1
|
Wang LL, Zhang FC, Xu HX, Deng DD, Ren BJ, Tan Q, Liu YX, Zhao WH, Lu JL. Advances in imaging techniques for tumor microenvironment evaluation in hepatocellular carcinoma. World J Gastroenterol 2025; 31:103454. [PMID: 40093677 PMCID: PMC11886532 DOI: 10.3748/wjg.v31.i10.103454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/31/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
The tumor microenvironment (TME) plays a critical role in the development and treatment of liver cancer, which ranks sixth in incidence and third in mortality worldwide, according to the "Global Cancer Statistics 2022". Hepatocellular carcinoma (HCC), the most common form of liver cancer, is heavily influenced by the TME, which affects tumor growth, invasion, metastasis, and the response to various treatments. Despite advancements in surgery, liver transplantation, targeted therapies, and immunotherapy, the complexity of the TME often limits treatment efficacy, especially in advanced-stage HCC cases. The TME consists of a dynamic interaction between tumor cells, immune cells, fibroblasts, blood vessels, and signaling molecules, all of which contribute to cancer progression and therapy resistance. Assessing the HCC TME is essential for designing effective, personalized treatments and improving patient outcomes. Recent research highlights the value of imaging technologies as non-invasive tools to evaluate the TME, offering new possibilities for more targeted therapies and better prognosis monitoring in HCC patients.
Collapse
Affiliation(s)
- Li-Li Wang
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Fa-Chang Zhang
- First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Han-Xin Xu
- First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Dian-Dian Deng
- First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Bing-Jie Ren
- First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Qi Tan
- First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Ya-Xin Liu
- First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Wen-Hui Zhao
- First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Jia-Le Lu
- First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou 730030, Gansu Province, China
| |
Collapse
|
2
|
Sui C, Chen K, Ding E, Tan R, Li Y, Shen J, Xu W, Li X. 18F-FDG PET/CT-based intratumoral and peritumoral radiomics combining ensemble learning for prognosis prediction in hepatocellular carcinoma: a multi-center study. BMC Cancer 2025; 25:300. [PMID: 39972270 PMCID: PMC11841186 DOI: 10.1186/s12885-025-13649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Radiomic models combining intratumoral with peritumoral features are potentially beneficial to enhance the predictive performance. This study aimed to identify the optimal 18F-FDG PET/CT-derived radiomic models for prediction of prognosis in hepatocellular carcinoma (HCC). METHODS A total of 135 HCC patients from two institutions were retrospectively included. Four peritumoral regions were defined by dilating tumor region with thicknesses of 2 mm, 4 mm, 6 mm, and 8 mm, respectively. Based on segmentation of intratumoral, peritumoral and integrated volume of interest (VOI), corresponding radiomic features were extracted respectively. After feature selection, a total of 15 intratumoral radiomic models were constructed based on five ensemble learning algorithms and radiomic features from three image modalities. Then, the optimal combination of ensemble learning algorithms and image modality in the intratumoral models was selected to develop subsequent peritumoral radiomic models and integrated radiomic models. Finally, a nomogram was developed incorporating the optimal radiomic model with clinical independent predictors to achieve an intuitive representation of the prediction model. RESULTS Among the intratumoral radiomic models, the one which combined PET/CT-based radiomic features with SVM classifier outperformed other models. With the addition of peritumoral information, the integrated model based on an integration of intratumoral and 2 mm-peritumoral VOI, was finally approved as the optimal radiomic model with a mean AUC of 0.831 in the internal validation, and a highest AUC of 0.839 (95%CI:0.718-0.960) in the external test. Furthermore, a nomogram incorporating the optimal radiomic model with HBV infection and TNM status, was able to predict the prognosis for HCC with an AUC of 0.889 (95%CI: 0.799-0.979). CONCLUSIONS The integrated intratumoral and peritumoral radiomic model, especially for a 2 mm peritumoral region, was verified as the optimal radiomic model to predict the overall survival of HCC. Furthermore, combination of integrated radiomic model with significant clinical parameter contributed to further enhance the prediction efficacy. TRIAL REGISTRATION This study was a retrospective study, so it was free from registration.
Collapse
Affiliation(s)
- Chunxiao Sui
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Kun Chen
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Enci Ding
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Rui Tan
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yue Li
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Jie Shen
- Department of Nuclear Medicine, Tianjin First Central Hospital, Tianjin, 300192, China.
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
3
|
Guo Y, Li T, Gong B, Hu Y, Wang S, Yang L, Zheng C. From Images to Genes: Radiogenomics Based on Artificial Intelligence to Achieve Non-Invasive Precision Medicine in Cancer Patients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408069. [PMID: 39535476 PMCID: PMC11727298 DOI: 10.1002/advs.202408069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/19/2024] [Indexed: 11/16/2024]
Abstract
With the increasing demand for precision medicine in cancer patients, radiogenomics emerges as a promising frontier. Radiogenomics is originally defined as a methodology for associating gene expression information from high-throughput technologies with imaging phenotypes. However, with advancements in medical imaging, high-throughput omics technologies, and artificial intelligence, both the concept and application of radiogenomics have significantly broadened. In this review, the history of radiogenomics is enumerated, related omics technologies, the five basic workflows and their applications across tumors, the role of AI in radiogenomics, the opportunities and challenges from tumor heterogeneity, and the applications of radiogenomics in tumor immune microenvironment. The application of radiogenomics in positron emission tomography and the role of radiogenomics in multi-omics studies is also discussed. Finally, the challenges faced by clinical transformation, along with future trends in this field is discussed.
Collapse
Affiliation(s)
- Yusheng Guo
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Tianxiang Li
- Department of UltrasoundState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical. SciencesPeking Union Medical CollegeBeijing100730China
| | - Bingxin Gong
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Yan Hu
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Sichen Wang
- School of Life Science and TechnologyComputational Biology Research CenterHarbin Institute of TechnologyHarbin150001China
| | - Lian Yang
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| | - Chuansheng Zheng
- Department of RadiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
| |
Collapse
|
4
|
Peng K, Zhang X, Li Z, Wang Y, Sun HW, Zhao W, Pan J, Zhang XY, Wu X, Yu X, Wu C, Weng Y, Lin X, Liu D, Zhan M, Xu J, Zheng L, Zhang Y, Lu L. Myeloid response evaluated by noninvasive CT imaging predicts post-surgical survival and immune checkpoint therapy benefits in patients with hepatocellular carcinoma. Front Immunol 2024; 15:1493735. [PMID: 39687612 PMCID: PMC11646988 DOI: 10.3389/fimmu.2024.1493735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Background The potential of preoperative CT in the assessment of myeloid immune response and its application in predicting prognosis and immune-checkpoint therapy outcomes in hepatocellular carcinoma (HCC) has not been explored. Methods A total of 165 patients with pathological slides and multi-phase CT images were included to develop a radiomics signature for predicting the imaging-based myeloid response score (iMRS). Overall survival (OS) and recurrence-free survival (RFS) were assessed according to the iMRS risk group and validated in a surgical resection cohort (n = 98). The complementary advantage of iMRS incorporating significant clinicopathologic factors was investigated by the Cox proportional hazards analysis. Additionally, the iMRS in inferring the benefits of immune checkpoint therapy was explored in an immunotherapy cohort (n = 36). Results We showed that AUCs of the optimal radiomics signature for iMRS were 0.941 [95% confidence interval (CI), 0.909-0.973] and 0.833 (0.798-0.868) in the training and test cohorts, respectively. High iMRS was associated with poor RFS and OS. The prognostic performance of the Clinical-iMRS nomogram was better than that of a single parameter (p < 0.05), with a 1-, 3-, and 5-year C-index for RFS of 0.729, 0.709, and 0.713 in the training, test, and surgical resection cohorts, respectively. A high iMRS score predicted a higher proportion of objective response (vs. progressive disease or stable disease; odds ratio, 2.311; 95% CI, 1.144-4.672; p = 0.020; AUC, 0.718) in patients treated with anti-PD-1 and PD-L1. Conclusions iMRS may provide a promising method for predicting local myeloid immune responses in HCC patients, inferring postsurgical prognosis, and evaluating benefits of immune checkpoint therapy.
Collapse
Affiliation(s)
- Kangqiang Peng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
- Medical AI Lab, Hebei Provincial Engineering Research Center for AI-Based Cancer Treatment Decision-Making, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhongliang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
| | - Yongchun Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Wei Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
- Department of Management, School of Business, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Jielin Pan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
- Department of Radiology, Zhuhai People’s Hospital, Jinan University, Zhuhai, China
| | - Xiao-Yang Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Xiaoling Wu
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangrong Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
- Department of Radiology, Zhuhai People’s Hospital, Jinan University, Zhuhai, China
| | - Chong Wu
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yulan Weng
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaowen Lin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
| | - Dingjie Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
- The Department of Cerebrovascular Disease, Zhuhai People’s Hospital, Jinan University, Zhuhai, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
- Guangzhou First People’s Hospital, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jing Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Limin Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaojun Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital (Zhuhai Clinical Medical College), Jinan University, Zhuhai, China
- Guangzhou First People’s Hospital, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Sui C, Su Q, Chen K, Tan R, Wang Z, Liu Z, Xu W, Li X. 18F-FDG PET/CT-based habitat radiomics combining stacking ensemble learning for predicting prognosis in hepatocellular carcinoma: a multi-center study. BMC Cancer 2024; 24:1457. [PMID: 39604895 PMCID: PMC11600565 DOI: 10.1186/s12885-024-13206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND This study aims to develop habitat radiomic models to predict overall survival (OS) for hepatocellular carcinoma (HCC), based on the characterization of the intratumoral heterogeneity reflected in 18F-FDG PET/CT images. METHODS A total of 137 HCC patients from two institutions were retrospectively included. First, intratumoral habitats were achieved by a two-step unsupervised clustering process based on k-means clustering. Second, a total of 4032 radiomic features were extracted based on each habitat, including 2016 PET-based and 2016 CT-based radiomic features. Then, after feature selection, the stacking ensemble learning approach which combined six machine learning classifiers as the first-level learners with Cox proportional hazards regression as the second-level learner, was employed to build multiple radiomic models. Finally, the optimal model was selected based on the calculation of the C-index, and a combined model integrating with a clinical model was also constructed to identify the potentially complementary effect. RESULTS Three spatially distinct habitats were identified in the two cohorts. Among a total of 30 stacking ensemble learning models established based on different combinations of 5 types of segmented volumes of interest (VOIs) with 6 types of classifiers, the MLP-Cox-habitat-2 model was selected as the optimal radiomic model with a C-index of 0.702 in the external validation cohort. Furthermore, the combined model integrating the optimal radiomic model with the clinical model achieved an improved C-index of 0.747. Consistently, the combined model outperformed the other models for OS prediction, with a time-dependent AUC of 0.835, 0.828, and 0.800 in the 1-year, 2-year, and 3-year OS, respectively. CONCLUSION 18F-FDG PET/CT-based habitat radiomics outperformed traditional radiomics in OS prediction for HCC, with a further improved predictive power by integrating with the clinical model. The optimal combined habitat model was potentially promising in guiding individualized treatment for HCC. TRIAL REGISTRATION This study was a retrospective study, so it was free from registration.
Collapse
Affiliation(s)
- Chunxiao Sui
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Qian Su
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Kun Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Rui Tan
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Ziyang Wang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300060, China
| | - Zifan Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| |
Collapse
|
6
|
Huang Y, Qian H. Advancing Hepatocellular Carcinoma Management Through Peritumoral Radiomics: Enhancing Diagnosis, Treatment, and Prognosis. J Hepatocell Carcinoma 2024; 11:2159-2168. [PMID: 39525830 PMCID: PMC11546143 DOI: 10.2147/jhc.s493227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is associated with high mortality rates due to late detection and aggressive progression. Peritumoral radiomics, an emerging technique that quantitatively analyzes the tissue surrounding the tumor, has shown significant potential in enhancing the management of HCC. This paper examines the role of peritumoral radiomics in improving diagnostic accuracy, guiding personalized treatment strategies, and refining prognostic assessments. By offering unique insights into the tumor microenvironment, peritumoral radiomics enables more precise patient stratification and informs clinical decision-making. However, the integration of peritumoral radiomics into routine clinical practice faces several challenges. Addressing these challenges through continued research and innovation is crucial for the successful implementation of peritumoral radiomics in HCC management, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Yanhua Huang
- Department of Ultrasound, Shaoxing People’s Hospital, Shaoxing, People’s Republic of China
| | - Hongwei Qian
- Department of Hepatobiliary and Pancreatic Surgery, Shaoxing People’s Hospital, Shaoxing, People’s Republic of China
- Shaoxing Key Laboratory of Minimally Invasive Abdominal Surgery and Precise Treatment of Tumor, Shaoxing, People’s Republic of China
| |
Collapse
|
7
|
Bitar R, Salem R, Finn R, Greten TF, Goldberg SN, Chapiro J, Atzen S. Interventional Oncology Meets Immuno-oncology: Combination Therapies for Hepatocellular Carcinoma. Radiology 2024; 313:e232875. [PMID: 39560477 PMCID: PMC11605110 DOI: 10.1148/radiol.232875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 11/20/2024]
Abstract
The management of hepatocellular carcinoma (HCC) is undergoing transformational changes due to the emergence of various novel immunotherapies and their combination with image-guided locoregional therapies. In this setting, immunotherapy is expected to become one of the standards of care in both neoadjuvant and adjuvant settings across all disease stages of HCC. Currently, more than 50 ongoing prospective clinical trials are investigating various end points for the combination of immunotherapy with both percutaneous and catheter-directed therapies. This review will outline essential tumor microenvironment mechanisms responsible for disease evolution and therapy resistance, discuss the rationale for combining locoregional therapy with immunotherapy, summarize ongoing clinical trials, and report on developing imaging end points and novel biomarkers that are relevant to both diagnostic and interventional radiologists participating in the management of HCC.
Collapse
Affiliation(s)
- Ryan Bitar
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Riad Salem
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Richard Finn
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Tim F. Greten
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - S. Nahum Goldberg
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Julius Chapiro
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Sarah Atzen
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| |
Collapse
|
8
|
Shen Q, Xiang C, Huang K, Xu F, Zhao F, Han Y, Liu X, Li Y. Preoperative CT-based intra- and peri-tumoral radiomic models for differentiating benign and malignant tumors of the parotid gland: a two-center study. Am J Cancer Res 2024; 14:4445-4458. [PMID: 39417193 PMCID: PMC11477817 DOI: 10.62347/axqw1100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE To investigate the ability of intra- and peritumoral radiomics based on three-phase computed tomography (CT) to distinguish between malignant and benign parotid tumors. METHODS We conducted a retrospective analysis of data from 374 patients with parotid gland tumors, all confirmed by histopathology. A total of 321 patients from Center 1 (January 2014 to January 2023) were randomly divided into the training set and internal testing set at a ratio of 7:3, whereas 53 patients from Center 2 (January 2020 to June 2022) constituted the external testing set. CT images of both the tumor and surrounding areas (2 mm and 5 mm areas surrounding the tumor) were reviewed, and their radiomic features were extracted for the construction of different radiomic models. In addition, a combined clinical-radiomic model was developed using multivariate logistic regression analysis. The model's predictive performance was evaluated using decision curve analysis (DCA) and receiver operating characteristic (ROC) curves. RESULTS Among the models evaluated, Tumor + External2 model demonstrated superior predictive performance. The areas under the curve (AUCs) of this model were 0.986 in the training set, 0.827 in the internal test set, and 0.749 in the external test set. For the clinical model, independent predictive factors included symptoms, boundaries, and lymph node swelling. The combined clinical-radiomic model achieved AUCs of 0.981, 0.842, and 0.749 in the three cohorts, outperforming both the Tumor model and the clinical model individually. CONCLUSION The CT-based radiomic models incorporating intratumoral and peritumoral radiomic features can effectively distinguish malignant from benign parotid tumors, and the predictive accuracy is further improved by incorporating clinically independent predictors.
Collapse
Affiliation(s)
- Qian Shen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
- Department of Radiology, The Affiliated Stomatology Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Cong Xiang
- School of Artificial Intelligence, Chongqing University of TechnologyChongqing 400016, China
| | - Kui Huang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Feng Xu
- Department of Radiology, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Fulin Zhao
- Department of Radiology, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Yongliang Han
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Xiaojuan Liu
- School of Artificial Intelligence, Chongqing University of TechnologyChongqing 400016, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| |
Collapse
|
9
|
Che F, Wei Y, Xu Q, Li Q, Zhang T, Wang LY, Li M, Yuan F, Song B. Noninvasive identification of SOX9 status using radiomics signatures may help construct personalized treatment strategy in hepatocellular carcinoma. Abdom Radiol (NY) 2024; 49:3024-3035. [PMID: 38446180 DOI: 10.1007/s00261-024-04190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/31/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVES To develop and validate a radiomics-based model for predicting SOX9-positive hepatocellular carcinoma (HCC) using preoperative contrast-enhanced computed tomography (CT) images. METHODS From January 2013 to April 2017, patients with histologically proven HCC who received systemic sorafenib treatment after curative resection were retrospectively enrolled. Radiomic features were extracted from portal venous phase CT images and selected to build a radiomics score using logistic regression analysis. The factors associated with SOX9 expression were selected and combined by univariate and multivariate analyses to establish clinico-liver imaging (CL) model and clinico-liver imaging-radiomics (CLR) model. Diagnostic performance was measured by area under curve (AUC). Overall survival (OS) and recurrence-free survival (RFS) rates were compared using Kaplan-Meier method. RESULTS A total of 108 patients (training cohort: n = 80; validation cohort: n = 28) were enrolled. Multivariate analyses revealed that the albumin-bilirubin grade and tumor size were significant independent factors for predicting SOX9-positive HCCs and were included in the CL model. The CLR model integrating the radiomics score with albumin-bilirubin grade and tumor size showed better discriminative performance than the CL model with AUCs of 0.912 and 0.790 in the training and validation cohorts. Survival curves for RFS and OS showed that SOX9 expression was closely related to the prognosis of HCC patients. RFS and OS rates were significantly lower in patients with SOX9-positive than SOX9-negative (51.02% vs. 75.00% at 1-year RFS rates; 76.92% vs. 94.94% at 2-year OS rates). CONCLUSION Radiomics signatures may serve as noninvasive predictors for SOX9 status evaluation in patients with HCC and may aid in constructing individualized treatment strategies.
Collapse
Affiliation(s)
- Feng Che
- Department of Radiology, West China Hospital, Sichuan University, No 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, No 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Qing Xu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Li
- Department of Radiology, West China Hospital, Sichuan University, No 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Tong Zhang
- Department of Radiology, West China Hospital, Sichuan University, No 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Li-Ye Wang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Man Li
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Fang Yuan
- Department of Radiology, West China Hospital, Sichuan University, No 37, Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No 37, Guoxue Alley, Chengdu, 610041, Sichuan, China.
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China.
| |
Collapse
|
10
|
Wu Z, Lin Q, Wang H, Chen J, Wang G, Fu G, Li L, Bian T. Intratumoral and Peritumoral Radiomics Based on Preoperative MRI for Evaluation of Programmed Cell Death Ligand-1 Expression in Breast Cancer. J Magn Reson Imaging 2024; 60:588-599. [PMID: 37916918 DOI: 10.1002/jmri.29109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Programmed cell death ligand-1 (PD-L1) is a promising target for immune checkpoint blockade therapy in breast cancer. However, the preoperative evaluation of PD-L1 expression in breast cancer is rarely explored. PURPOSE To determine the ability of radiomics signatures based on preoperative dynamic contrast-enhanced (DCE) MRI to evaluate PD-L1 expression in breast cancer. STUDY TYPE Retrospective. POPULATION 196 primary breast cancer patients with preoperative MRI and postoperative pathological evaluation of PD-L1 expression, divided into training (n = 137, 28 PD-L1-positive) and test cohorts (n = 59, 12 PD-L1-positive). FIELD STRENGTH/SEQUENCE 3.0T; volume imaging for breast assessment DCE sequence. ASSESSMENT Radiomics features were extracted from the first phase of DCE-MRI by using the minimum redundancy maximum relevance method and least absolute shrinkage and selection operator algorithm. Three radiomics signatures were constructed based on the intratumoral, peritumoral, and combined intra- and peritumoral regions. The performance of the signatures was assessed using area under the receiver operating characteristic (ROC) curve (AUC), sensitivity, specificity, and accuracy. STATISTICAL TESTS Univariable and multivariable logistic regression analysis, t-tests, chi-square tests, Fisher exact test or Yates correction, ROC analysis, and one-way analysis of variance. P < 0.05 was considered significant. RESULTS In the test cohort, the combined radiomics signature (AUC, 0.853) exhibited superior performance compared to the intratumoral (AUC, 0.816; P = 0.528) and peritumoral radiomics signatures (AUC, 0.846; P = 0.905) in PD-L1 status evaluation, although the differences did not reach statistical significance. DATA CONCLUSION Intratumoral and peritumoral radiomics signatures based on preoperative breast MRI showed some potential accuracy for the non-invasive evaluation of PD-L1 status in breast cancer. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Zengjie Wu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qing Lin
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haibo Wang
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jingjing Chen
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guanqun Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guangming Fu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lili Li
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tiantian Bian
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
11
|
Fiz F, Ragaini EM, Sirchia S, Masala C, Viganò S, Francone M, Cavinato L, Lanzarone E, Ammirabile A, Viganò L. Radiomic Gradient in Peritumoural Tissue of Liver Metastases: A Biomarker for Clinical Practice? Analysing Density, Entropy, and Uniformity Variations with Distance from the Tumour. Diagnostics (Basel) 2024; 14:1552. [PMID: 39061691 PMCID: PMC11276558 DOI: 10.3390/diagnostics14141552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The radiomic analysis of the tissue surrounding colorectal liver metastases (CRLM) enhances the prediction accuracy of pathology data and survival. We explored the variation of the textural features in the peritumoural tissue as the distance from CRLM increases. We considered patients with hypodense CRLMs >10 mm and high-quality computed tomography (CT). In the portal phase, we segmented (1) the tumour, (2) a series of concentric rims at a progressively increasing distance from CRLM (from one to ten millimetres), and (3) a cylinder of normal parenchyma (Liver-VOI). Sixty-three CRLMs in 51 patients were analysed. Median peritumoural HU values were similar to Liver-VOI, except for the first millimetre around the CRLM. Entropy progressively decreased (from 3.11 of CRLM to 2.54 of Liver-VOI), while uniformity increased (from 0.135 to 0.199, p < 0.001). At 10 mm from CRLM, entropy was similar to the Liver-VOI in 62% of cases and uniformity in 46%. In small CRLMs (≤30 mm) and responders to chemotherapy, normalisation of entropy and uniformity values occurred in a higher proportion of cases and at a shorter distance. The radiomic analysis of the parenchyma surrounding CRLMs unveiled a wide halo of progressively decreasing entropy and increasing uniformity despite a normal radiological aspect. Underlying pathology data should be investigated.
Collapse
Affiliation(s)
- Francesco Fiz
- Nuclear Medicine Unit, Department of Diagnostic Imaging, Ente Ospedaliero “Ospedali Galliera”, 16128 Genoa, Italy
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital, 72076 Tübingen, Germany
| | - Elisa Maria Ragaini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (E.M.R.); (M.F.); (A.A.)
| | - Sara Sirchia
- Department of Management, Information and Production Engineering, University of Bergamo, 24129 Bergamo, Italy; (S.S.); (C.M.); (E.L.)
| | - Chiara Masala
- Department of Management, Information and Production Engineering, University of Bergamo, 24129 Bergamo, Italy; (S.S.); (C.M.); (E.L.)
| | - Samuele Viganò
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, 20133 Milan, Italy; (S.V.); (L.C.)
| | - Marco Francone
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (E.M.R.); (M.F.); (A.A.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Lara Cavinato
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, 20133 Milan, Italy; (S.V.); (L.C.)
| | - Ettore Lanzarone
- Department of Management, Information and Production Engineering, University of Bergamo, 24129 Bergamo, Italy; (S.S.); (C.M.); (E.L.)
| | - Angela Ammirabile
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (E.M.R.); (M.F.); (A.A.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Luca Viganò
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (E.M.R.); (M.F.); (A.A.)
- Hepatobiliary Unit, Department of Minimally Invasive General & Oncologic Surgery, Humanitas Gavazzeni University Hospital, 24125 Bergamo, Italy
| |
Collapse
|
12
|
Yang C, Yang HC, Luo YG, Li FT, Cong TH, Li YJ, Ye F, Li X. Predicting Survival Using Whole-Liver MRI Radiomics in Patients with Hepatocellular Carcinoma After TACE Refractoriness. Cardiovasc Intervent Radiol 2024; 47:964-977. [PMID: 38750156 DOI: 10.1007/s00270-024-03730-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/07/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE To develop a model based on whole-liver radiomics features of pre-treatment enhanced MRI for predicting the prognosis of hepatocellular carcinoma (HCC) patients undergoing continued transarterial chemoembolization (TACE) after TACE-resistance. MATERIALS AND METHODS Data from 111 TACE-resistant HCC patients between January 2014 and March 2018 were retrospectively collected. At a ratio of 7:3, patients were randomly assigned to developing and validation cohorts. The whole-liver were manually segmented, and the radiomics signature was extracted. The tumor and liver radiomics score (TLrad-score) was calculated. Models were trained by machine learning algorithms and their predictive efficacies were compared. RESULTS Tumor stage, tumor burden, body mass index, alpha-fetoprotein, and vascular invasion were revealed as independent risk factors for survival. The model trained by Random Forest algorithms based on tumor burden, whole-liver radiomics signature, and clinical features had the highest predictive efficacy, with c-index values of 0.85 and 0.80 and areas under the ROC curve of 0.96 and 0.83 in the developing cohort and validation cohort, respectively. In the high-rad-score group (TLrad-score > - 0.34), the median overall survival (mOS) was significantly shorter than in the low-rad-score group (17 m vs. 37 m, p < 0.001). A shorter mOS was observed in patients with high tumor burden compared to those with low tumor burden (14 m vs. 29 m, p = 0.007). CONCLUSION The combined radiomics model from whole-liver signatures may effectively predict survival for HCC patients continuing TACE after TACE refractoriness. The TLrad-score and tumor burden are potential prognostic markers for TACE therapy following TACE-resistance.
Collapse
Affiliation(s)
- Chao Yang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Hong-Cai Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yin-Gen Luo
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Fu-Tian Li
- Huiying Medical Technology (Beijing) Co., Ltd, Beijing, 100192, China
| | - Tian-Hao Cong
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yu-Jie Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Feng Ye
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
13
|
Holder AM, Dedeilia A, Sierra-Davidson K, Cohen S, Liu D, Parikh A, Boland GM. Defining clinically useful biomarkers of immune checkpoint inhibitors in solid tumours. Nat Rev Cancer 2024; 24:498-512. [PMID: 38867074 DOI: 10.1038/s41568-024-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Although more than a decade has passed since the approval of immune checkpoint inhibitors (ICIs) for the treatment of melanoma and non-small-cell lung, breast and gastrointestinal cancers, many patients still show limited response. US Food and Drug Administration (FDA)-approved biomarkers include programmed cell death 1 ligand 1 (PDL1) expression, microsatellite status (that is, microsatellite instability-high (MSI-H)) and tumour mutational burden (TMB), but these have limited utility and/or lack standardized testing approaches for pan-cancer applications. Tissue-based analytes (such as tumour gene signatures, tumour antigen presentation or tumour microenvironment profiles) show a correlation with immune response, but equally, these demonstrate limited efficacy, as they represent a single time point and a single spatial assessment. Patient heterogeneity as well as inter- and intra-tumoural differences across different tissue sites and time points represent substantial challenges for static biomarkers. However, dynamic biomarkers such as longitudinal biopsies or novel, less-invasive markers such as blood-based biomarkers, radiomics and the gut microbiome show increasing potential for the dynamic identification of ICI response, and patient-tailored predictors identified through neoadjuvant trials or novel ex vivo tumour models can help to personalize treatment. In this Perspective, we critically assess the multiple new static, dynamic and patient-specific biomarkers, highlight the newest consortia and trial efforts, and provide recommendations for future clinical trials to make meaningful steps forwards in the field.
Collapse
Affiliation(s)
- Ashley M Holder
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sonia Cohen
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David Liu
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Aparna Parikh
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
14
|
Li J, Li S, Zhou W, Duan Y, Zheng H. Enhancing malignancy prediction in thyroid nodules: A multimodal ultrasound radiomics approach in TI-RADS category 4 lesions. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024; 52:511-521. [PMID: 38465504 DOI: 10.1002/jcu.23662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/03/2024] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
PURPOSE To explore the diagnostic value of intralesional and perilesional radiomics based on multimodal ultrasound (US) images in predicting the malignant ACR TIRADS 4 thyroid nodules (TNs). METHODS A total of 297 cases of TNs in patients who underwent preoperative thyroid grayscale US and shear wave elastography (STE) were enrolled (training cohort: n = 150, internal validation cohort: n = 77, external validation cohort: n = 70). Regions of interests (ROIs) were delineated on grayscale US images and STE images, and then an isotropic expansion of 1.0, 1.5, 2.0, 2.5, and 3.0 mm was applied. Predictive models were established using recursive feature elimination-support vector machines (RFE-SVM) based on radiomics features calculated by random forest. RESULTS The perilesional ROI1.5mm expansion achieved the highest area under curve (AUC) (AUC: 0.753 for grayscale US, 0.728 for STE; 95% confidence interval (CI): 0.664-0.743, 0.684-0.739, respectively). The joint model had the highest AUC values of 0.936 in the training dataset, 0.926 in internal dataset, and 0.893 in external dataset. The calibration curve showed good consistency and the decision curve indicated a greater clinical net benefit of the joint model. CONCLUSION Joint model containing perilesional radiomics (1.5 mm) had significant value in predicting the malignant ACR TIRADS 4 TNs.
Collapse
Affiliation(s)
- Jian Li
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Siyao Li
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Ultrasound, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong Province, China
| | - Wang Zhou
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yayang Duan
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Hui Zheng
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
15
|
Heo S, Park HJ, Lee SS. Prognostication of Hepatocellular Carcinoma Using Artificial Intelligence. Korean J Radiol 2024; 25:550-558. [PMID: 38807336 PMCID: PMC11136947 DOI: 10.3348/kjr.2024.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 05/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a biologically heterogeneous tumor characterized by varying degrees of aggressiveness. The current treatment strategy for HCC is predominantly determined by the overall tumor burden, and does not address the diverse prognoses of patients with HCC owing to its heterogeneity. Therefore, the prognostication of HCC using imaging data is crucial for optimizing patient management. Although some radiologic features have been demonstrated to be indicative of the biologic behavior of HCC, traditional radiologic methods for HCC prognostication are based on visually-assessed prognostic findings, and are limited by subjectivity and inter-observer variability. Consequently, artificial intelligence has emerged as a promising method for image-based prognostication of HCC. Unlike traditional radiologic image analysis, artificial intelligence based on radiomics or deep learning utilizes numerous image-derived quantitative features, potentially offering an objective, detailed, and comprehensive analysis of the tumor phenotypes. Artificial intelligence, particularly radiomics has displayed potential in a variety of applications, including the prediction of microvascular invasion, recurrence risk after locoregional treatment, and response to systemic therapy. This review highlights the potential value of artificial intelligence in the prognostication of HCC as well as its limitations and future prospects.
Collapse
Affiliation(s)
- Subin Heo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyo Jung Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Haghshomar M, Rodrigues D, Kalyan A, Velichko Y, Borhani A. Leveraging radiomics and AI for precision diagnosis and prognostication of liver malignancies. Front Oncol 2024; 14:1362737. [PMID: 38779098 PMCID: PMC11109422 DOI: 10.3389/fonc.2024.1362737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Liver tumors, whether primary or metastatic, have emerged as a growing concern with substantial global health implications. Timely identification and characterization of liver tumors are pivotal factors in order to provide optimum treatment. Imaging is a crucial part of the detection of liver tumors; however, conventional imaging has shortcomings in the proper characterization of these tumors which leads to the need for tissue biopsy. Artificial intelligence (AI) and radiomics have recently emerged as investigational opportunities with the potential to enhance the detection and characterization of liver lesions. These advancements offer opportunities for better diagnostic accuracy, prognostication, and thereby improving patient care. In particular, these techniques have the potential to predict the histopathology, genotype, and immunophenotype of tumors based on imaging data, hence providing guidance for personalized treatment of such tumors. In this review, we outline the progression and potential of AI in the field of liver oncology imaging, specifically emphasizing manual radiomic techniques and deep learning-based representations. We discuss how these tools can aid in clinical decision-making challenges. These challenges encompass a broad range of tasks, from prognosticating patient outcomes, differentiating benign treatment-related factors and actual disease progression, recognizing uncommon response patterns, and even predicting the genetic and molecular characteristics of the tumors. Lastly, we discuss the pitfalls, technical limitations and future direction of these AI-based techniques.
Collapse
Affiliation(s)
| | | | | | | | - Amir Borhani
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
17
|
Chen X, Zhuang Z, Pen L, Xue J, Zhu H, Zhang L, Wang D. Intratumoral and peritumoral CT-based radiomics for predicting the microsatellite instability in gastric cancer. Abdom Radiol (NY) 2024; 49:1363-1375. [PMID: 38305796 DOI: 10.1007/s00261-023-04165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE To investigate the value of intratumoral and peritumoral radiomics based on contrast-enhanced computer tomography (CECT) to preoperatively predict microsatellite instability (MSI) status in gastric cancer (GC) patients. METHODS A total of 189 GC patients, including 63 patients with MSI-high (MSI-H) and 126 patients with MSI-low/stable (MSI-L/S), were randomly divided into the training cohort and validation cohort. Intratumoral and 5-mm peritumoral regions' radiomics features were extracted from CECT images. The features were standardized by Z-score, and the Inter- and intraclass correlation coefficient, univariate logistic regression analysis, and least absolute shrinkage and selection operator (LASSO) were applied to select the optimal radiomics features. Radiomics scores (Rad-score) based on intratumoral regions, peritumoral regions, and intratumoral + 5-mm peritumoral regions were calculated by weighting the linear combination of the selected features with their respective coefficients to construct the intratumoral model, peritumoral model, and intratumoral + peritumoral model. Logistic regression was used to establish a combined model by combining clinical characteristics, CT semantic features, and Rad-score of intratumoral and peritumoral regions. RESULTS Eleven radiomics features were selected to establish a radiomics intratumoral + peritumoral model. CT-measured tumor length and tumor location were independent risk factors for MSI status. The established combined model obtained the highest area under the receiver operating characteristic (ROC) curve (AUC) of 0.830 (95% CI, 0.727-0.906) in the validation cohort. The calibration curve and decision curve demonstrated its good model fitness and clinical application value. CONCLUSION The combined model based on intratumoral and peritumoral CECT radiomics features and clinical factors can predict the MSI status of GS with moderate accuracy before surgery, which helps formulate personalized treatment strategies.
Collapse
Affiliation(s)
- Xingchi Chen
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Zijian Zhuang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Lin Pen
- School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Jing Xue
- School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Haitao Zhu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Lirong Zhang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China.
- Institute of Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212000, Jiangsu Province, China.
| | - Dongqing Wang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China.
- Institute of Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212000, Jiangsu Province, China.
| |
Collapse
|
18
|
Wang F, Cheng M, Du B, Li J, Li L, Huang W, Gao J. Predicting microvascular invasion in small (≤ 5 cm) hepatocellular carcinomas using radiomics-based peritumoral analysis. Insights Imaging 2024; 15:90. [PMID: 38530498 DOI: 10.1186/s13244-024-01649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/10/2024] [Indexed: 03/28/2024] Open
Abstract
OBJECTIVE We assessed the predictive capacity of computed tomography (CT)-enhanced radiomics models in determining microvascular invasion (MVI) for isolated hepatocellular carcinoma (HCC) ≤ 5 cm within peritumoral margins of 5 and 10 mm. METHODS Radiomics software was used for feature extraction. We used the least absolute shrinkage and selection operator (LASSO) algorithm to establish an effective model to predict patients' preoperative MVI status. RESULTS The area under the curve (AUC) values in the validation sets for the 5- and 10-mm radiomics models concerning arterial tumors were 0.759 and 0.637, respectively. In the portal vein phase, they were 0.626 and 0.693, respectively. Additionally, the combined radiomics model for arterial tumors and the peritumoral 5-mm margin had an AUC value of 0.820. The decision curve showed that the combined tumor and peritumoral radiomics model exhibited a somewhat superior benefit compared to the traditional model, while the fusion model demonstrated an even greater advantage, indicating its significant potential in clinical application. CONCLUSION The 5-mm peritumoral arterial model had superior accuracy and sensitivity in predicting MVI. Moreover, the combined tumor and peritumoral radiomics model outperformed both the individual tumor and peritumoral radiomics models. The most effective combination was the arterial phase tumor and peritumor 5-mm margin combination. Using a fusion model that integrates tumor and peritumoral radiomics and clinical data can aid in the preoperative diagnosis of the MVI of isolated HCC ≤ 5 cm, indicating considerable practical value. CRITICAL RELEVANCE STATEMENT The radiomics model including a 5-mm peritumoral expansion is a promising noninvasive biomarker for preoperatively predicting microvascular invasion in patients diagnosed with a solitary HCC ≤ 5 cm. KEY POINTS • Radiomics features extracted at a 5-mm distance from the tumor could better predict hepatocellular carcinoma microvascular invasion. • Peritumoral radiomics can be used to capture tumor heterogeneity and predict microvascular invasion. • This radiomics model stands as a promising noninvasive biomarker for preoperatively predicting MVI in individuals.
Collapse
Affiliation(s)
- Fang Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi, Zhengzhou, Henan, 450052, People's Republic of China
| | - Ming Cheng
- Information Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Binbin Du
- Vasculocardiology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jing Li
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Liming Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi, Zhengzhou, Henan, 450052, People's Republic of China
| | - Wenpeng Huang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi, Zhengzhou, Henan, 450052, People's Republic of China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Erqi, Zhengzhou, Henan, 450052, People's Republic of China.
| |
Collapse
|
19
|
Xia T, Zhao B, Li B, Lei Y, Song Y, Wang Y, Tang T, Ju S. MRI-Based Radiomics and Deep Learning in Biological Characteristics and Prognosis of Hepatocellular Carcinoma: Opportunities and Challenges. J Magn Reson Imaging 2024; 59:767-783. [PMID: 37647155 DOI: 10.1002/jmri.28982] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the third leading cause of cancer-related death worldwide. HCC exhibits strong inter-tumor heterogeneity, with different biological characteristics closely associated with prognosis. In addition, patients with HCC often distribute at different stages and require diverse treatment options at each stage. Due to the variability in tumor sensitivity to different therapies, determining the optimal treatment approach can be challenging for clinicians prior to treatment. Artificial intelligence (AI) technology, including radiomics and deep learning approaches, has emerged as a unique opportunity to improve the spectrum of HCC clinical care by predicting biological characteristics and prognosis in the medical imaging field. The radiomics approach utilizes handcrafted features derived from specific mathematical formulas to construct various machine-learning models for medical applications. In terms of the deep learning approach, convolutional neural network models are developed to achieve high classification performance based on automatic feature extraction from images. Magnetic resonance imaging offers the advantage of superior tissue resolution and functional information. This comprehensive evaluation plays a vital role in the accurate assessment and effective treatment planning for HCC patients. Recent studies have applied radiomics and deep learning approaches to develop AI-enabled models to improve accuracy in predicting biological characteristics and prognosis, such as microvascular invasion and tumor recurrence. Although AI-enabled models have demonstrated promising potential in HCC with biological characteristics and prognosis prediction with high performance, one of the biggest challenges, interpretability, has hindered their implementation in clinical practice. In the future, continued research is needed to improve the interpretability of AI-enabled models, including aspects such as domain knowledge, novel algorithms, and multi-dimension data sources. Overcoming these challenges would allow AI-enabled models to significantly impact the care provided to HCC patients, ultimately leading to their deployment for clinical use. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Tianyi Xia
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ben Zhao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Binrong Li
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ying Lei
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers Ltd., Shanghai, China
| | - Yuancheng Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tianyu Tang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
20
|
Wang P, Wang X, Zhang M, Li G, Zhao N, Qiao Q. Combining the radiomics signature and HPV status for the risk stratification of patients with OPC. Oral Dis 2024; 30:272-280. [PMID: 36135344 DOI: 10.1111/odi.14386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The objective was to perform risk stratification of oropharyngeal cancer (OPC) for treatment de-escalation based on the radiomics analysis and human papillomavirus (HPV) status. METHODS A total of 265 patients with OPC who underwent baseline contrast-enhanced computed tomography were analyzed, and the patients were grouped into the training (n = 133) and test (n = 132) cohorts at a ratio of 1:1. Intratumoral and peritumoral radiomics features were extracted, and the radiomics signature (Rscore) was calculated using least absolute shrinkage and selection operator regression (LASSO) and Cox regression analyses. RESULTS Twelve features were selected to establish the radiomics signature (Rscore) of intratumoral regions +10-mm peritumoral regions, which yielded maximum AUCs of 0.835, 0.798, and 0.784 in the training, test, and validation cohorts, respectively. Patients with OPC were divided into the high-risk group, intermediate-risk group, and low-risk group based on the Rscore and HPV status and had different prognoses. Patients in the low-risk group benefit from radiotherapy alone, and patients in the intermediate-risk group only benefitted from chemoradiotherapy. CONCLUSION The radiomics signature appears to improve the predictive performance of clinical characteristics for oropharyngeal cancer. The combined stratification of the radiomics signature and HPV status might be preferred to select patients for de-escalated treatment.
Collapse
Affiliation(s)
- Ping Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Xuan Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Miao Zhang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Guang Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Ning Zhao
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Qiao Qiao
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Song C, Huang M, Zhou X, Chen Y, Li Z, Tang M, Chen M, Peng Z, Feng S. Prediction of immunocyte infiltration and prognosis in postoperative hepatitis B virus-related hepatocellular carcinoma patients using magnetic resonance imaging. Gastroenterol Rep (Oxf) 2024; 12:goae009. [PMID: 38415224 PMCID: PMC10898339 DOI: 10.1093/gastro/goae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Background The immune microenvironment (IME) is closely associated with prognosis and therapeutic response of hepatitis B virus-related hepatocellular carcinoma (HBV-HCC). Multi-parametric magnetic resonance imaging (MRI) enables non-invasive assessment of IME and predicts prognosis in HBV-HCC. We aimed to construct an MRI prediction model of the immunocyte-infiltration subtypes and explore its prognostic significance. Methods HBV-HCC patients at the First Affiliated Hospital of Sun Yat-sen University (Guangzhou, China) with radical surgery (between 1 October and 30 December 2021) were prospectively enrolled. Patients with pathologically proven HCC (between 1 December 2013 and 30 October 2019) were retrospectively enrolled. Pearson correlation analysis was used to examine the relationship between the immunocyte-infiltration counts and MRI parameters. An MRI prediction model of immunocyte-infiltration subtypes was constructed in prospective cohort. Kaplan-Meier survival analysis was used to analyse its prognostic significance in the retrospective cohort. Results Twenty-four patients were prospectively enrolled to construct the MRI prediction model. Eighty-nine patients were retrospectively enrolled to determine its prognostic significance. MRI parameters (relative enhancement, ratio of the apparent diffusion coefficient value of tumoral region to peritumoral region [rADC], T1 value) correlated significantly with the immunocyte-infiltration counts (leukocytes, T help cells, PD1+Tc cells, B lymphocytes). rADC differed significantly between high and low immunocyte-infiltration groups (1.47 ± 0.36 vs 1.09 ± 0.25, P = 0.009). The area under the curve of the MRI model was 0.787 (95% confidence interval 0.587-0.987). Based on the MRI model, the recurrence-free time was longer in the high immunocyte-infiltration group than in the low immunocyte-infiltration group (P = 0.026). Conclusions MRI is a non-invasive method for assessing the IME and immunocyte-infiltration subtypes, and predicting prognosis in post-operative HBV-HCC patients.
Collapse
Affiliation(s)
- Chenyu Song
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Mengqi Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Xiaoqi Zhou
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yuying Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zhoulei Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Mimi Tang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Meicheng Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zhenpeng Peng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Shiting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
22
|
Liu Z, Luo C, Chen X, Feng Y, Feng J, Zhang R, Ouyang F, Li X, Tan Z, Deng L, Chen Y, Cai Z, Zhang X, Liu J, Liu W, Guo B, Hu Q. Noninvasive prediction of perineural invasion in intrahepatic cholangiocarcinoma by clinicoradiological features and computed tomography radiomics based on interpretable machine learning: a multicenter cohort study. Int J Surg 2024; 110:1039-1051. [PMID: 37924497 PMCID: PMC10871628 DOI: 10.1097/js9.0000000000000881] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Perineural invasion (PNI) of intrahepatic cholangiocarcinoma (ICC) is a strong independent risk factor for tumour recurrence and long-term patient survival. However, there is a lack of noninvasive tools for accurately predicting the PNI status. The authors develop and validate a combined model incorporating radiomics signature and clinicoradiological features based on machine learning for predicting PNI in ICC, and used the Shapley Additive explanation (SHAP) to visualize the prediction process for clinical application. METHODS This retrospective and prospective study included 243 patients with pathologically diagnosed ICC (training, n =136; external validation, n =81; prospective, n =26, respectively) who underwent preoperative contrast-enhanced computed tomography between January 2012 and May 2023 at three institutions (three tertiary referral centres in Guangdong Province, China). The ElasticNet was applied to select radiomics features and construct signature derived from computed tomography images, and univariate and multivariate analyses by logistic regression were used to identify the significant clinical and radiological variables with PNI. A robust combined model incorporating radiomics signature and clinicoradiological features based on machine learning was developed and the SHAP was used to visualize the prediction process. A Kaplan-Meier survival analysis was performed to compare prognostic differences between PNI-positive and PNI-negative groups and was conducted to explore the prognostic information of the combined model. RESULTS Among 243 patients (mean age, 61.2 years ± 11.0 (SD); 152 men and 91 women), 108 (44.4%) were diagnosed as PNI-positive. The radiomics signature was constructed by seven radiomics features, with areas under the curves of 0.792, 0.748, and 0.729 in the training, external validation, and prospective cohorts, respectively. Three significant clinicoradiological features were selected and combined with radiomics signature to construct a combined model using machine learning. The eXtreme Gradient Boosting exhibited improved accuracy and robustness (areas under the curves of 0.884, 0.831, and 0.831, respectively). Survival analysis showed the construction combined model could be used to stratify relapse-free survival (hazard ratio, 1.933; 95% CI: 1.093-3.418; P =0.021). CONCLUSIONS We developed and validated a robust combined model incorporating radiomics signature and clinicoradiological features based on machine learning to accurately identify the PNI statuses of ICC, and visualize the prediction process through SHAP for clinical application.
Collapse
Affiliation(s)
- Ziwei Liu
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Chun Luo
- Department of Radiology, The First People’s Hospital of Foshan
| | - Xinjie Chen
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Yanqiu Feng
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
- School of Biomedical Engineering, Southern Medical University
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology
- Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, 1023 Sha-Tai South Road, Guangzhou, China
| | - Jieying Feng
- Department of Radiology, The Sixth Affiliated Hospital, South China University of Technology, Foshan
| | - Rong Zhang
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Fusheng Ouyang
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Xiaohong Li
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Zhilin Tan
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Lingda Deng
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Yifan Chen
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Zhiping Cai
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Ximing Zhang
- Department of Radiology, The First People’s Hospital of Foshan
| | - Jiehong Liu
- School of Biomedical Engineering, Southern Medical University
| | - Wei Liu
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Baoliang Guo
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| | - Qiugen Hu
- Department of Radiology,Southern Medical University (The First People’s Hospital of Shunde)
| |
Collapse
|
23
|
Brancato V, Cerrone M, Garbino N, Salvatore M, Cavaliere C. Current status of magnetic resonance imaging radiomics in hepatocellular carcinoma: A quantitative review with Radiomics Quality Score. World J Gastroenterol 2024; 30:381-417. [PMID: 38313230 PMCID: PMC10835534 DOI: 10.3748/wjg.v30.i4.381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Radiomics is a promising tool that may increase the value of magnetic resonance imaging (MRI) for different tasks related to the management of patients with hepatocellular carcinoma (HCC). However, its implementation in clinical practice is still far, with many issues related to the methodological quality of radiomic studies. AIM To systematically review the current status of MRI radiomic studies concerning HCC using the Radiomics Quality Score (RQS). METHODS A systematic literature search of PubMed, Google Scholar, and Web of Science databases was performed to identify original articles focusing on the use of MRI radiomics for HCC management published between 2017 and 2023. The methodological quality of radiomic studies was assessed using the RQS tool. Spearman's correlation (ρ) analysis was performed to explore if RQS was correlated with journal metrics and characteristics of the studies. The level of statistical signi-ficance was set at P < 0.05. RESULTS One hundred and twenty-seven articles were included, of which 43 focused on HCC prognosis, 39 on prediction of pathological findings, 16 on prediction of the expression of molecular markers outcomes, 18 had a diagnostic purpose, and 11 had multiple purposes. The mean RQS was 8 ± 6.22, and the corresponding percentage was 24.15% ± 15.25% (ranging from 0.0% to 58.33%). RQS was positively correlated with journal impact factor (IF; ρ = 0.36, P = 2.98 × 10-5), 5-years IF (ρ = 0.33, P = 1.56 × 10-4), number of patients included in the study (ρ = 0.51, P < 9.37 × 10-10) and number of radiomics features extracted in the study (ρ = 0.59, P < 4.59 × 10-13), and time of publication (ρ = -0.23, P < 0.0072). CONCLUSION Although MRI radiomics in HCC represents a promising tool to develop adequate personalized treatment as a noninvasive approach in HCC patients, our study revealed that studies in this field still lack the quality required to allow its introduction into clinical practice.
Collapse
Affiliation(s)
- Valentina Brancato
- Department of Information Technology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Marco Cerrone
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Nunzia Garbino
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Marco Salvatore
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| |
Collapse
|
24
|
Liu C, Li L, Chen X, Huang C, Wang R, Liu Y, Gao J. Intratumoral and peritumoral radiomics predict pathological response after neoadjuvant chemotherapy against advanced gastric cancer. Insights Imaging 2024; 15:23. [PMID: 38270724 PMCID: PMC10811314 DOI: 10.1186/s13244-023-01584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/25/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND To investigate whether intratumoral and peritumoral radiomics may predict pathological responses after neoadjuvant chemotherapy against advanced gastric cancer. METHODS Clinical, pathological, and CT data from 231 patients with advanced gastric cancer who underwent neoadjuvant chemotherapy at our hospital between July 2014 and February 2022 were retrospectively collected. Patients were randomly divided into a training group (n = 161) and a validation group (n = 70). The support vector machine classifier was used to establish radiomics models. A clinical model was established based on the selected clinical indicators. Finally, the radiomics and clinical models were combined to generate a radiomics-clinical model. ROC analyses were used to evaluate the prediction efficiency for each model. Calibration curves and decision curves were used to evaluate the optimal model. RESULTS A total of 91 cases were recorded with good response and 140 with poor response. The radiomics model demonstrated that the AUC was higher in the combined model than in the intratumoral and peritumoral models (training group: 0.949, 0.943, and 0.846, respectively; validation group: 0.815, 0.778, and 0.701, respectively). Age, Borrmann classification, and Lauren classification were used to construct the clinical model. Among the radiomics-clinical models, the combined-clinical model showed the highest AUC (training group: 0.960; validation group: 0.843), which significantly improved prediction efficiency. CONCLUSION The peritumoral model provided additional value in the evaluation of pathological response after neoadjuvant chemotherapy against advanced gastric cancer, and the combined-clinical model showed the highest predictive efficiency. CRITICAL RELEVANCE STATEMENT Intratumoral and peritumoral radiomics can noninvasively predict the pathological response against advanced gastric cancer after neoadjuvant chemotherapy to guide early treatment decision and provide individual treatment for patients. KEY POINTS 1. Radiomics can predict pathological responses after neoadjuvant chemotherapy against advanced gastric cancer. 2. Peritumoral radiomics has additional predictive value. 3. Radiomics-clinical models can guide early treatment decisions and improve patient prognosis.
Collapse
Affiliation(s)
- Chenchen Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Liming Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Xingzhi Chen
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, China
| | - Chencui Huang
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, China
| | - Rui Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yiyang Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
25
|
Wang Y, Weng W, Liang R, Zhou Q, Hu H, Li M, Chen L, Chen S, Peng S, Kuang M, Xiao H, Wang W. Predicting T Cell-Inflamed Gene Expression Profile in Hepatocellular Carcinoma Based on Dynamic Contrast-Enhanced Ultrasound Radiomics. J Hepatocell Carcinoma 2023; 10:2291-2303. [PMID: 38143911 PMCID: PMC10742767 DOI: 10.2147/jhc.s437415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/26/2023] Open
Abstract
Purpose The T cell-inflamed gene expression profile (GEP) quantifies 18 genes' expression indicative of a T-cell immune tumor microenvironment, playing a crucial role in the immunotherapy of hepatocellular carcinoma (HCC). Our study aims to develop a radiomics-based machine learning model using contrast-enhanced ultrasound (CEUS) for predicting T cell-inflamed GEP in HCC. Methods The primary cohort of HCC patients with preoperative CEUS and RNA sequencing data of tumor tissues at the single center was used to construct the model. A total of 5936 radiomics features were extracted from the regions of interest in representative images of each phase, and the least absolute shrinkage and selection operator and logistic regression were used to construct four models including three phase-specific models and an integrated model. The area under the curve (AUC) was calculated to evaluate the performance of the model. The independent cohort of HCC patients with preoperative CEUS and Immunoscore based on immunohistochemistry and digital pathology was used to validate the correlation between model prediction value and T-cell infiltration. Results There were 268 patients enrolled in the primary cohort and 46 patients enrolled in the independent cohort. Compared with the other three models, the AP model constructed by 36 arterial phase (AP) features showed good performance with a mean AUC of 0.905 in the 5-fold cross-validation and was easier to apply in the clinical setting. The decision curve and calibration curve confirmed the clinical utility of the model. In the independent cohort, patients with high Immunoscores showed significantly higher GEP prediction values than those with low Immunoscores (t=-2.359, p=0.029). Conclusion The CEUS-based model is a reliable predictive tool for T cell-inflamed GEP in HCC, and might facilitate individualized immunotherapy decision-making.
Collapse
Affiliation(s)
- Yijie Wang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Weixiang Weng
- Center of Hepato-Pancreato-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ruiming Liang
- Clinical Trials Unit, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Qian Zhou
- Clinical Trials Unit, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Hangtong Hu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Mingde Li
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Lida Chen
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Shuling Chen
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Sui Peng
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
- Clinical Trials Unit, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
- Cancer Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Han Xiao
- Department of Medical Ultrasonics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Wei Wang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
26
|
Gao Y, Yu Q, Li X, Xia C, Zhou J, Xia T, Zhao B, Qiu Y, Zha JH, Wang Y, Tang T, Lv Y, Ye J, Xu C, Ju S. An imaging-based machine learning model outperforms clinical risk scores for prognosis of cirrhotic variceal bleeding. Eur Radiol 2023; 33:8965-8973. [PMID: 37452878 DOI: 10.1007/s00330-023-09938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVES To develop and validate a machine learning model based on contrast-enhanced CT to predict the risk of occurrence of the composite clinical endpoint (hospital-based intervention or death) in cirrhotic patients with acute variceal bleeding (AVB). METHODS This retrospective study enrolled 330 cirrhotic patients with AVB between January 2017 and December 2020 from three clinical centers. Contrast-enhanced CT and clinical data were collected. Centers A and B were divided 7:3 into a training set and an internal test set, and center C served as a separate external test set. A well-trained deep learning model was applied to segment the liver and spleen. Then, we extracted 106 original features of the liver and spleen separately based on the Image Biomarker Standardization Initiative (IBSI). We constructed the Liver-Spleen (LS) model based on the selected radiomics features. The performance of LS model was evaluated by receiver operating characteristics and calibration curves. The clinical utility of models was analyzed using decision curve analyses (DCA). RESULTS The LS model demonstrated the best diagnostic performance in predicting the composite clinical endpoint of AVB in patients with cirrhosis, with an AUC of 0.782 (95% CI 0.650-0.882) and 0.789 (95% CI 0.674-0.878) in the internal test and external test groups, respectively. Calibration curves and DCA indicated the LS model had better performance than traditional clinical scores. CONCLUSION A novel machine learning model outperforms previously known clinical risk scores in assessing the prognosis of cirrhotic patients with AVB CLINICAL RELEVANCE STATEMENT: The Liver-Spleen model based on contrast-enhanced CT has proven to be a promising tool to predict the prognosis of cirrhotic patients with acute variceal bleeding, which can facilitate decision-making and personalized therapy in clinical practice. KEY POINTS • The Liver-Spleen machine learning model (LS model) showed good performance in assessing the clinical composite endpoint of cirrhotic patients with AVB (AUC ≥ 0.782, sensitivity ≥ 80%). • The LS model outperformed the clinical scores (AUC ≤ 0.730, sensitivity ≤ 70%) in both internal and external test cohorts.
Collapse
Affiliation(s)
- Yin Gao
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, Jiangsu, China
| | - Qian Yu
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, Jiangsu, China
| | - Xiaohuan Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cong Xia
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, Jiangsu, China
| | - Jiaying Zhou
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, Jiangsu, China
| | - Tianyi Xia
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, Jiangsu, China
| | - Ben Zhao
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, Jiangsu, China
| | - Yue Qiu
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, Jiangsu, China
| | - Jun-Hao Zha
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, Jiangsu, China
| | - Yuancheng Wang
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, Jiangsu, China
| | - Tianyu Tang
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, Jiangsu, China
| | - Yan Lv
- Department of Medical Imaging, Subei People's Hospital, Medical School of Yangzhou University, Yangzhou, China
| | - Jing Ye
- Department of Medical Imaging, Subei People's Hospital, Medical School of Yangzhou University, Yangzhou, China
| | - Chuanjun Xu
- Department of Radiology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shenghong Ju
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jia Qiao Road, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
27
|
Dou Y, Li X, Tao J, Dong Y, Xu N, Wang S. Prediction of high-grade soft-tissue sarcoma using a combined intratumoural and peritumoural MRI-based radiomics nomogram. Clin Radiol 2023; 78:e1032-e1040. [PMID: 37748959 DOI: 10.1016/j.crad.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 08/03/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023]
Abstract
AIM To develop an intratumoural and peritumoural magnetic resonance imaging (MRI)-based radiomics nomogram for predicting tumour grade to improve clinical treatment and long-term prognosis. MATERIALS AND METHODS MRI (3 T) features and T2-weighted imaging with fat-saturation (T2WI-FS)-based radiomics features of 57 patients with soft-tissue sarcoma (STS) were analysed retrospectively. Tumour size, ratio of width and length, relative depth to the peripheral fascia, peritumoural oedema, heterogeneity on T2WI, necrosis signal, enhancement model, and peritumoural enhancement were obtained. Independent risk factors were screened to construct an MRI feature nomogram. Radiomics features were obtained from intratumoural and peritumoural images on T2WI-FS. The optimal radiomics model was selected by the four-step dimensionality reduction method of minimum and maximum normalisation, optimal feature selection, selection based on support vector machine with L1-norm regularisation model, and iterative feature selection. MRI features and optimal radiomics features were used to construct a radiomics nomogram. The MRI feature nomogram model, the radiomics model, and the radiomics nomogram model were assessed by receiver operating characteristic (ROC) curves and calibration curves of the training and validation sets. RESULTS Heterogeneity on T2WI and peritumoural enhancement were independent risk factors for predicting high-grade STS. The areas under the curves of the training set and verification set of the three models were as follows: MRI feature nomogram, 0.86 and 0.83, respectively; intratumoural and peritumoural combined radiomics model, 0.99 and 0.86, respectively; and radiomics nomogram model, 0.98 and 0.96, respectively. CONCLUSION The radiomics nomogram model based on MRI features and combined intratumoural and peritumoural radiomic features was best able to predict high-grade STS.
Collapse
Affiliation(s)
- Y Dou
- Department of Ultrasound, The First Affiliated Hospital, Dalian Medical University, Dalian, China; Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| | - X Li
- Department of Radiology, Huashan Hospital Fudan University, Shanghai, China
| | - J Tao
- Department of Pathology, The Second Hospital, Dalian Medical University, Dalian, China
| | - Y Dong
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| | - N Xu
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China
| | - S Wang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
28
|
Grewal M, Ahmed T, Javed AA. Current state of radiomics in hepatobiliary and pancreatic malignancies. ARTIFICIAL INTELLIGENCE SURGERY 2023; 3:217-32. [DOI: 10.20517/ais.2023.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Rising in incidence, hepatobiliary and pancreatic (HPB) cancers continue to exhibit dismal long-term survival. The overall poor prognosis of HPB cancers is reflective of the advanced stage at which most patients are diagnosed. Late diagnosis is driven by the often-asymptomatic nature of these diseases, as well as a dearth of screening modalities. Additionally, standard imaging modalities fall short of providing accurate and detailed information regarding specific tumor characteristics, which can better inform surgical planning and sequencing of systemic therapy. Therefore, precise therapeutic planning must be delayed until histopathological examination is performed at the time of resection. Given the current shortcomings in the management of HPB cancers, investigations of numerous noninvasive biomarkers, including circulating tumor cells and DNA, proteomics, immunolomics, and radiomics, are underway. Radiomics encompasses the extraction and analysis of quantitative imaging features. Along with summarizing the general framework of radiomics, this review synthesizes the state of radiomics in HPB cancers, outlining its role in various aspects of management, present limitations, and future applications for clinical integration. Current literature underscores the utility of radiomics in early detection, tumor characterization, therapeutic selection, and prognostication for HPB cancers. Seeing as single-center, small studies constitute the majority of radiomics literature, there is considerable heterogeneity with respect to steps of the radiomics workflow such as segmentation, or delineation of the region of interest on a scan. Nonetheless, the introduction of the radiomics quality score (RQS) demonstrates a step towards greater standardization and reproducibility in the young field of radiomics. Altogether, in the setting of continually improving artificial intelligence algorithms, radiomics represents a promising biomarker avenue for promoting enhanced and tailored management of HPB cancers, with the potential to improve long-term outcomes for patients.
Collapse
|
29
|
Huang W, Xiong W, Tang L, Chen C, Yuan Q, Zhang C, Zhou K, Sun Z, Zhang T, Han Z, Feng H, Liang X, Zhong Y, Deng H, Yu L, Xu Y, Wang W, Shen L, Li G, Jiang Y. Non-invasive CT imaging biomarker to predict immunotherapy response in gastric cancer: a multicenter study. J Immunother Cancer 2023; 11:e007807. [PMID: 38179695 PMCID: PMC10668251 DOI: 10.1136/jitc-2023-007807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Despite remarkable benefits have been provided by immune checkpoint inhibitors in gastric cancer (GC), predictions of treatment response and prognosis remain unsatisfactory, making identifying biomarkers desirable. The aim of this study was to develop and validate a CT imaging biomarker to predict the immunotherapy response in patients with GC and investigate the associated immune infiltration patterns. METHODS This retrospective study included 294 GC patients who received anti-PD-1/PD-L1 immunotherapy from three independent medical centers between January 2017 and April 2022. A radiomics score (RS) was developed from the intratumoral and peritumoral features on pretreatment CT images to predict immunotherapy-related progression-free survival (irPFS). The performance of the RS was evaluated by the area under the time-dependent receiver operating characteristic curve (AUC). Multivariable Cox regression analysis was performed to construct predictive nomogram of irPFS. The C-index was used to determine the performance of the nomogram. Bulk RNA sequencing of tumors from 42 patients in The Cancer Genome Atlas was used to investigate the RS-associated immune infiltration patterns. RESULTS Overall, 89 of 294 patients (median age, 57 years (IQR 48-66 years); 171 males) had an objective response to immunotherapy. The RS included 13 CT features that yielded AUCs of 12-month irPFS of 0.787, 0.810 and 0.785 in the training, internal validation, and external validation 1 cohorts, respectively, and an AUC of 24-month irPFS of 0.805 in the external validation 2 cohort. Patients with low RS had longer irPFS in each cohort (p<0.05). Multivariable Cox regression analyses showed RS is an independent prognostic factor of irPFS. The nomogram that integrated the RS and clinical characteristics showed improved performance in predicting irPFS, with C-index of 0.687-0.778 in the training and validation cohorts. The CT imaging biomarker was associated with M1 macrophage infiltration. CONCLUSION The findings of this prognostic study suggest that the non-invasive CT imaging biomarker can effectively predict immunotherapy outcomes in patients with GC and is associated with innate immune signaling, which can serve as a potential tool for individual treatment decisions.
Collapse
Affiliation(s)
- Weicai Huang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Wenjun Xiong
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lei Tang
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Chuanli Chen
- Department of Medical Imaging Center, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Qingyu Yuan
- Department of Medical Imaging Center, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Cheng Zhang
- Department of Gastrointestinal Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Kangneng Zhou
- University of Science and Technology, Beijing, China
| | - Zepang Sun
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Taojun Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Zhen Han
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Hao Feng
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Xiaokun Liang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen Colleges of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yonghong Zhong
- Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haijun Deng
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Lequan Yu
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China
| | - Yikai Xu
- Department of Medical Imaging Center, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yuming Jiang
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
30
|
Liu N, Wu Y, Tao Y, Zheng J, Huang X, Yang L, Zhang X. Differentiation of Hepatocellular Carcinoma from Intrahepatic Cholangiocarcinoma through MRI Radiomics. Cancers (Basel) 2023; 15:5373. [PMID: 38001633 PMCID: PMC10670473 DOI: 10.3390/cancers15225373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The purpose of this study was to investigate the efficacy of magnetic resonance imaging (MRI) radiomics in differentiating hepatocellular carcinoma (HCC) from intrahepatic cholangiocarcinoma (ICC). The clinical and MRI data of 129 pathologically confirmed HCC patients and 48 ICC patients treated at the Affiliated Hospital of North Sichuan Medical College between April 2016 and December 2021 were retrospectively analyzed. The patients were randomly divided at a ratio of 7:3 into a training group of 124 patients (90 with HCC and 34 with ICC) and a validation group of 53 patients (39 with HCC and 14 with ICC). Radiomic features were extracted from axial fat suppression T2-weighted imaging (FS-T2WI) and axial arterial-phase (AP) and portal-venous-phase (PVP) dynamic-contrast-enhanced MRI (DCE-MRI) sequences, and the corresponding datasets were generated. The least absolute shrinkage and selection operator (LASSO) method was used to select the best radiomic features. Logistic regression was used to establish radiomic models for each sequence (FS-T2WI, AP and PVP models), a clinical model for optimal clinical variables (C model) and a joint radiomics model (JR model) integrating the radiomics features of all the sequences as well as a radiomics-clinical model combining optimal radiomic features and clinical risk factors (RC model). The performance of each model was evaluated using the area under the receiver operating characteristic curve (AUC). The AUCs of the FS-T2WI, AP, PVP, JR, C and RC models for distinguishing HCC from ICC were 0.693, 0.863, 0.818, 0.914, 0.936 and 0.977 in the training group and 0.690, 0.784, 0.727, 0.802, 0.860 and 0.877 in the validation group, respectively. The results of this study suggest that MRI-based radiomics may help noninvasively differentiate HCC from ICC. The model integrating the radiomics features and clinical risk factors showed a further improvement in performance.
Collapse
Affiliation(s)
- Ning Liu
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
- Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.), Chengdu 610041, China
| | - Yaokun Wu
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Yunyun Tao
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Jing Zheng
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Xiaohua Huang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Xiaoming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| |
Collapse
|
31
|
Greten TF, Villanueva A, Korangy F, Ruf B, Yarchoan M, Ma L, Ruppin E, Wang XW. Biomarkers for immunotherapy of hepatocellular carcinoma. Nat Rev Clin Oncol 2023; 20:780-798. [PMID: 37726418 DOI: 10.1038/s41571-023-00816-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Immune-checkpoint inhibitors (ICIs) are now widely used for the treatment of patients with advanced-stage hepatocellular carcinoma (HCC). Two different ICI-containing regimens, atezolizumab plus bevacizumab and tremelimumab plus durvalumab, are now approved standard-of-care first-line therapies in this setting. However, and despite substantial improvements in survival outcomes relative to sorafenib, most patients with advanced-stage HCC do not derive durable benefit from these regimens. Advances in genome sequencing including the use of single-cell RNA sequencing (both of tumour material and blood samples), as well as immune cell identification strategies and other techniques such as radiomics and analysis of the microbiota, have created considerable potential for the identification of novel predictive biomarkers enabling the accurate selection of patients who are most likely to derive benefit from ICIs. In this Review, we summarize data on the immunology of HCC and the outcomes in patients receiving ICIs for the treatment of this disease. We then provide an overview of current biomarker use and developments in the past 5 years, including gene signatures, circulating tumour cells, high-dimensional flow cytometry, single-cell RNA sequencing as well as approaches involving the microbiome, radiomics and clinical markers. Novel concepts for further biomarker development in HCC are then discussed including biomarker-driven trials, spatial transcriptomics and integrated 'big data' analysis approaches. These concepts all have the potential to better identify patients who are most likely to benefit from ICIs and to promote the development of new treatment approaches.
Collapse
Affiliation(s)
- Tim F Greten
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Augusto Villanueva
- Divisions of Liver Disease and Hematology/Medical Oncology, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Benjamin Ruf
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark Yarchoan
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xin W Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
32
|
Ansari G, Mirza-Aghazadeh-Attari M, Mohseni A, Madani SP, Shahbazian H, Pawlik TM, Kamel IR. Response Assessment of Primary Liver Tumors to Novel Therapies: an Imaging Perspective. J Gastrointest Surg 2023; 27:2245-2259. [PMID: 37464140 DOI: 10.1007/s11605-023-05762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/11/2023] [Indexed: 07/20/2023]
Abstract
The latest developments in cancer immunotherapy, namely the introduction of immune checkpoint inhibitors, have led to a fundamental change in advanced cancer treatments. Imaging is crucial to identify tumor response accurately and delineate prognosis in immunotherapy-treated patients. Simultaneously, advances in image acquisition techniques, notably functional and molecular imaging, have facilitated more accurate pretreatment evaluation, assessment of response to therapy, and monitoring for tumor recurrence. Traditional approaches to assessing tumor progression, such as RECIST, rely on changes in tumor size, while new strategies for evaluating tumor response to therapy, such as the mRECIST and the EASL, rely on tumor enhancement. Moreover, the assessment of tumor volume, enhancement, cellularity, and perfusion are some novel techniques that have been investigated. Validation of these novel approaches should rely on comparing their results with those of standard evaluation methods (EASL, mRECIST) while considering the ultimate outcome, which is patient survival. More recently, immunotherapy has been used in the management of primary liver tumors. However, little is known about its efficacy. This article reviews imaging modalities and techniques for assessing tumor response and survival in immunotherapy-treated patients with primary hepatic malignancies.
Collapse
Affiliation(s)
- Golnoosh Ansari
- Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA
| | - Mohammad Mirza-Aghazadeh-Attari
- Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA
| | - Alireza Mohseni
- Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA
| | - Seyedeh Panid Madani
- Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA
| | - Haneyeh Shahbazian
- Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA
| | - Timothy M Pawlik
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, James Comprehensive Cancer Center, Columbus, OH, USA
| | - Ihab R Kamel
- Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, 600 North Wolfe Street, MRI 143, Baltimore, MD, 21287, USA.
| |
Collapse
|
33
|
Chen Y, Yang C, Sheng L, Jiang H, Song B. The Era of Immunotherapy in Hepatocellular Carcinoma: The New Mission and Challenges of Magnetic Resonance Imaging. Cancers (Basel) 2023; 15:4677. [PMID: 37835371 PMCID: PMC10572030 DOI: 10.3390/cancers15194677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, significant advancements in immunotherapy for hepatocellular carcinoma (HCC) have shown the potential to further improve the prognosis of patients with advanced HCC. However, in clinical practice, there is still a lack of effective biomarkers for identifying the patient who would benefit from immunotherapy and predicting the tumor response to immunotherapy. The immune microenvironment of HCC plays a crucial role in tumor development and drug responses. However, due to the complexity of immune microenvironment, currently, no single pathological or molecular biomarker can effectively predict tumor responses to immunotherapy. Magnetic resonance imaging (MRI) images provide rich biological information; existing studies suggest the feasibility of using MRI to assess the immune microenvironment of HCC and predict tumor responses to immunotherapy. Nevertheless, there are limitations, such as the suboptimal performance of conventional MRI sequences, incomplete feature extraction in previous deep learning methods, and limited interpretability. Further study needs to combine qualitative features, quantitative parameters, multi-omics characteristics related to the HCC immune microenvironment, and various deep learning techniques in multi-center research cohorts. Subsequently, efforts should also be undertaken to construct and validate a visual predictive tool of tumor response, and assess its predictive value for patient survival benefits. Additionally, future research endeavors must aim to provide an accurate, efficient, non-invasive, and highly interpretable method for predicting the effectiveness of immune therapy.
Collapse
Affiliation(s)
- Yidi Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
| | - Chongtu Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
| | - Liuji Sheng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.C.); (C.Y.); (L.S.)
- Department of Radiology, Sanya People’s Hospital, Sanya 572000, China
| |
Collapse
|
34
|
Kang W, Qiu X, Luo Y, Luo J, Liu Y, Xi J, Li X, Yang Z. Application of radiomics-based multiomics combinations in the tumor microenvironment and cancer prognosis. J Transl Med 2023; 21:598. [PMID: 37674169 PMCID: PMC10481579 DOI: 10.1186/s12967-023-04437-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/12/2023] [Indexed: 09/08/2023] Open
Abstract
The advent of immunotherapy, a groundbreaking advancement in cancer treatment, has given rise to the prominence of the tumor microenvironment (TME) as a critical area of research. The clinical implications of an improved understanding of the TME are significant and far-reaching. Radiomics has been increasingly utilized in the comprehensive assessment of the TME and cancer prognosis. Similarly, the advancement of pathomics, which is based on pathological images, can offer additional insights into the panoramic view and microscopic information of tumors. The combination of pathomics and radiomics has revolutionized the concept of a "digital biopsy". As genomics and transcriptomics continue to evolve, integrating radiomics with genomic and transcriptomic datasets can offer further insights into tumor and microenvironment heterogeneity and establish correlations with biological significance. Therefore, the synergistic analysis of digital image features (radiomics, pathomics) and genetic phenotypes (genomics) can comprehensively decode and characterize the heterogeneity of the TME as well as predict cancer prognosis. This review presents a comprehensive summary of the research on important radiomics biomarkers for predicting the TME, emphasizing the interplay between radiomics, genomics, transcriptomics, and pathomics, as well as the application of multiomics in decoding the TME and predicting cancer prognosis. Finally, we discuss the challenges and opportunities in multiomics research. In conclusion, this review highlights the crucial role of radiomics and multiomics associations in the assessment of the TME and cancer prognosis. The combined analysis of radiomics, pathomics, genomics, and transcriptomics is a promising research direction with substantial research significance and value for comprehensive TME evaluation and cancer prognosis assessment.
Collapse
Affiliation(s)
- Wendi Kang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Xiang Qiu
- Obstetrics and Gynecology Hospital of, Fudan University, Shanghai, 200011, China
| | - Yingen Luo
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Jianwei Luo
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Yang Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junqing Xi
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli 17# Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
35
|
Liu QP, Tang J, Chen YZ, Guo F, Ma L, Pan LL, Tian YT, Wu XF, Zhang YD, Chen XF. Immuno-genomic-radiomics to predict response of biliary tract cancer to camrelizumab plus GEMOX in a single-arm phase II trial. JHEP Rep 2023; 5:100763. [PMID: 37333974 PMCID: PMC10275977 DOI: 10.1016/j.jhepr.2023.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 06/20/2023] Open
Abstract
Background & Aims Immunotherapy is an option for the treatment of advanced biliary tract cancer (BTC), although it has a low response rate. In this post hoc analysis, we investigated the predictive value of an immuno-genomic-radiomics (IGR) analysis for patients with BTC treated with camrelizumab plus gemcitabine and oxaliplatin (GEMOX) therapy. Methods Thirty-two patients with BTC treated with camrelizumab plus GEMOX were prospectively enrolled. The relationship between high-throughput computed tomography (CT) radiomics features with immuno-genomic expression was tested and scaled with a full correlation matrix analysis. Odds ratio (OR) of IGR expression for objective response to camrelizumab plus GEMOX was tested with logistic regression analysis. Association of IGR expression with progression-free survival (PFS) and overall survival (OS) was analysed with a Cox proportional hazard regression. Results CT radiomics correlated with CD8+ T cells (r = -0.72-0.71, p = 0.004-0.047), tumour mutation burden (TMB) (r = 0.59, p = 0.039), and ARID1A mutation (r = -0.58-0.57, p = 0.020-0.034). There was no significant correlation between radiomics and programmed cell death protein ligand 1 expression (p >0.96). Among all IGR biomarkers, only four radiomics features were independent predictors of objective response (OR = 0.09-3.81; p = 0.011-0.044). Combining independent radiomics features into an objective response prediction model achieved an area under the curve of 0.869. In a Cox analysis, radiomics signature [hazard ratio (HR) = 6.90, p <0.001], ARID1A (HR = 3.31, p = 0.013), and blood TMB (HR = 1.13, p = 0.023) were independent predictors of PFS. Radiomics signature (HR = 6.58, p <0.001) and CD8+ T cells (HR = 0.22, p = 0.004) were independent predictors of OS. Prognostic models integrating these features achieved concordance indexes of 0.677 and 0.681 for PFS and OS, respectively. Conclusions Radiomics could act as a non-invasive immuno-genomic surrogate of BTC, which could further aid in response prediction for patients with BTC treated with immunotherapy. However, multicenter and larger sample studies are required to validate these results. Impact and implications Immunotherapy is an alternative for the treatment of advanced BTC, whereas tumour response is heterogeneous. In a post hoc analysis of the single-arm phase II clinical trial (NCT03486678), we found that CT radiomics features were associated with the tumour microenvironment and that IGR expression was a promising marker for tumour response and long-term survival. Clinical trial number Post hoc analysis of NCT03486678.
Collapse
Affiliation(s)
- Qiu-Ping Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jie Tang
- Department of Oncology, Liyang People’s Hospital, Liyang, China
| | - Yi-Zhang Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fen Guo
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
- Gusu School, Nanjing Medical University, Suzhou, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lan-Lan Pan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi-Tong Tian
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Feng Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Dong Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiao-Feng Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Gusu School, Nanjing Medical University, Suzhou, China
- Department of Oncology, Pukou Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
36
|
Wang Q, Sheng Y, Jiang Z, Liu H, Lu H, Xing W. What Imaging Modality Is More Effective in Predicting Early Recurrence of Hepatocellular Carcinoma after Hepatectomy Using Radiomics Analysis: CT or MRI or Both? Diagnostics (Basel) 2023; 13:2012. [PMID: 37370907 DOI: 10.3390/diagnostics13122012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND It is of great importance to predict the early recurrence (ER) of hepatocellular carcinoma (HCC) after hepatectomy using preoperative imaging modalities. Nevertheless, no comparative studies have been conducted to determine which modality, CT or MRI with radiomics analysis, is more effective. METHODS We retrospectively enrolled 119 HCC patients who underwent preoperative CT and MRI. A total of 3776 CT features and 4720 MRI features were extracted from the whole tumor. The minimum redundancy and maximum relevance algorithm (MRMR) and least absolute shrinkage and selection operator (LASSO) regression were applied for feature selection, then support vector machines (SVMs) were applied for model construction. Multivariable logistic regression analysis was employed to construct combined models that integrate clinical-radiological-pathological (CRP) traits and radscore. Receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) were used to compare the efficacy of CT, MRI, and CT and MRI models in the test cohort. RESULTS The CT model and MRI model showed no significant difference in the prediction of ER in HCC patients (p = 0.911). RadiomicsCT&MRI demonstrated a superior predictive performance than either RadiomicsCT or RadiomicsMRI alone (p = 0.032, 0.039). The combined CT and MRI model can significantly stratify patients at high risk of ER (area under the curve (AUC) of 0.951 in the training set and 0.955 in the test set) than the CT model (AUC of 0.894 and 0.784) and the MRI model (AUC of 0.856 and 0.787). DCA demonstrated that the CT and MRI model provided a greater net benefit than the models without radiomics analysis. CONCLUSIONS No significant difference was found in predicting the ER of HCC between CT models and MRI models. However, the multimodal radiomics model derived from CT and MRI can significantly improve the prediction of ER in HCC patients after resection.
Collapse
Affiliation(s)
- Qing Wang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Ye Sheng
- Department of Interventional Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Zhenxing Jiang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Haifeng Liu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Haitao Lu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| |
Collapse
|
37
|
Frankowska K, Zarobkiewicz M, Dąbrowska I, Bojarska-Junak A. Tumor infiltrating lymphocytes and radiological picture of the tumor. Med Oncol 2023; 40:176. [PMID: 37178270 PMCID: PMC10182948 DOI: 10.1007/s12032-023-02036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Tumor microenvironment (TME) is a complex entity that includes besides the tumor cells also a whole range of immune cells. Among various populations of immune cells infiltrating the tumor, tumor infiltrating lymphocytes (TILs) are a population of lymphocytes characterized by high reactivity against the tumor component. As, TILs play a key role in mediating responses to several types of therapy and significantly improve patient outcomes in some cancer types including for instance breast cancer and lung cancer, their assessment has become a good predictive tool in the evaluation of potential treatment efficacy. Currently, the evaluation of the density of TILs infiltration is performed by histopathological. However, recent studies have shed light on potential utility of several imaging methods, including ultrasonography, magnetic resonance imaging (MRI), positron emission tomography-computed tomography (PET-CT), and radiomics, in the assessment of TILs levels. The greatest attention concerning the utility of radiology methods is directed to breast and lung cancers, nevertheless imaging methods of TILs are constantly being developed also for other malignancies. Here, we focus on reviewing the radiological methods used to assess the level of TILs in different cancer types and on the extraction of the most favorable radiological features assessed by each method.
Collapse
Affiliation(s)
- Karolina Frankowska
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | - Michał Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland.
| | - Izabela Dąbrowska
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
38
|
McMahon B, Cohen C, Brown Jr RS, El-Serag H, Ioannou GN, Lok AS, Roberts LR, Singal AG, Block T. Opportunities to address gaps in early detection and improve outcomes of liver cancer. JNCI Cancer Spectr 2023; 7:pkad034. [PMID: 37144952 PMCID: PMC10212536 DOI: 10.1093/jncics/pkad034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
Death rates from primary liver cancer (hepatocellular carcinoma [HCC]) have continued to rise in the United States over the recent decades despite the availability of an increasing range of treatment modalities, including new systemic therapies. Prognosis is strongly associated with tumor stage at diagnosis; however, most cases of HCC are diagnosed beyond an early stage. This lack of early detection has contributed to low survival rates. Professional society guidelines recommend semiannual ultrasound-based HCC screening for at-risk populations, yet HCC surveillance continues to be underused in clinical practice. On April 28, 2022, the Hepatitis B Foundation convened a workshop to discuss the most pressing challenges and barriers to early HCC detection and the need to better leverage existing and emerging tools and technologies that could improve HCC screening and early detection. In this commentary, we summarize technical, patient-level, provider-level, and system-level challenges and opportunities to improve processes and outcomes across the HCC screening continuum. We highlight promising approaches to HCC risk stratification and screening, including new biomarkers, advanced imaging incorporating artificial intelligence, and algorithms for risk stratification. Workshop participants emphasized that action to improve early detection and reduce HCC mortality is urgently needed, noting concern that many of the challenges we face today are the same or similar to those faced a decade ago and that HCC mortality rates have not meaningfully improved. Increasing the uptake of HCC screening was identified as a short-term priority while developing and validating better screening tests and risk-appropriate surveillance strategies.
Collapse
Affiliation(s)
- Brian McMahon
- Liver Disease and Hepatitis Program, Alaska Native Tribal Health Consortium, Anchorage, AK, USA
| | | | - Robert S Brown Jr
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Hashem El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - George N Ioannou
- Department of Medicine, Division of Gastroenterology, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Anna S Lok
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lewis R Roberts
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Amit G Singal
- Department of Internal Medicine, Division of Digestive and Liver Diseases, UT Southwestern, Dallas, TX, USA
| | - Timothy Block
- Baruch S. Blumberg Institute and Hepatitis B Foundation, Doylestown, PA, USA
| |
Collapse
|
39
|
Khalifa A, Obeid JS, Erno J, Rockey DC. The role of artificial intelligence in hepatology research and practice. Curr Opin Gastroenterol 2023; 39:175-180. [PMID: 37144534 DOI: 10.1097/mog.0000000000000926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW The use of artificial intelligence (AI) in examining large data sets has recently gained considerable attention to evaluate disease epidemiology, management approaches, and disease outcomes. The purpose of this review is to summarize the current role of AI in contemporary hepatology practice. RECENT FINDINGS AI was found to be diagnostically valuable in the evaluation of liver fibrosis, detection of cirrhosis, differentiation between compensated and decompensated cirrhosis, evaluation of portal hypertension, detection and differentiation of particular liver masses, preoperative evaluation of hepatocellular carcinoma as well as response to treatment and estimation of graft survival in patients undergoing liver transplantation. AI additionally holds great promise in examination of structured electronic health records data as well as in examination of clinical text (using various natural language processing approaches). Despite its contributions, AI has several limitations, including the quality of existing data, small cohorts with possible sampling bias and the lack of well validated easily reproducible models. SUMMARY AI and deep learning models have extensive applicability in assessing liver disease. However, multicenter randomized controlled trials are indispensable to validate their utility.
Collapse
Affiliation(s)
- Ali Khalifa
- Medical University of South Carolina Digestive Disease Research Center
| | - Jihad S Obeid
- Department of Biomedical Informatics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jason Erno
- Medical University of South Carolina Digestive Disease Research Center
| | - Don C Rockey
- Medical University of South Carolina Digestive Disease Research Center
| |
Collapse
|
40
|
Gu Y, Huang H, Tong Q, Cao M, Ming W, Zhang R, Zhu W, Wang Y, Sun X. Multi-View Radiomics Feature Fusion Reveals Distinct Immuno-Oncological Characteristics and Clinical Prognoses in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:cancers15082338. [PMID: 37190266 DOI: 10.3390/cancers15082338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide, and the pronounced intra- and inter-tumor heterogeneity restricts clinical benefits. Dissecting molecular heterogeneity in HCC is commonly explored by endoscopic biopsy or surgical forceps, but invasive tissue sampling and possible complications limit the broadeer adoption. The radiomics framework is a promising non-invasive strategy for tumor heterogeneity decoding, and the linkage between radiomics and immuno-oncological characteristics is worth further in-depth study. In this study, we extracted multi-view imaging features from contrast-enhanced CT (CE-CT) scans of HCC patients, followed by developing a fused imaging feature subtyping (FIFS) model to identify two distinct radiomics subtypes. We observed two subtypes of patients with distinct texture-dominated radiomics profiles and prognostic outcomes, and the radiomics subtype identified by FIFS model was an independent prognostic factor. The heterogeneity was mainly attributed to inflammatory pathway activity and the tumor immune microenvironment. The predominant radiogenomics association was identified between texture-related features and immune-related pathways by integrating network analysis, and was validated in two independent cohorts. Collectively, this work described the close connections between multi-view radiomics features and immuno-oncological characteristics in HCC, and our integrative radiogenomics analysis strategy may provide clues to non-invasive inflammation-based risk stratification.
Collapse
Affiliation(s)
- Yu Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hao Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qi Tong
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Meng Cao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Wenlong Ming
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Rongxin Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Wenyong Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuqi Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
41
|
Zhang Y, He D, Liu J, Wei YG, Shi LL. Preoperative prediction of macrotrabecular-massive hepatocellular carcinoma through dynamic contrast-enhanced magnetic resonance imaging-based radiomics. World J Gastroenterol 2023; 29:2001-2014. [PMID: 37155523 PMCID: PMC10122786 DOI: 10.3748/wjg.v29.i13.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) is closely related to aggressive phenotype, gene mutation, carcinogenic pathway, and immunohistochemical markers and is a strong independent predictor of early recurrence and poor prognosis. With the development of imaging technology, successful applications of contrast-enhanced magnetic resonance imaging (MRI) have been reported in identifying the MTM-HCC subtype. Radiomics, as an objective and beneficial method for tumour evaluation, is used to convert medical images into high-throughput quantification features that greatly push the development of precision medicine.
AIM To establish and verify a nomogram for preoperatively identifying MTM-HCC by comparing different machine learning algorithms.
METHODS This retrospective study enrolled 232 (training set, 162; test set, 70) hepatocellular carcinoma patients from April 2018 to September 2021. A total of 3111 radiomics features were extracted from dynamic contrast-enhanced MRI, followed by dimension reduction of these features. Logistic regression (LR), K-nearest neighbour (KNN), Bayes, Tree, and support vector machine (SVM) algorithms were used to select the best radiomics signature. We used the relative standard deviation (RSD) and bootstrap methods to quantify the stability of these five algorithms. The algorithm with the lowest RSD represented the best stability, and it was used to construct the best radiomics model. Multivariable logistic analysis was used to select the useful clinical and radiological features, and different predictive models were established. Finally, the predictive performances of the different models were assessed by evaluating the area under the curve (AUC).
RESULTS The RSD values based on LR, KNN, Bayes, Tree, and SVM were 3.8%, 8.6%, 4.3%, 17.7%, and 17.4%, respectively. Therefore, the LR machine learning algorithm was selected to construct the best radiomics signature, which performed well with AUCs of 0.766 and 0.739 in the training and test sets, respectively. In the multivariable analysis, age [odds ratio (OR) = 0.956, P = 0.034], alpha-fetoprotein (OR = 10.066, P < 0.001), tumour size (OR = 3.316, P = 0.002), tumour-to-liver apparent diffusion coefficient (ADC) ratio (OR = 0.156, P = 0.037), and radiomics score (OR = 2.923, P < 0.001) were independent predictors of MTM-HCC. Among the different models, the predictive performances of the clinical-radiomics model and radiological-radiomics model were significantly improved compared to those of the clinical model (AUCs: 0.888 vs 0.836, P = 0.046) and radiological model (AUCs: 0.796 vs 0.688, P = 0.012), respectively, in the training set, highlighting the improved predictive performance of radiomics. The nomogram performed best, with AUCs of 0.896 and 0.805 in the training and test sets, respectively.
CONCLUSION The nomogram containing radiomics, age, alpha-fetoprotein, tumour size, and tumour-to-liver ADC ratio revealed excellent predictive ability in preoperatively identifying the MTM-HCC subtype.
Collapse
Affiliation(s)
- Yang Zhang
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Dong He
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Jing Liu
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Yu-Guo Wei
- Precision Health Institution, General Electric Healthcare, Hangzhou 310014, Zhejiang Province, China
| | - Lin-Lin Shi
- Department of Gastroenterology, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou 310005, Zhejiang Province, China
| |
Collapse
|
42
|
Shaikh S. Editorial for "Preoperative Prediction of Dual-Phenotype Hepatocellular Carcinoma Using Enhanced MRI Radiomics Models". J Magn Reson Imaging 2023; 57:1197-1198. [PMID: 35986593 DOI: 10.1002/jmri.28390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Sikandar Shaikh
- Department of Radiology, Shadan Institute of Medical Sciences, Hyderabad, India
| |
Collapse
|
43
|
Lévi-Strauss T, Tortorici B, Lopez O, Viau P, Ouizeman DJ, Schall B, Adhoute X, Humbert O, Chevallier P, Gual P, Fillatre L, Anty R. Radiomics, a Promising New Discipline: Example of Hepatocellular Carcinoma. Diagnostics (Basel) 2023; 13:diagnostics13071303. [PMID: 37046521 PMCID: PMC10093101 DOI: 10.3390/diagnostics13071303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Radiomics is a discipline that involves studying medical images through their digital data. Using “artificial intelligence” algorithms, radiomics utilizes quantitative and high-throughput analysis of an image’s textural richness to obtain relevant information for clinicians, from diagnosis assistance to therapeutic guidance. Exploitation of these data could allow for a more detailed characterization of each phenotype, for each patient, making radiomics a new biomarker of interest, highly promising in the era of precision medicine. Moreover, radiomics is non-invasive, cost-effective, and easily reproducible in time. In the field of oncology, it performs an analysis of the entire tumor, which is impossible with a single biopsy but is essential for understanding the tumor’s heterogeneity and is known to be closely related to prognosis. However, current results are sometimes less accurate than expected and often require the addition of non-radiomics data to create a performing model. To highlight the strengths and weaknesses of this new technology, we take the example of hepatocellular carcinoma and show how radiomics could facilitate its diagnosis in difficult cases, predict certain histological features, and estimate treatment response, whether medical or surgical.
Collapse
Affiliation(s)
- Thomas Lévi-Strauss
- Hepatology Unit, University Hospital of Nice, 151 Route de Saint Antoine de Ginestière, 06200 Nice, France; (T.L.-S.)
| | - Bettina Tortorici
- Department of Diagnosis and Interventional Imaging, University Hospital of Nice, 151 Route de Saint Antoine de Ginestière, 06200 Nice, France
| | - Olivier Lopez
- Department of Diagnosis and Interventional Imaging, University Hospital of Nice, 151 Route de Saint Antoine de Ginestière, 06200 Nice, France
| | - Philippe Viau
- Department of Nuclear Medicine, University Hospital of Nice, 151 Route de Saint Antoine de Ginestière, 06200 Nice, France
| | - Dann J. Ouizeman
- Hepatology Unit, University Hospital of Nice, 151 Route de Saint Antoine de Ginestière, 06200 Nice, France; (T.L.-S.)
| | | | - Xavier Adhoute
- Saint Joseph Hospital, 26 Bd de Louvain, 13008 Marseille, France
| | - Olivier Humbert
- Centre Antoine-Lacassagne, Department of Nuclear Medicine, 33 Av. de Valombrose, 06100 Nice, France
- TIRO-UMR E 4320, Université Côte d’Azur, 06000 Nice, France
| | - Patrick Chevallier
- Department of Diagnosis and Interventional Imaging, University Hospital of Nice, 151 Route de Saint Antoine de Ginestière, 06200 Nice, France
| | - Philippe Gual
- INSERM, U1065, C3M, Université Côte d’Azur, 06000 Nice, France
- Correspondence: (P.G.); (R.A.)
| | | | - Rodolphe Anty
- Hepatology Unit, University Hospital of Nice, 151 Route de Saint Antoine de Ginestière, 06200 Nice, France; (T.L.-S.)
- INSERM, U1065, C3M, Université Côte d’Azur, 06000 Nice, France
- Correspondence: (P.G.); (R.A.)
| |
Collapse
|
44
|
Xue C, Zhou Q, Xi H, Zhou J. Radiomics: A review of current applications and possibilities in the assessment of tumor microenvironment. Diagn Interv Imaging 2023; 104:113-122. [PMID: 36283933 DOI: 10.1016/j.diii.2022.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022]
Abstract
With the recent success in the application of immunotherapy for treating various advanced cancers, the tumor microenvironment has rapidly become an important field of research. The tumor microenvironment is complex and its characteristics strongly influence disease biology and potentially responses to systemic therapy. Accurate preoperative assessment of tumor microenvironment is of great significance for the formulation of an immunotherapy strategy and evaluation of patient prognosis. As a research hotspot in medical image analysis technology, radiomics has been applied in the auxiliary diagnosis of the tumor microenvironment. This article reviews the current status of radiomics in the elective application on tumor microenvironment and discusses potential prospects.
Collapse
Affiliation(s)
- Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Huaze Xi
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China.
| |
Collapse
|
45
|
Minamiguchi K, Nishiofuku H, Saito N, Sato T, Taiji R, Matsumoto T, Maeda S, Chanoki Y, Tachiiri T, Kunichika H, Inoue T, Marugami N, Tanaka T. Quantitative Analysis of Signal Heterogeneity in the Hepatobiliary Phase of Pretreatment Gadoxetic Acid-Enhanced MRI as a Prognostic Imaging Biomarker in Transarterial Chemoembolization for Intermediate-Stage Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:cancers15041238. [PMID: 36831582 PMCID: PMC9954181 DOI: 10.3390/cancers15041238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND In the era of local and systemic therapies for intermediate-stage hepatocellular carcinoma (HCC), personalized therapy has become available. The aim of our study was to evaluate the usefulness of quantitative analysis of pretreatment gadoxetic acid-enhanced magnetic resonance imaging (EOB-MRI) to predict prognosis following transarterial chemoembolization (TACE). METHODS This retrospective study included patients with treatment-naïve intermediate-stage HCC who underwent EOB-MRI before the initial TACE and were treated by initial TACE between February 2007 and January 2016. Signal heterogeneity in the hepatobiliary phase (HBP) of EOB-MRI was quantitatively evaluated by the coefficient of variation (CV). The cutoff CV value was determined using the Classification and Regression Tree algorithm. RESULTS A total of 64 patients were enrolled. In multivariate analysis, High CV (≥0.16) was significantly associated with poor prognosis (p = 0.038). In a subgroup analysis of patients within up-to-7 criteria, MST was significantly shorter in the High CV group than in the Low CV group (37.7 vs. 82.9 months, p = 0.024). In patients beyond up-to-7 criteria, MST was 18.0 and 38.3 months in the High CV and Low CV groups, respectively (p = 0.182). In both groups scanned at 1.5 T or 3.0 T, High CV was significantly associated with poor prognosis (p = 0.001 and 0.003, respectively). CONCLUSION CV of the tumor in the HBP of EOB-MRI is a valuable prognostic factor of TACE.
Collapse
Affiliation(s)
- Kiyoyuki Minamiguchi
- Department of Diagnostic and Interventional Radiology, Nara Medical University, Shijyocho 840, Kashihara City 634-8522, Japan
- Correspondence: ; Tel.:+81-744-22-3051
| | - Hideyuki Nishiofuku
- Department of Diagnostic and Interventional Radiology, Nara Medical University, Shijyocho 840, Kashihara City 634-8522, Japan
| | - Natsuhiko Saito
- Department of Diagnostic and Interventional Radiology, Nara Medical University, Shijyocho 840, Kashihara City 634-8522, Japan
| | - Takeshi Sato
- Department of Diagnostic and Interventional Radiology, Nara Medical University, Shijyocho 840, Kashihara City 634-8522, Japan
| | - Ryosuke Taiji
- Department of Diagnostic and Interventional Radiology, Nara Medical University, Shijyocho 840, Kashihara City 634-8522, Japan
| | - Takeshi Matsumoto
- Department of Diagnostic and Interventional Radiology, Nara Medical University, Shijyocho 840, Kashihara City 634-8522, Japan
| | - Shinsaku Maeda
- Department of Diagnostic and Interventional Radiology, Nara Medical University, Shijyocho 840, Kashihara City 634-8522, Japan
| | - Yuto Chanoki
- Department of Diagnostic and Interventional Radiology, Nara Medical University, Shijyocho 840, Kashihara City 634-8522, Japan
| | - Tetsuya Tachiiri
- Department of Diagnostic and Interventional Radiology, Nara Medical University, Shijyocho 840, Kashihara City 634-8522, Japan
| | - Hideki Kunichika
- Department of Diagnostic and Interventional Radiology, Nara Medical University, Shijyocho 840, Kashihara City 634-8522, Japan
| | - Takashi Inoue
- Department of Evidence-Based Medicine, Nara Medical University, Shijyocho 840, Kashihara City 634-8522, Japan
| | - Nagaaki Marugami
- Department of Diagnostic and Interventional Radiology, Nara Medical University, Shijyocho 840, Kashihara City 634-8522, Japan
| | - Toshihiro Tanaka
- Department of Diagnostic and Interventional Radiology, Nara Medical University, Shijyocho 840, Kashihara City 634-8522, Japan
| |
Collapse
|
46
|
Zhang S, Mu W, Dong D, Wei J, Fang M, Shao L, Zhou Y, He B, Zhang S, Liu Z, Liu J, Tian J. The Applications of Artificial Intelligence in Digestive System Neoplasms: A Review. HEALTH DATA SCIENCE 2023; 3:0005. [PMID: 38487199 PMCID: PMC10877701 DOI: 10.34133/hds.0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 03/17/2024]
Abstract
Importance Digestive system neoplasms (DSNs) are the leading cause of cancer-related mortality with a 5-year survival rate of less than 20%. Subjective evaluation of medical images including endoscopic images, whole slide images, computed tomography images, and magnetic resonance images plays a vital role in the clinical practice of DSNs, but with limited performance and increased workload of radiologists or pathologists. The application of artificial intelligence (AI) in medical image analysis holds promise to augment the visual interpretation of medical images, which could not only automate the complicated evaluation process but also convert medical images into quantitative imaging features that associated with tumor heterogeneity. Highlights We briefly introduce the methodology of AI for medical image analysis and then review its clinical applications including clinical auxiliary diagnosis, assessment of treatment response, and prognosis prediction on 4 typical DSNs including esophageal cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma. Conclusion AI technology has great potential in supporting the clinical diagnosis and treatment decision-making of DSNs. Several technical issues should be overcome before its application into clinical practice of DSNs.
Collapse
Affiliation(s)
- Shuaitong Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Wei Mu
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jingwei Wei
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Mengjie Fang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Lizhi Shao
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yu Zhou
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Bingxi He
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Song Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jianhua Liu
- Department of Oncology, Guangdong Provincial People's Hospital/Second Clinical Medical College of Southern Medical University/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jie Tian
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Bodard S, Liu Y, Guinebert S, Kherabi Y, Asselah T. Performance of Radiomics in Microvascular Invasion Risk Stratification and Prognostic Assessment in Hepatocellular Carcinoma: A Meta-Analysis. Cancers (Basel) 2023; 15:cancers15030743. [PMID: 36765701 PMCID: PMC9913680 DOI: 10.3390/cancers15030743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Primary liver cancer is the sixth most commonly diagnosed cancer and the third leading cause of cancer death. Advances in phenomenal imaging are paving the way for application in diagnosis and research. The poor prognosis of advanced HCC warrants a personalized approach. The objective was to assess the value of imaging phenomics for risk stratification and prognostication of HCC. METHODS We performed a meta-analysis of manuscripts published to January 2023 on MEDLINE addressing the value of imaging phenomics for HCC risk stratification and prognostication. Publication information for each were collected using a standardized data extraction form. RESULTS Twenty-seven articles were analyzed. Our study shows the importance of imaging phenomics in HCC MVI prediction. When the training and validation datasets were analyzed separately by the random-effects model, in the training datasets, radiomics had good MVI prediction (AUC of 0.81 (95% CI 0.76-0.86)). Similar results were found in the validation datasets (AUC of 0.79 (95% CI 0.72-0.85)). Using the fixed effects model, the mean AUC of all datasets was 0.80 (95% CI 0.76-0.84). CONCLUSIONS Imaging phenomics is an effective solution to predict microvascular invasion risk, prognosis, and treatment response in patients with HCC.
Collapse
Affiliation(s)
- Sylvain Bodard
- Service de Radiologie Adulte, Hôpital Universitaire Necker-Enfants Malades, AP-HP Centre, 75015 Paris, France
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
- CNRS, INSERM, UMR 7371, Laboratoire d’Imagerie Biomédicale, Sorbonne Université, 75006 Paris, France
- Correspondence: ; Tel.: +33-6-18-81-62-10
| | - Yan Liu
- Faculty of Life Science and Medicine, King’s College London, London WC2R 2LS, UK
- Median Technologies, 1800 Route des Crêtes, 06560 Valbonne, France
| | - Sylvain Guinebert
- Service de Radiologie Adulte, Hôpital Universitaire Necker-Enfants Malades, AP-HP Centre, 75015 Paris, France
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
| | - Yousra Kherabi
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
| | - Tarik Asselah
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
- Service d’Hépatologie, INSERM, UMR1149, Hôpital Beaujon, AP-HP.Nord, 92110 Clichy, France
| |
Collapse
|
48
|
Ghaffari Laleh N, Ligero M, Perez-Lopez R, Kather JN. Facts and Hopes on the Use of Artificial Intelligence for Predictive Immunotherapy Biomarkers in Cancer. Clin Cancer Res 2023; 29:316-323. [PMID: 36083132 DOI: 10.1158/1078-0432.ccr-22-0390] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023]
Abstract
Immunotherapy by immune checkpoint inhibitors has become a standard treatment strategy for many types of solid tumors. However, the majority of patients with cancer will not respond, and predicting response to this therapy is still a challenge. Artificial intelligence (AI) methods can extract meaningful information from complex data, such as image data. In clinical routine, radiology or histopathology images are ubiquitously available. AI has been used to predict the response to immunotherapy from radiology or histopathology images, either directly or indirectly via surrogate markers. While none of these methods are currently used in clinical routine, academic and commercial developments are pointing toward potential clinical adoption in the near future. Here, we summarize the state of the art in AI-based image biomarkers for immunotherapy response based on radiology and histopathology images. We point out limitations, caveats, and pitfalls, including biases, generalizability, and explainability, which are relevant for researchers and health care providers alike, and outline key clinical use cases of this new class of predictive biomarkers.
Collapse
Affiliation(s)
| | - Marta Ligero
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Raquel Perez-Lopez
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.,Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom.,Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.,Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| |
Collapse
|
49
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
50
|
Miranda J, Horvat N, Fonseca GM, Araujo-Filho JDAB, Fernandes MC, Charbel C, Chakraborty J, Coelho FF, Nomura CH, Herman P. Current status and future perspectives of radiomics in hepatocellular carcinoma. World J Gastroenterol 2023; 29:43-60. [PMID: 36683711 PMCID: PMC9850949 DOI: 10.3748/wjg.v29.i1.43] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Given the frequent co-existence of an aggressive tumor and underlying chronic liver disease, the management of hepatocellular carcinoma (HCC) patients requires experienced multidisciplinary team discussion. Moreover, imaging plays a key role in the diagnosis, staging, restaging, and surveillance of HCC. Currently, imaging assessment of HCC entails the assessment of qualitative characteristics which are prone to inter-reader variability. Radiomics is an emerging field that extracts high-dimensional mineable quantitative features that cannot be assessed visually with the naked eye from medical imaging. The main potential applications of radiomic models in HCC are to predict histology, response to treatment, genetic signature, recurrence, and survival. Despite the encouraging results to date, there are challenges and limitations that need to be overcome before radiomics implementation in clinical practice. The purpose of this article is to review the main concepts and challenges pertaining to radiomics, and to review recent studies and potential applications of radiomics in HCC.
Collapse
Affiliation(s)
- Joao Miranda
- Department of Radiology, University of Sao Paulo, Sao Paulo 05403-010, Brazil
| | - Natally Horvat
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | | | | | - Maria Clara Fernandes
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | - Charlotte Charbel
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | - Jayasree Chakraborty
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | | | - Cesar Higa Nomura
- Department of Radiology, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Paulo Herman
- Department of Gastroenterology, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| |
Collapse
|