1
|
Zhang Z, Li H, Xiao S, Zhou Q, Liu S, Zhou X, Fan L. Hyperpolarized Gas Imaging in Lung Diseases: Functional and Artificial Intelligence Perspective. Acad Radiol 2024; 31:4203-4216. [PMID: 38233260 DOI: 10.1016/j.acra.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Pathophysiologic changes in lung diseases are often accompanied by changes in ventilation and gas exchange. Comprehensive evaluation of lung function cannot be obtained through chest X-ray and computed tomography. Proton-based lung MRI is particularly challenging due to low proton density within the lung tissue. In this review, we discuss an emerging technology--hyperpolarized gas MRI with inhaled 129Xe, which provides functional and microstructural information and has the potential as a clinical tool for detecting the early stage and progression of certain lung diseases. We review the hyperpolarized 129Xe MRI studies in patients with a range of pulmonary diseases, including chronic obstructive pulmonary disease, asthma, cystic fibrosis, pulmonary hypertension, radiation-induced lung injury and interstitial lung disease, and the applications of artificial intelligence were reviewed as well.
Collapse
Affiliation(s)
- Ziwei Zhang
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, People's Republic of China (Z.Z., S.L., L.F.)
| | - Haidong Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China (H.L., S.X., Q.Z., X.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (H.L., S.X., X.Z.)
| | - Sa Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China (H.L., S.X., Q.Z., X.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (H.L., S.X., X.Z.)
| | - Qian Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China (H.L., S.X., Q.Z., X.Z.)
| | - Shiyuan Liu
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, People's Republic of China (Z.Z., S.L., L.F.)
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China (H.L., S.X., Q.Z., X.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (H.L., S.X., X.Z.)
| | - Li Fan
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, People's Republic of China (Z.Z., S.L., L.F.).
| |
Collapse
|
2
|
Foo CT, Langton D, Thompson BR, Thien F. Functional lung imaging using novel and emerging MRI techniques. Front Med (Lausanne) 2023; 10:1060940. [PMID: 37181360 PMCID: PMC10166823 DOI: 10.3389/fmed.2023.1060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability in the world. While early diagnosis is key, this has proven difficult due to the lack of sensitive and non-invasive tools. Computed tomography is regarded as the gold standard for structural lung imaging but lacks functional information and involves significant radiation exposure. Lung magnetic resonance imaging (MRI) has historically been challenging due to its short T2 and low proton density. Hyperpolarised gas MRI is an emerging technique that is able to overcome these difficulties, permitting the functional and microstructural evaluation of the lung. Other novel imaging techniques such as fluorinated gas MRI, oxygen-enhanced MRI, Fourier decomposition MRI and phase-resolved functional lung imaging can also be used to interrogate lung function though they are currently at varying stages of development. This article provides a clinically focused review of these contrast and non-contrast MR imaging techniques and their current applications in lung disease.
Collapse
Affiliation(s)
- Chuan T. Foo
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - David Langton
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Department of Thoracic Medicine, Peninsula Health, Frankston, VIC, Australia
| | - Bruce R. Thompson
- Melbourne School of Health Science, Melbourne University, Melbourne, VIC, Australia
| | - Francis Thien
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Zanette B, Munidasa S, Friedlander Y, Ratjen F, Santyr G. A 3D stack-of-spirals approach for rapid hyperpolarized 129 Xe ventilation mapping in pediatric cystic fibrosis lung disease. Magn Reson Med 2023; 89:1083-1091. [PMID: 36433705 DOI: 10.1002/mrm.29505] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE To demonstrate the feasibility of a rapid 3D stack-of-spirals (3D-SoS) imaging acquisition for hyperpolarized 129 Xe ventilation mapping in healthy pediatric participants and pediatric cystic fibrosis (CF) participants, in comparison to conventional Cartesian multislice (2D) gradient-recalled echo (GRE) imaging. METHODS The 2D-GRE and 3D-SoS acquisitions were performed in 13 pediatric participants (5 healthy, 8 CF) during separate breath-holds. Images from both sequences were compared on the basis of ventilation defect percent (VDP) and other measures of image similarity. The nadir of transient oxygen saturation (SpO2 ) decline due to xenon breath-holding was measured with pulse oximetry, and expressed as a percent change relative to baseline. RESULTS 129 Xe ventilation images were acquired in a breath-hold of 1.2-1.8 s with the 3D-SoS sequence, compared to 6.2-8.8 s for 2D-GRE. Mean ± SD VDP measures for 2D-GRE and 3D-SoS sequences were 5.02 ± 1.06% and 5.28 ± 1.08% in healthy participants, and 18.05 ± 8.26% and 18.75 ± 6.74% in CF participants, respectively. Across all participants, the intraclass correlation coefficient of VDP measures for both sequences was 0.98 (95% confidence interval: 0.94-0.99). The percent change in SpO2 was reduced to -2.1 ± 2.7% from -5.2 ± 3.5% with the shorter 3D-SoS breath-hold. CONCLUSION Hyperpolarized 129 Xe ventilation imaging with 3D-SoS yielded images approximately five times faster than conventional 2D-GRE, reducing SpO2 desaturation and improving tolerability of the xenon administration. Analysis of VDP and other measures of image similarity demonstrate excellent agreement between images obtained with both sequences. 3D-SoS holds significant potential for reducing the acquisition time of hyperpolarized 129 Xe MRI, and/or increasing spatial resolution while adhering to clinical breath-hold constraints.
Collapse
Affiliation(s)
- Brandon Zanette
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Samal Munidasa
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yonni Friedlander
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Felix Ratjen
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giles Santyr
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Lu J, Wang Z, Bier E, Leewiwatwong S, Mummy D, Driehuys B. Bias field correction in hyperpolarized 129 Xe ventilation MRI using templates derived by RF-depolarization mapping. Magn Reson Med 2022; 88:802-816. [PMID: 35506520 PMCID: PMC9248357 DOI: 10.1002/mrm.29254] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/30/2022] [Accepted: 03/11/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE To correct for RF inhomogeneity for in vivo 129 Xe ventilation MRI using flip-angle mapping enabled by randomized 3D radial acquisitions. To extend this RF-depolarization mapping approach to create a flip-angle map template applicable to arbitrary acquisition strategies, and to compare these approaches to conventional bias field correction. METHODS RF-depolarization mapping was evaluated first in digital simulations and then in 51 subjects who had undergone radial 129 Xe ventilation MRI in the supine position at 3T (views = 3600; samples/view = 128; TR/TE = 4.5/0.45 ms; flip angle = 1.5; FOV = 40 cm). The images were corrected using newly developed RF-depolarization and templated-based methods and the resulting quantitative ventilation metrics (mean, coefficient of variation, and gradient) were compared to those resulting from N4ITK correction. RESULTS RF-depolarization and template-based mapping methods yielded a pattern of RF-inhomogeneity consistent with the expected variation based on coil architecture. The resulting corrected images were visually similar, but meaningfully distinct from those generated using standard N4ITK correction. The N4ITK algorithm eliminated the physiologically expected anterior-posterior gradient (-0.04 ± 1.56%/cm, P < 0.001). These 2 newly introduced methods of RF-depolarization and template correction retained the physiologically expected anterior-posterior ventilation gradient in healthy subjects (2.77 ± 2.09%/cm and 2.01 ± 2.73%/cm, respectively). CONCLUSIONS Randomized 3D 129 Xe MRI ventilation acquisitions can inherently be corrected for bias field, and this technique can be extended to create flip angle templates capable of correcting images from a given coil regardless of acquisition strategy. These methods may be more favorable than the de facto standard N4ITK because they can remove undesirable heterogeneity caused by RF effects while retaining results from known physiology.
Collapse
Affiliation(s)
- Junlan Lu
- Medical Physics Graduate Program, Duke University, Durham, North Carolina USA
| | - Ziyi Wang
- Biomedical Engineering, Duke University, Durham, North Carolina USA
| | - Elianna Bier
- Biomedical Engineering, Duke University, Durham, North Carolina USA
| | | | - David Mummy
- Department of Radiology, Duke University Medical Center, Durham, North Carolina USA
| | - Bastiaan Driehuys
- Medical Physics Graduate Program, Duke University, Durham, North Carolina USA
- Biomedical Engineering, Duke University, Durham, North Carolina USA
- Department of Radiology, Duke University Medical Center, Durham, North Carolina USA
| |
Collapse
|
5
|
DOĞANAY Ö. Computational investigation of fitting for calculation of signal dynamics from hyperpolarized xenon-129 Gas MRI. EGE TIP DERGISI 2022. [DOI: 10.19161/etd.1085607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Abstract
The use of magnetic resonance imaging (MRI) and spectroscopy (MRS) in the clinical setting enables the acquisition of valuable anatomical information in a rapid, non-invasive fashion. However, MRI applications for identifying disease-related biomarkers are limited due to low sensitivity at clinical magnetic field strengths. The development of hyperpolarized (hp) 129Xe MRI/MRS techniques as complements to traditional 1H-based imaging has been a burgeoning area of research over the past two decades. Pioneering experiments have shown that hp 129Xe can be encapsulated within host molecules to generate ultrasensitive biosensors. In particular, xenon has high affinity for cryptophanes, which are small organic cages that can be functionalized with affinity tags, fluorophores, solubilizing groups, and other moieties to identify biomedically relevant analytes. Cryptophane sensors designed for proteins, metal ions, nucleic acids, pH, and temperature have achieved nanomolar-to-femtomolar limits of detection via a combination of 129Xe hyperpolarization and chemical exchange saturation transfer (CEST) techniques. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI.![]()
Collapse
Affiliation(s)
- Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| |
Collapse
|
7
|
Grist JT, Chen M, Collier GJ, Raman B, AbuEid G, McIntyre A, Matthews V, Fraser E, Ho LP, Wild JM, Gleeson F. Hyperpolarized 129Xe MRI Abnormalities in Dyspneic Participants 3 Months after COVID-19 Pneumonia: Preliminary Results. Radiology 2021; 301:E353-E360. [PMID: 34032513 PMCID: PMC8168952 DOI: 10.1148/radiol.2021210033] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background SARS-CoV-2 targets angiotensin-converting enzyme 2 (ACE2) expressing
cells in the respiratory tract. There are reports of breathlessness in
patients many months post-infection. Purpose This study aimed to determine if hyperpolarized 129Xe MRI
(XeMRI) imaging could identify the possible cause of breathlessness in
patients three months after hospital discharge following COVID-19
infection. Materials and Methods This prospective study was undertaken between August and December 2020,
with patients and healthy control volunteers enrolled. All patients
underwent: lung function tests; ventilation and dissolved phase XeMRI,
with the mean Red Blood Cell (RBC):Tissue Plasma (TP) ratio to be
calculated; and a low dose chest CT scored for the degree of
post-COVID-19 abnormalities. Healthy controls underwent XeMRI. The
intraclass correlation coefficient was calculated for volunteer and
patient scans, to assess repeatability. A Wilcoxon rank-sum test and
Cohen's effect size calculated to assess for differences between
RBC:TP in patient and controls. Results 9 patients (mean age 57±7 years, Male = 6) and 5 volunteers
(29 ± 3 years, Female = 5) were enrolled. Patient mean
time from hospital discharge was 169, range 116-254 days. There was a
difference in RBC:TP between patients and controls (0.3 ± 0.1
versus 0.5 ± 0.1, respectively, p = 0.001, effect size
= 1.36). There was significant difference between the RBC and gas
phase spectral full width at half maximum (FWHM) between volunteers and
patients (median ± 95 % confidence interval, 567 ±
1 vs 507 ± 81, p = 0.002 and 104 ± 2 vs 122
± 17, p = 0.004, respectively). Results were reproducible
with Intraclass Correlation Coefficients of 0.82 and 0.88 for patients
and volunteers respectively. Participants had normal or near normal CT
scans, mean 7/25, range 0-10/25. Conclusion Xe MRI showed alveolar-capillary diffusion limitation in all 9 post
COVID-19 pneumonia patients despite normal or nearly normal CT
scans. See also the editorial by Dietrich.
Collapse
Affiliation(s)
- James T Grist
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford.,Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford.,Department of Radiology, The Churchill Hospital, Oxford NHS Foundation Trust, Oxford.,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham
| | - Mitchell Chen
- Department of Radiology, The Churchill Hospital, Oxford NHS Foundation Trust, Oxford
| | - Guilhem J Collier
- POLARIS, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield
| | - Betty Raman
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford
| | - Gabriele AbuEid
- Department of Radiology, The Churchill Hospital, Oxford NHS Foundation Trust, Oxford
| | - Anthony McIntyre
- Department of Radiology, The Churchill Hospital, Oxford NHS Foundation Trust, Oxford
| | - Violet Matthews
- Department of Radiology, The Churchill Hospital, Oxford NHS Foundation Trust, Oxford
| | - Emily Fraser
- Oxford Interstitial Lung Disease Service, Oxford NHS Foundation Trust
| | - Ling-Pei Ho
- MRC Human Immunology Unit, University of Oxford.,Oxford Interstitial Lung Disease Service, Oxford NHS Foundation Trust
| | - Jim M Wild
- POLARIS, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield
| | - Fergus Gleeson
- Department of Radiology, The Churchill Hospital, Oxford NHS Foundation Trust, Oxford.,Department of Oncology, University of Oxford, Oxford
| |
Collapse
|
8
|
Marshall H, Stewart NJ, Chan HF, Rao M, Norquay G, Wild JM. In vivo methods and applications of xenon-129 magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:42-62. [PMID: 33632417 PMCID: PMC7933823 DOI: 10.1016/j.pnmrs.2020.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 05/28/2023]
Abstract
Hyperpolarised gas lung MRI using xenon-129 can provide detailed 3D images of the ventilated lung airspaces, and can be applied to quantify lung microstructure and detailed aspects of lung function such as gas exchange. It is sensitive to functional and structural changes in early lung disease and can be used in longitudinal studies of disease progression and therapy response. The ability of 129Xe to dissolve into the blood stream and its chemical shift sensitivity to its local environment allow monitoring of gas exchange in the lungs, perfusion of the brain and kidneys, and blood oxygenation. This article reviews the methods and applications of in vivo129Xe MR in humans, with a focus on the physics of polarisation by optical pumping, radiofrequency coil and pulse sequence design, and the in vivo applications of 129Xe MRI and MRS to examine lung ventilation, microstructure and gas exchange, blood oxygenation, and perfusion of the brain and kidneys.
Collapse
Affiliation(s)
- Helen Marshall
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Neil J Stewart
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ho-Fung Chan
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Madhwesha Rao
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Graham Norquay
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jim M Wild
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
9
|
Salnikov OG, Svyatova A, Kovtunova LM, Chukanov NV, Bukhtiyarov VI, Kovtunov KV, Chekmenev EY, Koptyug IV. Heterogeneous Parahydrogen-Induced Polarization of Diethyl Ether for Magnetic Resonance Imaging Applications. Chemistry 2021; 27:1316-1322. [PMID: 32881102 PMCID: PMC7855047 DOI: 10.1002/chem.202003638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/29/2020] [Indexed: 11/07/2022]
Abstract
Magnetic resonance imaging (MRI) with the use of hyperpolarized gases as contrast agents provides valuable information on lungs structure and function. While the technology of 129 Xe hyperpolarization for clinical MRI research is well developed, it requires the expensive equipment for production and detection of hyperpolarized 129 Xe. Herein we present the 1 H hyperpolarization of diethyl ether vapor that can be imaged on any clinical MRI scanner. 1 H nuclear spin polarization of up to 1.3 % was achieved using heterogeneous hydrogenation of ethyl vinyl ether with parahydrogen over Rh/TiO2 catalyst. Liquefaction of diethyl ether vapor proceeds with partial preservation of hyperpolarization and prolongs its lifetime by ≈10 times. The proof-of-principle 2D 1 H MRI of hyperpolarized diethyl ether was demonstrated with 0.1×1.1 mm2 spatial and 120 ms temporal resolution. The long history of use of diethyl ether for anesthesia is expected to facilitate the clinical translation of the presented approach.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Alexandra Svyatova
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, 119991, Moscow, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| |
Collapse
|