1
|
Yao H, Pan Z, Ma W, Zhao Z, Su Z, Yang J. Whole-Genome Resequencing Analysis of the Camelus bactrianus (Bactrian Camel) Genome Identifies Mutations and Genes Affecting Milk Production Traits. Int J Mol Sci 2024; 25:7836. [PMID: 39063078 PMCID: PMC11277051 DOI: 10.3390/ijms25147836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Milk production is an important trait that influences the economic value of camels. However, the genetic regulatory mechanisms underlying milk production in camels have not yet been elucidated. We aimed to identify candidate molecular markers that affect camel milk production. We classified Junggar Bactrian camels (9-10-year-old) as low-yield (<1.96 kg/d) or high-yield (>2.75 kg/d) based on milk production performance. Milk fat (5.16 ± 0.51 g/100 g) and milk protein (3.59 ± 0.22 g/100 g) concentrations were significantly lower in high-yielding camels than those in low-yielding camels (6.21 ± 0.59 g/100 g, and 3.93 ± 0.27 g/100 g, respectively) (p < 0.01). There were no apparent differences in gland tissue morphology between the low- and high-production groups. Whole-genome resequencing of 12 low- and 12 high-yield camels was performed. The results of selection mapping methods, performed using two methods (FST and θπ), showed that 264 single nucleotide polymorphism sites (SNPs) overlapped between the two methods, identifying 181 genes. These genes were mainly associated with the regulation of oxytocin, estrogen, ErbB, Wnt, mTOR, PI3K-Akt, growth hormone synthesis/secretion/action, and MAPK signaling pathways. A total of 123 SNPs were selected, based on significantly associated genomic regions and important pathways for SNP genotyping, for verification in 521 additional Bactrian camels. This analysis showed that 13 SNPs were significantly associated with camel milk production yield and 18 SNPs were significantly associated with camel milk composition percentages. Most of these SNPs were located in coding regions of the genome. However, five and two important mutation sites were found in the introns of CSN2 (β-casein) and CSN3 (κ-casein), respectively. Among the candidate genes, NR4A1, ADCY8, PPARG, CSN2, and CSN3 have previously been well studied in dairy livestock. These observations provide a basis for understanding the molecular mechanisms underlying milk production in camels as well as genetic markers for breeding programs aimed at improving milk production.
Collapse
Affiliation(s)
- Huaibing Yao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (H.Y.); (Z.Z.)
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi 830017, China
| | - Zhangyuan Pan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Wanpeng Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (W.M.); (Z.S.)
| | - Zhongkai Zhao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (H.Y.); (Z.Z.)
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi 830017, China
| | - Zhanqiang Su
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (W.M.); (Z.S.)
| | - Jie Yang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (H.Y.); (Z.Z.)
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi 830017, China
| |
Collapse
|
2
|
Wright EA, Reddock MB, Roberts EK, Legesse YW, Perry G, Bradley RD. Genetic characterization of the prion protein gene in camels ( Camelus) with comments on the evolutionary history of prion disease in Cetartiodactyla. PeerJ 2024; 12:e17552. [PMID: 38948234 PMCID: PMC11214740 DOI: 10.7717/peerj.17552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are a fatal neurogenerative disease that include Creutzfeldt-Jakob disease in humans, scrapie in sheep and goats, bovine spongiform encephalopathy (BSE), and several others as well as the recently described camel prion disease (CPD). CPD originally was documented in 3.1% of camels examined during an antemortem slaughterhouse inspection in the Ouargla region of Algeria. Of three individuals confirmed for CPD, two were sequenced for the exon 3 of the prion protein gene (PRNP) and were identical to sequences previously reported for Camelus dromedarius. Given that other TSEs, such as BSE, are known to be capable of cross-species transmission and that there is household consumption of meat and milk from Camelus, regulations to ensure camel and human health should be a One Health priority in exporting countries. Although the interspecies transmissibility of CPD currently is unknown, genotypic characterization of Camelus PRNP may be used for predictability of predisposition and potential susceptibility to CPD. Herein, eight breeds of dromedary camels from a previous genetic (mitochondrial DNA and microsatellites) and morphological study were genotyped for PRNP and compared to genotypes from CPD-positive Algerian camels. Sequence data from PRNP indicated that Ethiopian camels possessed 100% sequence identity to CPD-positive camels from Algeria. In addition, the camel PRNP genotype is unique compared to other members of the Orders Cetartiodactyla and Perissodactyla and provides an in-depth phylogenetic analysis of families within Cetartiodactyla and Perissodactyla that was used to infer the evolutionary history of the PRNP gene.
Collapse
Affiliation(s)
- Emily A. Wright
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX, United States of America
| | - Madison B. Reddock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States of America
| | - Emma K. Roberts
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States of America
- Climate Center, Texas Tech University, Lubbock, TX, United States of America
| | - Yoseph W. Legesse
- School of Animal and Range Sciences, Haramaya University, Dire Dawa, Ethiopia
- Institute of Pastoral and Agropastoral Development Studies, Jigjiga University, Jigjiga, Ethiopia
| | - Gad Perry
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX, United States of America
| | - Robert D. Bradley
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX, United States of America
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States of America
| |
Collapse
|
3
|
Al-Sharif M, Abdo M, Shabrawy OE, El-Naga EMA, Fericean L, Banatean-Dunea I, Ateya A. Investigating Polymorphisms and Expression Profile of Immune, Antioxidant, and Erythritol-Related Genes for Limiting Postparturient Endometritis in Holstein Cattle. Vet Sci 2023; 10:370. [PMID: 37368756 DOI: 10.3390/vetsci10060370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
This study looked at genetic polymorphisms and transcript levels of immune, antioxidant, and erythritol-related markers for postparturient endometritis prediction and tracking in Holstein dairy cows. One hundred and thirty female dairy cows (65 endometritis affected and 65 apparently healthy) were used. Nucleotide sequence variations between healthy and endometritis-affected cows were revealed using PCR-DNA sequencing for immune (TLR4, TLR7, TNF-α, IL10, NCF4, and LITAF), antioxidant (ATOX1, GST, and OXSR1), and erythritol-related (TKT, RPIA, and AMPD1) genes. Chi-square investigation exposed a noteworthy variance amongst cow groups with and without endometritis in likelihood of dispersal of all distinguished nucleotide variants (p < 0.05). The IL10, ATOX1, and GST genes were expressed at substantially lower levels in endometritis-affected cows. Gene expression levels were considerably higher in endometritis-affected cows than in resistant ones for the genes TLR4, TLR7, TNF-α, NCF4, LITAF, OXSR1, TKT, RPIA, and AMPD1. The sort of marker and vulnerability or resistance to endometritis had a significant impact on the transcript levels of the studied indicators. The outcomes might confirm the importance of nucleotide variants along with gene expression patterns as markers of postparturient endometritis susceptibility/resistance and provide a workable control plan for Holstein dairy cows.
Collapse
Affiliation(s)
- Mona Al-Sharif
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Omnia El Shabrawy
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menofia University, Menofia 32951, Egypt
| | - Eman M Abu El-Naga
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania
| | - Ioan Banatean-Dunea
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
4
|
Biological Health Markers Associated with Oxidative Stress in Dairy Cows during Lactation Period. Metabolites 2023; 13:metabo13030405. [PMID: 36984846 PMCID: PMC10051964 DOI: 10.3390/metabo13030405] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
This review aims to summarize and present different biological health markers in dairy cows during the lactation period. Biochemical health markers provide an indicator of how foreign chemical substances, whether external or internal, affect the animal’s health. To understand the relationship between dairy cow health issues and oxidative stress, various biomarkers of oxidative stress must be investigated. Biochemical and hematological factors play a significant role in determining the biological health markers of animals. A variety of biochemical parameters are dependent on various factors, including the animal’s breed, its age, its development, its pregnancy status, and its production status. When assessing the health of cattle, a blood test is conducted to determine the blood chemistry. To diagnose diseases in dairy animals, the blood biochemistry is necessary to determine the cause of many physiological, metabolic, and pathological problems. Observing blood alterations during pregnancy and at peak lactation may determine what factors lift oxidative stress in cows due to disturbances in feed intake and metabolic processes.
Collapse
|
5
|
Ateya A, Al-Sharif M, Abdo M, Fericean L, Essa B. Individual Genomic Loci and mRNA Levels of Immune Biomarkers Associated with Pneumonia Susceptibility in Baladi Goats. Vet Sci 2023; 10:vetsci10030185. [PMID: 36977224 PMCID: PMC10051579 DOI: 10.3390/vetsci10030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
The effectiveness of breeding for inherent disease resistance in animals could be considerably increased by identifying the genes and mutations that cause diversity in disease resistance. One hundred and twenty adult female Baladi goats (sixty pneumonic and sixty apparently healthy) were used in this study. DNA and RNA were extracted from blood samples collected from the jugular vein of each goat. SLC11A1, CD-14, CCL2, TLR1, TLR7, TLR8, TLR9, β defensin, SP110, SPP1, BP1, A2M, ADORA3, CARD15, IRF3, and SCART1 SNPs that have been previously found to be associated with pneumonia resistance/susceptibility were identified via PCR-DNA sequencing. The pneumonic and healthy goats differed significantly, according to a Chi-square analysis of the discovered SNPs. The mRNA levels of the studied immune markers were noticeably greater in the pneumonic goats than in the healthy ones. The findings could support the significance of the use of immune gene expression profiles and nucleotide variations as biomarkers for the susceptibility/resistance to pneumonia and provide a practical management technique for Baladi goats. These results also suggest a potential strategy for lowering pneumonia in goats by employing genetic markers linked to an animal’s ability to fend off infection in selective breeding.
Collapse
Affiliation(s)
- Ahmed Ateya
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (A.A.); (L.F.)
| | - Mona Al-Sharif
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania
- Correspondence: (A.A.); (L.F.)
| | - Bothaina Essa
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
6
|
Igoshin AV, Romashov GA, Chernyaeva EN, Elatkin NP, Yudin NS, Larkin DM. Comparative analysis of allele frequencies for DNA polymorphisms associated with disease and economically important traits in the genomes of Russian and foreign cattle breeds. Vavilovskii Zhurnal Genet Selektsii 2022; 26:298-307. [PMID: 35774360 PMCID: PMC9167823 DOI: 10.18699/vjgb-22-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 11/19/2022] Open
Abstract
The genetic makeup of a breed including its genetic differences from other breeds determines its appearance and characteristics, including economically important traits and resistance to pathologies. To date, many loci controlling significant phenotypes have been identified, which is successfully used in the world practice of marker-assisted selection to improve breed properties. The aim of this study was a comparative analysis of frequencies for known causative nucleotide substitutions, insertions and deletions associated with disease and economically important traits in Russian and foreign cattle breeds. As a result, we identified frequencies of these DNA polymorphisms in the populations of Russian cattle breeds, compared them with those of foreign populations of the same breed, as well as other foreign breeds. Our results indicate similarities in frequencies for most of such alleles within breeds (populations of Russian and foreign breeding), as well as the relationship between the causative allele prevalence and the presence of phenotypic traits under the effect. We also found an excess of some undesirable alleles in the Russian cattle populations, which should be paid attention to when designing breeding programs. We found that the alleles increasing fertility in the Hereford breed have a higher frequency in the Russian Hereford population compared to the foreign counterpart. Interestingly, unlike for the European breeds, for Asian Turano-Mongolian Wagyu and Yakut cattle, there was a less clear link between phenotypic traits and frequencies of known causative alleles. Our work points to specific genetic variants that could be used to improve and/or maintain the performance of certain cattle breeds bred in the Russian Federation.
Collapse
Affiliation(s)
- A. V. Igoshin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - G. A. Romashov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | | | | | - N. S. Yudin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | | |
Collapse
|
7
|
Suitability of GWAS as a Tool to Discover SNPs Associated with Tick Resistance in Cattle: A Review. Pathogens 2021; 10:pathogens10121604. [PMID: 34959558 PMCID: PMC8707706 DOI: 10.3390/pathogens10121604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the biological mechanisms underlying tick resistance in cattle holds the potential to facilitate genetic improvement through selective breeding. Genome wide association studies (GWAS) are popular in research on unraveling genetic determinants underlying complex traits such as tick resistance. To date, various studies have been published on single nucleotide polymorphisms (SNPs) associated with tick resistance in cattle. The discovery of SNPs related to tick resistance has led to the mapping of associated candidate genes. Despite the success of these studies, information on genetic determinants associated with tick resistance in cattle is still limited. This warrants the need for more studies to be conducted. In Africa, the cost of genotyping is still relatively expensive; thus, conducting GWAS is a challenge, as the minimum number of animals recommended cannot be genotyped. These population size and genotype cost challenges may be overcome through the establishment of collaborations. Thus, the current review discusses GWAS as a tool to uncover SNPs associated with tick resistance, by focusing on the study design, association analysis, factors influencing the success of GWAS, and the progress on cattle tick resistance studies.
Collapse
|
8
|
Suprovych TM, Suprovych MP, Kolinchuk RV, Karchevska TM, Chornyi IO, Kolodiy VA. Association of BoLA-DRB3.2 alleles with fusobacteriosis in cows. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The Major Histocompatability Complex (MHC) determines the immune response to pathogens, and its genes are promising candidates for the search of associations with diseases. A special role is played by BoLA-DRB3 gene, the product of which directly participates in the binding of alien antigens and conditions the specificity of the immune response. The second exon of this gene codes β1-domain of class II antigens, which is necessary for binding a broad spectrum of alien antigens. Exon 2 of BoLA-DRB3 gene is extremely polymorphic, giving the possibility to search the associations of its alleles with various diseases. The article provides the results of the study on polymorphism of alleles of BoLA-DRB3.2 gene for detection of its associations with sensitivity to fusobacteriosis (necrobacteriosis) of cows. The survey was performed using PCR-RFLP method with DNA of blood from 176 cows of two herds of Ukrainian black-and-white dairy breed. As a result of the studies, in the first herd, 25 BoLA-DRB3.2 alleles were found. In the selections of nectobacteriosis susceptible and resistant cows, we found 22 and 21 variants respectively. In the second herd, in the general selection and group of healthy animals, 27 alleles were typed, and 22 in the group of susceptible cows. BoLA-DRB3.2*22 allele was the commonest in both herds in both general selections and groups of nectobacteriosis-resistant cows. In the selection of susceptible animals, the commonest was the variant BoLA-DRB3.2*16. We determined statistically significant associations of BoLA-DRB3.2 alleles with sensitivity to nectobacteriosis of cattle. BoLA-DRB3.2*03 and *22 alleles associate with nectobacteriosis-resistant, while *16 and *23 – with nectobacteriosis-susceptible cows of the both studied groups. Also, in the first herd, another allele was found – *24, indicating close relationship with the disease. The studies of polymorphism of BoLA-DRB3 gene expand the knowledge about genetic peculiarities of the Ukrainian black-and-white dairy breed. The identified molecular-genetic markers could be useful for breeders whose work is oriented towards the formation of herds which are resistant to diseases of the limbs in cattle.
Collapse
|
9
|
EL-HALAWANY NERMIN, SHAWKY ABDELMONSIFA, M. AL-TOHAMY AHMEDF, HEGAZY LAMEES, ABDEL-SHAFY HAMDY, ABDEL-LATIF MAGDYA, GHAZI YASSERA, NEUHOFF CHRISTIANE, SALILEW-WONDIM DESSIE, SCHELLANDER KARL. Complement component 3: characterization and association with mastitis resistance in Egyptian water buffalo and cattle. J Genet 2017; 96:65-73. [DOI: 10.1007/s12041-017-0740-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Ojong BW, Saccà E, Bessong P, Piasentier E. Prevalence of bovine dermatophilosis and disease-associated alleles in zebu Goudali cattle and their Italian Simmental crosses ranching in the western highland plateau savannah of Cameroon. Trop Anim Health Prod 2016; 48:1329-35. [PMID: 27299884 DOI: 10.1007/s11250-016-1097-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 06/08/2016] [Indexed: 11/25/2022]
Abstract
Abundance of native pastures makes Cameroon's western highland savannah (WHS) a hotspot for low-input beef-type cattle. Dumbo Ranch is central to cattle seed stock multiplication in WHS and holds that Dermatophilus congolensis infection undermines production. The bovine BoLA-DRB3 has been variously demonstrated as the principal gene of the major histocompatibility locus associated with immunity and resistance to dermatophilosis in cattle. We studied the profile of dermatophilosis prevalence in zebu Goudali (G) and its Simmental composite, SimGoud (SG), at Dumbo Ranch and determined the distribution of a dermatophilosis-associated susceptibility allele of the BoLA-DRB3 gene by allele-specific polymerase chain reaction (PCR). We recorded a 42 % prevalence of dermatophilosis in the studied cohort (337 animals). Dermatophilosis was more common in older cattle than in cattle ≤36 months (p ≤ 0.05). G was more affected compared to SG, because of the prevalence of the disease in the oldest animals and the age distribution of the experimental subjects. No susceptible homozygote was observed. About 85 and 15 % of the cohort carried the homozygous resistant and heterozygous condition, respectively. This genotype distribution was not affected by cattle type. The study confirms the presence of dermatophilosis among G and SG cattle in WHS. However, there was no correlation between the presence of the disease-associated susceptible allele considered and clinical manifestation. Screening for this dermatophilosis resistance-associated allele of BoLA-DRB3 gene appeared not useful for selection of G and SG in WHS.
Collapse
Affiliation(s)
- Bessong Willington Ojong
- Societé de Développement et d'Exploitation des Productions Animales (SODEPA), P.O. Box 1410, Yaoundé, Cameroon
| | - Elena Saccà
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio, 2/A, 33100, Udine, Italy.
| | - Pascal Bessong
- Department of Microbiology, University of Venda, Thohoyandou, 0950, South Africa
| | - Edi Piasentier
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio, 2/A, 33100, Udine, Italy
| |
Collapse
|
11
|
Wang MD, Dzama K, Hefer CA, Muchadeyi FC. Genomic population structure and prevalence of copy number variations in South African Nguni cattle. BMC Genomics 2015; 16:894. [PMID: 26531252 PMCID: PMC4632335 DOI: 10.1186/s12864-015-2122-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022] Open
Abstract
Background Copy number variations (CNVs) are modifications in DNA structure comprising of deletions, duplications, insertions and complex multi-site variants. Although CNVs are proven to be involved in a variety of phenotypic discrepancies, the full extent and consequence of CNVs is yet to be understood. To date, no such genomic characterization has been performed in indigenous South African Nguni cattle. Nguni cattle are recognized for their ability to sustain harsh environmental conditions while exhibiting enhanced resistance to disease and parasites and are thought to comprise of up to nine different ecotypes. Methods Illumina BovineSNP50 Beadchip data was utilized to investigate genomic population structure and the prevalence of CNVs in 492 South African Nguni cattle. PLINK, ADMIXTURE, R, gPLINK and Haploview software was utilized for quality control, population structure and haplotype block determination. PennCNV hidden Markov model identified CNVs and genes contained within and 10 Mb downstream from reported CNVs. PANTHER and Ensembl databases were subsequently utilized for gene annotation analyses. Results Population structure analyses on Nguni cattle revealed 5 sub-populations with a possible sub-structure evident at K equal to 8. Four hundred and thirty three CNVs that formed 334 CNVRs ranging from 30 kb to 1 Mb in size are reported. Only 231 of the 492 animals demonstrated CNVRs. Two hundred and eighty nine genes were observed within CNVRs identified. Of these 149, 28, 44, 2 and 14 genes were unique to sub-populations A, B, C, D and E respectively. Gene ontology analyses demonstrated a number of pathways to be represented by respective genes, including immune response, response to abiotic stress and biological regulation processess. Conclusions CNVs may explain part of the phenotypic diversity and the enhanced adaptation evident in Nguni cattle. Genes involved in a number of cellular components, biological processes and molecular functions are reported within CNVRs identified. The significance of such CNVRs and the possible effect thereof needs to be ascertained and may hold interesting insight into the functional and adaptive consequence of CNVs in cattle. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2122-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magretha Diane Wang
- Department of Animal Sciences, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa. .,Biotechnology Platform, Agricultural Research Council, Private Bag X5, Onderstepoort, 0110, South Africa.
| | - Kennedy Dzama
- Department of Animal Sciences, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| | - Charles A Hefer
- Biotechnology Platform, Agricultural Research Council, Private Bag X5, Onderstepoort, 0110, South Africa.
| | - Farai C Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Private Bag X5, Onderstepoort, 0110, South Africa.
| |
Collapse
|
12
|
The Application of Genomic Technologies to Investigate the Inheritance of Economically Important Traits in Goats. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/904281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Goat genomics has evolved at a low pace because of a lack of molecular tools and sufficient investment. Whilst thousands and hundreds of quantitative trait loci (QTL) have been identified in cattle and sheep, respectively, about nine genome scans have been performed in goats dealing with traits as conformation, growth, fiber quality, resistance to nematodes, and milk yield and composition. In contrast, a great effort has been devoted to the characterization of candidate genes and their association with milk, meat, and reproduction phenotypes. In this regard, causal mutations have been identified in the αS1-casein gene that has a strong effect on milk composition and the PIS locus that is linked to intersexuality and polledness. In recent times, the development of massive parallel sequencing technologies has allowed to build a reference genome for goats as well as to monitor the expression of mRNAs and microRNAs in a broad array of tissues and experimental conditions. Besides, the recent design of a 52K SNP chip is expected to have a broad impact in the analysis of the genetic architecture of traits of economic interest as well as in the study of the population structure of goats at a worldwide scale.
Collapse
|
13
|
Singh U, Deb R, Alyethodi RR, Alex R, Kumar S, Chakraborty S, Dhama K, Sharma A. Molecular markers and their applications in cattle genetic research: A review. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bgm.2014.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Duangjinda M, Jindatajak Y, Tipvong W, Sriwarothai J, Pattarajinda V, Katawatin S, Boonkum W. Association of BoLA-DRB3 alleles with tick-borne disease tolerance in dairy cattle in a tropical environment. Vet Parasitol 2013; 196:314-20. [DOI: 10.1016/j.vetpar.2013.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/25/2013] [Accepted: 03/04/2013] [Indexed: 11/29/2022]
|
15
|
Larruskain A, Jugo BM. Retroviral infections in sheep and goats: small ruminant lentiviruses and host interaction. Viruses 2013; 5:2043-61. [PMID: 23965529 PMCID: PMC3761241 DOI: 10.3390/v5082043] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/26/2013] [Accepted: 08/05/2013] [Indexed: 12/18/2022] Open
Abstract
Small ruminant lentiviruses (SRLV) are members of the Retrovirus family comprising the closely related Visna/Maedi Virus (VMV) and the Caprine Arthritis-Encephalitis Virus (CAEV), which infect sheep and goats. Both infect cells of the monocyte/macrophage lineage and cause lifelong infections. Infection by VMV and CAEV can lead to Visna/Maedi (VM) and Caprine Arthritis-Encephalitis (CAE) respectively, slow progressive inflammatory diseases primarily affecting the lungs, nervous system, joints and mammary glands. VM and CAE are distributed worldwide and develop over a period of months or years, always leading to the death of the host, with the consequent economic and welfare implications. Currently, the control of VM and CAE relies on the control of transmission and culling of infected animals. However, there is evidence that host genetics play an important role in determining Susceptibility/Resistance to SRLV infection and disease progression, but little work has been performed in small ruminants. More research is necessary to understand the host-SRLV interaction.
Collapse
Affiliation(s)
- Amaia Larruskain
- Genomics and Health Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Bilbao 48080, Spain.
| | | |
Collapse
|
16
|
Yakubu A, Salako AE, De Donato M, Takeet MI, Peters SO, Adefenwa MA, Okpeku M, Wheto M, Agaviezor BO, Sanni TM, Ajayi OO, Onasanya GO, Ekundayo OJ, Ilori BM, Amusan SA, Imumorin IG. Genetic Diversity in Exon 2 of the Major Histocompatibility Complex Class II DQB1 Locus in Nigerian Goats. Biochem Genet 2013; 51:954-66. [DOI: 10.1007/s10528-013-9620-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 02/13/2013] [Indexed: 10/26/2022]
|
17
|
Paudel Y, Madsen O, Megens HJ, Frantz LAF, Bosse M, Bastiaansen JWM, Crooijmans RPMA, Groenen MAM. Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication. BMC Genomics 2013; 14:449. [PMID: 23829399 PMCID: PMC3716681 DOI: 10.1186/1471-2164-14-449] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 07/01/2013] [Indexed: 12/23/2022] Open
Abstract
Background Copy number variable regions (CNVRs) can result in drastic phenotypic differences and may therefore be subject to selection during domestication. Studying copy number variation in relation to domestication is highly relevant in pigs because of their very rich natural and domestication history that resulted in many different phenotypes. To investigate the evolutionary dynamic of CNVRs, we applied read depth method on next generation sequence data from 16 individuals, comprising wild boars and domestic pigs from Europe and Asia. Results We identified 3,118 CNVRs with an average size of 13 kilobases comprising a total of 39.2 megabases of the pig genome and 545 overlapping genes. Functional analyses revealed that CNVRs are enriched with genes related to sensory perception, neurological process and response to stimulus, suggesting their contribution to adaptation in the wild and behavioral changes during domestication. Variations of copy number (CN) of antimicrobial related genes suggest an ongoing process of evolution of these genes to combat food-borne pathogens. Likewise, some genes related to the omnivorous lifestyle of pigs, like genes involved in detoxification, were observed to be CN variable. A small portion of CNVRs was unique to domestic pigs and may have been selected during domestication. The majority of CNVRs, however, is shared between wild and domesticated individuals, indicating that domestication had minor effect on the overall diversity of CNVRs. Also, the excess of CNVRs in non-genic regions implies that a major part of these variations is likely to be (nearly) neutral. Comparison between different populations showed that larger populations have more CNVRs, highlighting that CNVRs are, like other genetic variation such as SNPs and microsatellites, reflecting demographic history rather than phenotypic diversity. Conclusion CNVRs in pigs are enriched for genes related to sensory perception, neurological process, and response to stimulus. The majority of CNVRs ascertained in domestic pigs are also variable in wild boars, suggesting that the domestication of the pig did not result in a change in CNVRs in domesticated pigs. The majority of variable regions were found to reflect demographic patterns rather than phenotypic.
Collapse
Affiliation(s)
- Yogesh Paudel
- Animal Breeding and Genomics Centre, Wageningen University, De Elst 1, Wageningen, WD, 6708, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Cicconardi F, Chillemi G, Tramontano A, Marchitelli C, Valentini A, Ajmone-Marsan P, Nardone A. Massive screening of copy number population-scale variation in Bos taurus genome. BMC Genomics 2013; 14:124. [PMID: 23442185 PMCID: PMC3618309 DOI: 10.1186/1471-2164-14-124] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 02/11/2013] [Indexed: 12/13/2022] Open
Abstract
Background Copy number variations (CNVs) represent a significant source of genomic structural variation. Their length ranges from approximately one hundred to millions of base pair. Genome-wide screenings have clarified that CNVs are a ubiquitous phenomenon affecting essentially the whole genome. Although Bos taurus is one of the most important domestic animal species worldwide and one of the most studied ruminant models for metabolism, reproduction, and disease, relatively few studies have investigated CNVs in cattle and little is known about how CNVs contribute to normal phenotypic variation and to disease susceptibility in this species, compared to humans and other model organisms. Results Here we characterize and compare CNV profiles in 2654 animals from five dairy and beef Bos taurus breeds, using the Illumina BovineSNP50 genotyping array (54001 SNP probes). In this study we applied the two most commonly used algorithms for CNV discovery (QuantiSNP and PennCNV) and identified 4830 unique candidate CNVs belonging to 326 regions. These regions overlap with 5789 known genes, 76.7% of which are significantly co-localized with segmental duplications (SD). Conclusions This large scale screening significantly contributes to the enrichment of the Bos taurus CNV map, demonstrates the ubiquity, great diversity and complexity of this type of genomic variation and sets the basis for testing the influence of CNVs on Bos taurus complex functional and production traits.
Collapse
Affiliation(s)
- Francesco Cicconardi
- Department for innovation in biological, agro-food and forest systems, University of Tuscia, via de Lellis, Viterbo 01100, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Yu Y, Deng YN. [Bovine disease-related DNA mutations and their genetic control strategies in breeding for disease resistance]. YI CHUAN = HEREDITAS 2012; 34:1242-50. [PMID: 23099780 DOI: 10.3724/sp.j.1005.2012.01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bovine genomic DNA mutations and their genetic effects on gene expression and protein function influence disease susceptibility and resistance of cattle. The genetic loci related to cattle diseases are mainly divided into two types: single-locus-disease genes and multigenic-disease loci. The single-locus-disease genes are called causal mutations; their genetic basis is simply and normally detected in the coding and non-coding regions inducing substitution of amino acid, premature termination of translation, and complete deletion of entire exon(s). In contrast, the genetic basis of disease related to multiple genes is more complex since susceptibility or resistance of these diseases is affected by the interactions among host, pathogen, and environment. This article reviewed current research and application of the major diseases of cattle con-trolled by single gene or polygenic genes. The genetic control strategies of effective identification and control of these dis-eases in bovine breeding and production were also analyzed.
Collapse
Affiliation(s)
- Ying Yu
- National Engineering Laboratory for Animal Breeding & Key Laboratory of Agricultural Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | | |
Collapse
|
20
|
Drosophila melanogaster Selection for Survival of Bacillus cereus Infection: Life History Trait Indirect Responses. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:935970. [PMID: 23094195 PMCID: PMC3474238 DOI: 10.1155/2012/935970] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/26/2012] [Accepted: 08/16/2012] [Indexed: 02/02/2023]
Abstract
To study evolved resistance/tolerance in an insect model, we carried out an
experimental evolution study using D. melanogaster and the opportunistic
pathogen B. cereus as the agent of selection. The selected lines evolved a
3.0- to 3.3-log increase in the concentration of spores required for 50% mortality
after 18–24 generations of selection. In the absence of any treatment, selected
lines evolved an increase in egg production and delayed development time. The
latter response could be interpreted as a cost of evolution. Alternatively, delayed
development might have been a target of selection resulting in increased
adult fat body function including production of antimicrobial peptides, and,
incidentally, yolk production for oocytes and eggs. When treated with autoclaved
spores, the egg production difference between selected and control lines was
abolished, and this response was consistent with the hypothesis of a cost of an
induced immune response. Treatment with autoclaved spores also reduced life span
in some cases and elicited early-age mortality in the selected and wound-control
lines both of which were consistent with the hypothesis of a cost associated with
induction of immune responses. In general, assays on egg production yielded key
outcomes including the negative effect of autoclaved spores on egg production.
Collapse
|
21
|
Lan X, Zhao H, Li Z, Li A, Lei C, Chen H, Pan C. A novel 28-bp insertion–deletion polymorphism within goat PRNP gene and its association with production traits in Chinese native breeds. Genome 2012; 55:547-52. [DOI: 10.1139/g2012-040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, a novel 28-bp insertion–deletion (indel) polymorphism (AJ298878:g.47836–47853insCCTCAGACACTGAGTCTCCCCAACAGCA) was found in goat prion protein (PRNP) gene in 2373 goats from 13 Chinese native breeds. The frequencies of allele “ins” varied from 0.500 to 1.000 in different breeds. The establishment of association of the 28-bp indel polymorphism with production traits was performed in Inner Mongolia white cashmere (IMWC) and Xinong Sannen dairy (XNSN) breeds. Two significant associations between this polymorphism and 1-year-old body mass (P = 0.011) and average body mass (P = 0.024) were observed in IMWC breed, as well as wool thickness of 3-year-olds (P < 0.001). Furthermore, the novel 28-bp indel polymorphism was significantly associated with total solids in the evening (%) (P = 0.009) and milk yield (P = 0.016) in XNSN breed. These findings suggested that the 28-bp indel polymorphism was a potential DNA marker for eliminating or selecting preferred individuals in relation to production traits in goat marker-assisted selection breeding while carrying out preventing scrapie project.
Collapse
Affiliation(s)
- X.Y. Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - H.Y. Zhao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Z.J. Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - A.M. Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - C.Z. Lei
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - H. Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - C.Y. Pan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
22
|
Lan X, Zhao H, Wu C, Hu S, Pan C, Lei C, Chen H. Analysis of genetic variability at codon 42 within caprine prion protein gene in relation to production traits in Chinese domestic breeds. Mol Biol Rep 2011; 39:4981-8. [PMID: 22161245 DOI: 10.1007/s11033-011-1294-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
In this study, genetic variability at codon 42 within prion protein (PRNP) gene and its associations with production traits were investigated in 2002 goats from four Chinese domestic breeds. The frequencies of allele "A" ranged from 0.353 to 0.562 in analyzed goat breeds with Hardy-Weinberg equilibrium (P > 0.05) except Xinong Sannen (XNSN) dairy breed. The establishment of relationships between different genotypes and growth traits was performed in Inner Mongolia white Cashmere (IMWC) breed and revealed an association of the polymorphism with body weight at 7-year-old goats (P = 0.033). The individuals with genotype GG showed heavier body weight than those with genotype AA. Moreover, association analysis detected two significant associations between different genotypes and cashmere yield and fiber length in IMWC breed (P = 0.009, P = 0.048, respectively). In addition, three significant associations of different genotypes with density of milk (a.m. and p.m.), solids-not-fat of milk (P = 0.013, P = 0.009 and P = 0.002), respectively, were found in XNSN breed. Genotype GG had better milk quality than others. These findings suggested that the polymorphism of codon 42 within PRNP was a useful DNA marker for eliminating or selecting excellent individuals in relation to production traits in marker-assist selection breeding of goat.
Collapse
Affiliation(s)
- Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhan B, Fadista J, Thomsen B, Hedegaard J, Panitz F, Bendixen C. Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping. BMC Genomics 2011; 12:557. [PMID: 22082336 PMCID: PMC3248099 DOI: 10.1186/1471-2164-12-557] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 11/14/2011] [Indexed: 11/10/2022] Open
Abstract
Background Integration of genomic variation with phenotypic information is an effective approach for uncovering genotype-phenotype associations. This requires an accurate identification of the different types of variation in individual genomes. Results We report the integration of the whole genome sequence of a single Holstein Friesian bull with data from single nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) array technologies to determine a comprehensive spectrum of genomic variation. The performance of resequencing SNP detection was assessed by combining SNPs that were identified to be either in identity by descent (IBD) or in copy number variation (CNV) with results from SNP array genotyping. Coding insertions and deletions (indels) were found to be enriched for size in multiples of 3 and were located near the N- and C-termini of proteins. For larger indels, a combination of split-read and read-pair approaches proved to be complementary in finding different signatures. CNVs were identified on the basis of the depth of sequenced reads, and by using SNP and CGH arrays. Conclusions Our results provide high resolution mapping of diverse classes of genomic variation in an individual bovine genome and demonstrate that structural variation surpasses sequence variation as the main component of genomic variability. Better accuracy of SNP detection was achieved with little loss of sensitivity when algorithms that implemented mapping quality were used. IBD regions were found to be instrumental for calculating resequencing SNP accuracy, while SNP detection within CNVs tended to be less reliable. CNV discovery was affected dramatically by platform resolution and coverage biases. The combined data for this study showed that at a moderate level of sequencing coverage, an ensemble of platforms and tools can be applied together to maximize the accurate detection of sequence and structural variants.
Collapse
Affiliation(s)
- Bujie Zhan
- Group of Molecular Genetics and Systems Biology, Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | | | | | | | | | | |
Collapse
|
24
|
Schukken YH, Günther J, Fitzpatrick J, Fontaine MC, Goetze L, Holst O, Leigh J, Petzl W, Schuberth HJ, Sipka A, Smith DGE, Quesnell R, Watts J, Yancey R, Zerbe H, Gurjar A, Zadoks RN, Seyfert HM. Host-response patterns of intramammary infections in dairy cows. Vet Immunol Immunopathol 2011; 144:270-89. [PMID: 21955443 DOI: 10.1016/j.vetimm.2011.08.022] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 07/28/2011] [Accepted: 08/26/2011] [Indexed: 01/12/2023]
Abstract
Many different bacterial species have the ability to cause an infection of the bovine mammary gland and the host response to these infections is what we recognize as mastitis. In this review we evaluate the pathogen specific response to the three main bacterial species causing bovine mastitis: Escherichia coli, Streptococcus uberis and Staphylococcus aureus. In this paper we will review the bacterial growth patterns, host immune response and clinical response that results from the intramammary infections. Clear differences in bacterial growth pattern are shown between bacterial species. The dominant pattern in E. coli infections is a short duration high bacteria count infection, in S. aureus this is more commonly a persistent infection with relative low bacteria counts and in S. uberis a long duration high bacteria count infection is often observed. The host immune response differs significantly depending on the invading bacterial species. The underlying reasons for the differences and the resulting host response are described. Finally we discuss the clinical response pattern for each of the three bacterial species. The largest contrast is between E. coli and S. aureus where a larger proportion of E. coli infections cause potentially severe clinical symptoms, whereas the majority of S. aureus infections go clinically unnoticed. The relevance of fully understanding the bovine host response to intramammary infection is discussed, some major gaps in our knowledge are highlighted and directions for future research are indicated.
Collapse
Affiliation(s)
- Ynte H Schukken
- Quality Milk Production Services, Cornell University, 240 Farrier Road, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Reicher S, Gertler A, Seroussi E, Shpilman M, Gootwine E. Biochemical and in vitro biological significance of natural sequence variation in the ovine leptin gene. Gen Comp Endocrinol 2011; 173:63-71. [PMID: 21600211 DOI: 10.1016/j.ygcen.2011.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 04/24/2011] [Accepted: 04/30/2011] [Indexed: 12/23/2022]
Abstract
The hormone leptin is involved in diverse biological processes, including regulation of food intake, body-weight homeostasis and energy balance. Sequence variation in the bovine leptin gene has been found to be associated with variations in carcass fat content and average daily gain, as well as in milk yield, milk somatic cell count and several traits governing reproduction. We sequenced genomic DNA and cDNA samples of individuals from three divergent sheep breeds and revealed synonymous as well as novel non-synonymous allelic variation at the third exon of the ovine leptin gene (oLEP) as compared to the sequence published at Accession No. U84247 (reference sequence). In addition, two alternatively spliced oLEP transcripts were found in the abdominal fat tissue. The biochemical and the in vitro biological significance of the sequence variation in the oLEP was examined by generating recombinant oLEP-protein variants namely: p.Q28del, p.N78S, p.R84Q, p.P99Q, p.V123L and p.R138Q, carrying the corresponding sequence variation. Surface plasmon resonance experiments revealed, in most cases, reduced affinity of the oLEP protein variants examined, to human leptin-binding domain (hLBD), relative to the reference variant, being 0.75, 0.60, 0.60, 0.89, 0.92 and 1.03, respectively. In competitive binding assays between biotinylated oLEP and the recombinant leptin protein variants, p.N78S and p.R84Q variants exhibited the lowest affinity to hLBD (0.18 and 0.41, respectively) as compared to the reference hormone. We then tested the protein variants' ability to induce proliferation in Baf-3 cells stably expressing the long form of the human leptin receptor: significant differences in proliferative activity were only found for p.N78S (1.8-fold higher) and p.R138Q (4.2-fold lower) relative to the reference oLEP variant.
Collapse
Affiliation(s)
- Shay Reicher
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | | | | | | | | |
Collapse
|
26
|
Guan F, Pan L, Li J, Tang H, Zhu C, Shi G. Polymorphisms of the prion protein gene and their effects on litter size and risk evaluation for scrapie in Chinese Hu sheep. Virus Genes 2011; 43:147-52. [PMID: 21556743 PMCID: PMC3124648 DOI: 10.1007/s11262-011-0609-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 04/04/2011] [Indexed: 11/26/2022]
Abstract
It is well known that scrapie is a fatal, neurodegenerative disease in sheep and goat, which belongs to the group of transmissible spongiform encephalopathies (TSEs) or prion diseases. It has been confirmed that the polymorphisms of prion protein gene (PRNP) at codons 136, 154, and 171 have strong relationship with scrapie in sheep. In the present study, nine polymorphisms of PRNP at codons 136, 154, and 171 and other six loci (at codons 101, 112, 127, 137, 138, and 152) were detected in 180 Chinese Hu sheep. All the alleles at codons 136, 154, and 171 have been identified and resulted in three new genotypes. The frequencies of predominant alleles were 85% (A136), 99.40% (R154), and 37.78% (Q171), respectively. The predominant haplotype ARQ has a relatively high frequency of 57.77%. The frequencies of dominant genotypes of ARR/ARQ and ARQ/ARQ were 30 and 26.67%, respectively. Three new found genotypes named ARQ/TRK, ARQ/TRR, and TRR/TRQ had the same lower frequencies (0.56%). The relationship of PRNP genotype with scrapie risk and litter size showed that the predominant genotypes are corresponded to the risk score of R(1) (1.67%), R(2) (32.22%), and R(3) (42.22%). Just at the first parity, the individuals with ARH/ARH genotype had significantly larger litter size than the mean value and those with ARQ/ARQ and ARR/ARQ genotypes. In short, this study provided preliminary information about alleles and genotypes of PRNP in Chinese Hu sheep. It could be concluded that Hu sheep has a low susceptibility to natural scrapie, and the predominant PRNP genotype at least has no significant effect on litter size.
Collapse
Affiliation(s)
- Feng Guan
- College of Life Sciences, China Jiliang University, Hangzhou, 310018 People’s Republic of China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, 310018 China
| | - Lei Pan
- College of Life Sciences, China Jiliang University, Hangzhou, 310018 People’s Republic of China
| | - Jie Li
- College of Life Sciences, China Jiliang University, Hangzhou, 310018 People’s Republic of China
| | - Hong Tang
- The Key Sheep Breeding and Reproduction Biotechnology Laboratory of Xinjiang Production and Construction Group, Shihezi, 832000 People’s Republic of China
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou, 310018 People’s Republic of China
| | - Guoqing Shi
- The Key Sheep Breeding and Reproduction Biotechnology Laboratory of Xinjiang Production and Construction Group, Shihezi, 832000 People’s Republic of China
| |
Collapse
|
27
|
Keirstead ND, Hayes MA, Vandervoort GE, Brooks AS, Squires EJ, Lillie BN. Single nucleotide polymorphisms in collagenous lectins and other innate immune genes in pigs with common infectious diseases. Vet Immunol Immunopathol 2011; 142:1-13. [PMID: 21570129 DOI: 10.1016/j.vetimm.2011.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 02/06/2023]
Abstract
Innate immune recognition of pathogens involves various surface receptors and soluble proteins that precede agglutination, complement activation, phagocytosis, and the adaptive immune response. Mannan-binding lectins (MBLs), ficolins (FCNs) and surfactant protein A (SP-A) are soluble collagenous lectins that bind surface structures of various bacteria, viruses and fungi. Some single nucleotide polymorphisms (SNPs) in collagenous lectin genes of humans and other species, including pigs, have been implicated in variation in susceptibility to infectious and inflammatory diseases. In this study we determined the frequencies of 13 SNP alleles of MBL-A, MBL-C, ficolin-α, ficolin-β, and SP-A in 1324 healthy pigs and 461 pigs diagnosed with common infectious diseases at necropsy. For comparison, we also analyzed 12 other SNP alleles in several other innate immune genes, including galectins and TLRs. Several SNPs within genes encoding porcine MBL-A, MBL-C and SP-A were more frequent in pigs diagnosed at necropsy with various diseases or pathogens. These findings suggest that several collagenous lectin SNPs are associated with disease susceptibility and therefore might be genetic markers of impaired innate immune function.
Collapse
Affiliation(s)
- N D Keirstead
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Gama L, Bressan M. Biotechnology applications for the sustainable management of goat genetic resources. Small Rumin Res 2011. [DOI: 10.1016/j.smallrumres.2011.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Bendixen E, Danielsen M, Hollung K, Gianazza E, Miller I. Farm animal proteomics — A review. J Proteomics 2011; 74:282-93. [DOI: 10.1016/j.jprot.2010.11.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/04/2010] [Accepted: 11/05/2010] [Indexed: 11/28/2022]
|
30
|
Yudin NS, Nefedova MV, Kobzev VF, Romaschenko AG, Voevoda MI. Polymorphism of intron 2 of the SDF1 gene in Galloway, Hereford, and Russian Black Pied cattle. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411020207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Purdie AC, Plain KM, Begg DJ, de Silva K, Whittington RJ. Candidate gene and genome-wide association studies of Mycobacterium avium subsp. paratuberculosis infection in cattle and sheep: a review. Comp Immunol Microbiol Infect Dis 2011; 34:197-208. [PMID: 21216466 DOI: 10.1016/j.cimid.2010.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/28/2010] [Accepted: 11/29/2010] [Indexed: 11/18/2022]
Abstract
Paratuberculosis (Johne's disease), caused by Mycobacterium avium subspecies paratuberculosis, is responsible for significant economic losses in livestock industries worldwide. This organism is also of public health concern due to an unconfirmed link to Crohn's disease. Susceptibility to paratuberculosis has been suggested to have a genetic component. In livestock, a number of candidate genes have been studied, selected on their association to susceptibility in other mycobacterial diseases, their known role in disease pathogenesis or links to susceptibility of humans to Crohn's disease. These genes include solute carrier family 11 member 1 (SLC11A1, formerly NRAMP1), toll-like receptors, caspase associated recruitment domain 15 (CARD15, formerly NOD2), major histocompatibility complex (MHC) and cytokines (interleukin-10 and interferon-gamma) and their receptors. Genome wide association studies have attempted to confirm associations found and identify new genes involved in pathogenesis and susceptibility. There are a number of limitations and difficulties in these approaches, some peculiar to paratuberculosis but others generally applicable to identification of genetic associations for complex traits. The technical approaches and available information for paratuberculosis have expanded rapidly, particularly relating to sheep and cattle. Here we review the current published evidence for a genetic association with paratuberculosis susceptibility, technological advances that have progressed the field and potential avenues for future research.
Collapse
Affiliation(s)
- Auriol C Purdie
- Farm Animal and Veterinary Public Health, Faculty of Veterinary Sciences University of Sydney, Australia
| | | | | | | | | |
Collapse
|
32
|
Vacca GM, Pazzola M, Pisano C, Carcangiu V, Diaz ML, Nieddu M, Robledo R, Mezzanotte R, Dettori ML. Chromosomal localisation and genetic variation of the SLC11A1 gene in goats (Capra hircus). Vet J 2010; 190:60-5. [PMID: 21071245 DOI: 10.1016/j.tvjl.2010.09.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 09/15/2010] [Accepted: 09/30/2010] [Indexed: 12/20/2022]
Abstract
The solute carrier family 11 member A1 (SLC11A1) gene is associated with resistance to infectious diseases. Chromosomal localisation, genomic regions corresponding to functional domains and the genetic variability of microsatellites in the 3' untranslated region (3'-UTR) of this gene were investigated in 427 goats (Capra hircus) of six breeds. Using dual colour fluorescence in situ hybridisation, SLC11A1 was localised to goat chromosome 2. Single strand conformation polymorphism was used to screen for polymorphisms in SLC11A1 exons 2, 10 and 15. There was no variation among goat breeds in the sarcoma homology 3 (SH3) binding motif, the protein kinase C phosphorylation site or the two N-linked glycosylation sites. Exon 15 exhibited variability due to the presence of two polymorphic microsatellites. Genotyping of the upstream guanine-thymine repeat (GTn) at 3'-UTR revealed eight alleles (GT11, GT12, GT14-GT19) in goats, whereas GT13 (present in cattle) was absent. Most goats carried the GT16 allele and no allele was found to be exclusive to only one breed. The coefficient of genetic differentiation value (G(ST)) was 0.084. This microsatellite appears to be an informative DNA marker for genetic linkage analysis in goats.
Collapse
Affiliation(s)
- G M Vacca
- Dipartimento di Biologia Animale, Università degli Studi Sassari, 07100 Sassari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Suchocki T, Komisarek J, Szyda J. Testing candidate gene effects on milk production traits in dairy cattle under various parameterizations and modes of inheritance. J Dairy Sci 2010; 93:2703-17. [PMID: 20494180 DOI: 10.3168/jds.2009-2550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 02/10/2010] [Indexed: 11/19/2022]
Abstract
The major objectives of this study were 1) to assess the statistical properties of models commonly used for the estimation of single nucleotide polymorphism (SNP) effects under the assumption of various modes of inheritance and various parameterizations of SNP genotypes using simulated data, and 2) to compare effects of the selected polymorphisms located within butyrophilin (BTN1A1), diacylglycerol acyltransferase 1 (DGAT1), leptin (LEP), and leptin receptor (LEPR) candidate genes on milk production traits using data from 2 dairy cattle breeds (190 Jersey cows and 475 Polish Holstein-Friesian cows). Simulation results showed that type I error and power were not dependent on the assumed parameterization, but differences were observed regarding confidence intervals of estimated SNP effects. In the presence of epistasis, correct confidence intervals for all (epistatic and nonepistatic) SNP and all modes of inheritance were provided only by the parameterization proposed by C. H. Kao and Z. B. Zeng in 2002. However, if no dominance effect was included in the model, confidence intervals for SNP effects were correct for all parameterizations. Results based on real data showed that for both breeds the additive effects of polymorphisms were generally similar, except for LEPR, which had a different allele associated with increased fat content in Holstein-Friesians than in Jerseys. In both breeds, DGAT1 had the largest additive effect of the polymorphisms considered, but its effect on most milk traits was more pronounced in Jerseys than in Holstein-Friesians. Evidence of epistasis was found between LEPR and DGAT1, as well as between LEPR and BTN1A1, but only for milk content traits and only in the Holstein-Friesian breed. There was also more evidence for dominance in the Holstein-Friesian breed than in the Jersey breed.
Collapse
Affiliation(s)
- T Suchocki
- Department of Animal Genetics, Wrocław University of Environmental and Life Sciences, Kozuchowska 7, 51-631 Wrocław, Poland
| | | | | |
Collapse
|
34
|
Fadista J, Thomsen B, Holm LE, Bendixen C. Copy number variation in the bovine genome. BMC Genomics 2010; 11:284. [PMID: 20459598 PMCID: PMC2902221 DOI: 10.1186/1471-2164-11-284] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 05/06/2010] [Indexed: 12/12/2022] Open
Abstract
Background Copy number variations (CNVs), which represent a significant source of genetic diversity in mammals, have been shown to be associated with phenotypes of clinical relevance and to be causative of disease. Notwithstanding, little is known about the extent to which CNV contributes to genetic variation in cattle. Results We designed and used a set of NimbleGen CGH arrays that tile across the assayable portion of the cattle genome with approximately 6.3 million probes, at a median probe spacing of 301 bp. This study reports the highest resolution map of copy number variation in the cattle genome, with 304 CNV regions (CNVRs) being identified among the genomes of 20 bovine samples from 4 dairy and beef breeds. The CNVRs identified covered 0.68% (22 Mb) of the genome, and ranged in size from 1.7 to 2,031 kb (median size 16.7 kb). About 20% of the CNVs co-localized with segmental duplications, while 30% encompass genes, of which the majority is involved in environmental response. About 10% of the human orthologous of these genes are associated with human disease susceptibility and, hence, may have important phenotypic consequences. Conclusions Together, this analysis provides a useful resource for assessment of the impact of CNVs regarding variation in bovine health and production traits.
Collapse
Affiliation(s)
- João Fadista
- Group of Molecular Genetics and Systems Biology, Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | | | | | | |
Collapse
|
35
|
Huang J, Zhao S, Zhu M, Wu Z, Yu M. Sequence and expression analyses of porcine ISG15 and ISG43 genes. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:301-9. [PMID: 19327407 DOI: 10.1016/j.cbpb.2009.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/10/2009] [Accepted: 03/19/2009] [Indexed: 10/21/2022]
Abstract
The coding sequences of porcine interferon-stimulated gene 15 (ISG15) and the interferon-stimulated gene (ISG43) were cloned from swine spleen mRNA. The amino acid sequences deduced from porcine ISG15 and ISG43 genes coding sequence shared 24-75% and 29-83% similarity with ISG15s and ISG43s from other vertebrates, respectively. Structural analyses revealed that porcine ISG15 comprises two ubiquitin homologues motifs (UBQ) domain and a conserved C-terminal LRLRGG conjugating motif. Porcine ISG43 contains an ubiquitin-processing proteases-like domain. Phylogenetic analyses showed that porcine ISG15 and ISG43 were mostly related to rat ISG15 and cattle ISG43, respectively. Using quantitative real-time PCR assay, significant increased expression levels of porcine ISG15 and ISG43 genes were detected in porcine kidney endothelial cells (PK15) cells treated with poly I:C. We also observed the enhanced mRNA expression of three members of dsRNA pattern-recognition receptors (PRR), TLR3, DDX58 and IFIH1, which have been reported to act as critical receptors in inducing the mRNA expression of ISG15 and ISG43 genes. However, we did not detect any induced mRNA expression of IFNalpha and IFNbeta, suggesting that transcriptional activations of ISG15 and ISG43 were mediated through IFN-independent signaling pathway in the poly I:C treated PK15 cells. Association analyses in a Landrace pig population revealed that ISG15 c.347T>C (BstUI) polymorphism and the ISG43 c.953T>G (BccI) polymorphism were significantly associated with hematological parameters and immune-related traits.
Collapse
Affiliation(s)
- Jiangnan Huang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | | | | | | | | |
Collapse
|
36
|
A critical analysis of production-associated DNA polymorphisms in the genes of cattle, goat, sheep, and pig. Mamm Genome 2008; 19:591-617. [PMID: 18836775 DOI: 10.1007/s00335-008-9141-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
Abstract
Increasing productivity is one of the main objectives in animal production. Traditional breeding methods have led to increased gains in some traits but gains are not easily attainable in traits with low heritabilities. Exploiting the genetic variations underlying desired phenotypes is the goal of today's animal producers. Such positive genetic variants must, however, be known before possible application. Consequently, candidate genes of traits of interest have been searched for possible relationships with such traits or to explain reported quantitative trait loci (QTL) for such traits. DNA variants or polymorphisms have been identified in many such genes and their relationships with production traits determined. However, only a few genes have been evaluated, given the wealth of information on reported QTL for production traits, and in most cases genes are only partially investigated. This review presents available information on DNA variants for production traits and discusses steps that are required for effective utilization of this information for successful marker-assisted selection programs.
Collapse
|