .001 for all parameters). FA of median nerve non-lesion fascicles showed a weak significant decrease compared to healthy controls (p < .01) while there was no difference in MD, RD, and AD. ROC analyses revealed an excellent diagnostic accuracy of FA, MD and RD in the discrimination of median nerve lesion and non-lesion fascicles in AINS patients as well as in the discrimination of lesion fascicles and normative median nerve values of healthy controls. Conclusion By applying this functional MR Neurography technique in patients with AINS, this proof of principle study demonstrates that diffusion tensor imaging is feasible to quantify structural nerve injury at the anatomical level of individual fascicles. DTI is capable to quantify structural nerve injury on a fascicular level. Lesion- and non-lesion fascicles can be discriminated at high diagnostic accuracy. FA seems to be to most sensitive parameter in quantitative DTI.
Collapse
Affiliation(s)
- Tim Godel
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Mirko Pham
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; Department of Neuroradiology, Würzburg University Hospital, Josef-Schneider-Str. 11, 97080 Würzburg, Germany.
| | - Henrich Kele
- Center for Neurology and Clinical Neurophysiology, Neuer Wall 19, 20354 Hamburg, Germany.
| | - Moritz Kronlage
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Daniel Schwarz
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Merle Brunée
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Philipp Bäumer
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; Center for Radiology Dia.log, Vinzenz-von-Paul Str. 8, 84503 Altötting, Germany.
| |
Collapse
|
44
|
Magnetic Resonance Imaging of the Peripheral Nerve. Clin Neuroradiol 2019. [DOI: 10.1007/978-3-319-68536-6_76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
The Multidisciplinary Approach to the Diagnosis and Management of Nonobstetric Traumatic Brachial Plexus Injuries. AJR Am J Roentgenol 2018; 211:1319-1331. [DOI: 10.2214/ajr.18.19887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
46
|
Balsiger F, Steindel C, Arn M, Wagner B, Grunder L, El-Koussy M, Valenzuela W, Reyes M, Scheidegger O. Segmentation of Peripheral Nerves From Magnetic Resonance Neurography: A Fully-Automatic, Deep Learning-Based Approach. Front Neurol 2018; 9:777. [PMID: 30283397 PMCID: PMC6156270 DOI: 10.3389/fneur.2018.00777] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/27/2018] [Indexed: 01/05/2023] Open
Abstract
Diagnosis of peripheral neuropathies relies on neurological examinations, electrodiagnostic studies, and since recently magnetic resonance neurography (MRN). The aim of this study was to develop and evaluate a fully-automatic segmentation method of peripheral nerves of the thigh. T2-weighted sequences without fat suppression acquired on a 3 T MR scanner were retrospectively analyzed in 10 healthy volunteers and 42 patients suffering from clinically and electrophysiologically diagnosed sciatic neuropathy. A fully-convolutional neural network was developed to segment the MRN images into peripheral nerve and background tissues. The performance of the method was compared to manual inter-rater segmentation variability. The proposed method yielded Dice coefficients of 0.859 ± 0.061 and 0.719 ± 0.128, Hausdorff distances of 13.9 ± 26.6 and 12.4 ± 12.1 mm, and volumetric similarities of 0.930 ± 0.054 and 0.897 ± 0.109, for the healthy volunteer and patient cohorts, respectively. The complete segmentation process requires less than one second, which is a significant decrease to manual segmentation with an average duration of 19 ± 8 min. Considering cross-sectional area or signal intensity of the segmented nerves, focal and extended lesions might be detected. Such analyses could be used as biomarker for lesion burden, or serve as volume of interest for further quantitative MRN techniques. We demonstrated that fully-automatic segmentation of healthy and neuropathic sciatic nerves can be performed from standard MRN images with good accuracy and in a clinically feasible time.
Collapse
Affiliation(s)
- Fabian Balsiger
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
| | - Carolin Steindel
- Support Center for Advanced Neuroimaging, Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mirjam Arn
- Support Center for Advanced Neuroimaging, Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Benedikt Wagner
- Support Center for Advanced Neuroimaging, Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lorenz Grunder
- Support Center for Advanced Neuroimaging, Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marwan El-Koussy
- Support Center for Advanced Neuroimaging, Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Waldo Valenzuela
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland.,Support Center for Advanced Neuroimaging, Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mauricio Reyes
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
| | - Olivier Scheidegger
- Support Center for Advanced Neuroimaging, Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
47
|
Grimm A, Axer H, Heiling B, Winter N. Nerve ultrasound normal values – Readjustment of the ultrasound pattern sum score UPSS. Clin Neurophysiol 2018; 129:1403-1409. [DOI: 10.1016/j.clinph.2018.03.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/06/2018] [Accepted: 03/18/2018] [Indexed: 12/28/2022]
|
48
|
Paluch Ł, Noszczyk B, Nitek Ż, Walecki J, Osiak K, Pietruski P. Shear-wave elastography: a new potential method to diagnose ulnar neuropathy at the elbow. Eur Radiol 2018; 28:4932-4939. [PMID: 29858636 PMCID: PMC6223854 DOI: 10.1007/s00330-018-5517-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/19/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
Objectives The primary aim of this study was to verify if shear-wave elastography (SWE) can be used to diagnose ulnar neuropathy at the elbow (UNE). The secondary objective was to compare the cross-sectional areas (CSA) of the ulnar nerve in the cubital tunnel and to determine a cut-off value for this parameter accurately identifying persons with UNE. Methods The study included 34 patients with UNE (mean age, 59.35 years) and 38 healthy controls (mean age, 57.42 years). Each participant was subjected to SWE of the ulnar nerve at three levels: in the cubital tunnel (CT) and at the distal arm (DA) and mid-arm (MA). The CSA of the ulnar nerve in the cubital tunnel was estimated by means of ultrasonographic imaging. Results Patients with UNE presented with significantly greater ulnar nerve stiffness in the cubital tunnel than the controls (mean, 96.38 kPa vs. 33.08 kPa, p < 0.001). Ulnar nerve stiffness of 61 kPa, CT to DA stiffness ratio equal 1.68, and CT to MA stiffness ratio of 1.75 provided 100% specificity, sensitivity, positive and negative predictive value in the detection of UNE. Mean CSA of the ulnar nerve in the cubital tunnel turned out to be significantly larger in patients with UNE than in healthy controls (p < 0.001). A weak positive correlation was found in the UNE group between the ulnar nerve CSA and stiffness (R = 0.31, p = 0.008). Conclusions SWE seems to be a promising, reliable and simple quantitative adjunct test to support the diagnosis of UNE. Key Points • SWE enables reliable detection of cubital tunnel syndrome • Significant increase of entrapped ulnar nerve stiffness is observed in UNE • SWE is a perspective screening tool for early detection of compressive neuropathies
Collapse
Affiliation(s)
- Łukasz Paluch
- Department of Radiology, Medical Centre of Postgraduate Education, Gruca Orthopaedic and Trauma Teaching Hospital, Otwock, Poland
| | - Bartłomiej Noszczyk
- Department of Plastic and Reconstructive Surgery, Medical Centre of Postgraduate Education, Prof. W. Orlowski Memorial Hospital, Czerniakowska 231 Street, 00-416, Warsaw, Mazowieckie, Poland.
| | - Żaneta Nitek
- Department of Radiology, Medical Centre of Postgraduate Education, Gruca Orthopaedic and Trauma Teaching Hospital, Otwock, Poland
| | - Jerzy Walecki
- Department of Radiology, Medical Centre of Postgraduate Education, Gruca Orthopaedic and Trauma Teaching Hospital, Otwock, Poland
| | - Katarzyna Osiak
- Department of Plastic and Reconstructive Surgery, Medical Centre of Postgraduate Education, Prof. W. Orlowski Memorial Hospital, Czerniakowska 231 Street, 00-416, Warsaw, Mazowieckie, Poland
| | - Piotr Pietruski
- Department of Plastic and Reconstructive Surgery, Medical Centre of Postgraduate Education, Prof. W. Orlowski Memorial Hospital, Czerniakowska 231 Street, 00-416, Warsaw, Mazowieckie, Poland.,Department of Applied Pharmacy and Bioengineering, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
49
|
Oudeman J, Verhamme C, Engbersen MP, Caan MWA, Maas M, Froeling M, Nederveen AJ, Strijkers GJ. Diffusion tensor MRI of the healthy brachial plexus. PLoS One 2018; 13:e0196975. [PMID: 29742154 PMCID: PMC5942843 DOI: 10.1371/journal.pone.0196975] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/24/2018] [Indexed: 12/17/2022] Open
Abstract
Introduction Diffusion Tensor MRI (DT-MRI) is a promising tool for the evaluation of brachial plexus pathology. Therefore, we introduce and evaluate a fast DT-MRI protocol (8min33s scanning with 5–10 min postprocessing time) for the brachial plexus. Materials and methods Thirty healthy volunteers within three age-groups (18–35, 36–55, and > 56) received DT-MRI of the brachial-plexus twice. Means of fractional-anisotropy (FA), mean-diffusivity (MD), axial-diffusivity (AD), and radial-diffusivity (RD) for the individual roots and trunks were evaluated. A stepwise forward approach was applied to test for correlations with age, sex, body-mass-index (BMI), bodysurface, height, and bodyweight. Within-subject, intra-rater, and inter-rater repeatability were assessed using Bland-Altman analysis, coefficient of variation (CV), intraclass-correlation (ICC), and minimal detectable difference (MDD). Results No differences between sides and root levels were found. MD, AD, and RD correlated (P < 0.05) with bodyweight. Within-subject quantification proved repeatable with CVs for FA, MD, AD, and RD of 16%, 12%, 11%, and 14%, respectively. Discussion The DT-MRI protocol was fast and repeatable. Found correlations should be considered in future studies of brachial plexus pathology.
Collapse
Affiliation(s)
- Jos Oudeman
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
- * E-mail:
| | - Camiel Verhamme
- Department of Neurology, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Mattan W. A. Caan
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Mario Maas
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center, Utrecht, the Netherlands
| | - Aart J. Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Gustav J. Strijkers
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
50
|
Magnetic Resonance Imaging of the Peripheral Nerve. Clin Neuroradiol 2018. [DOI: 10.1007/978-3-319-61423-6_76-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|