1
|
Chung Y, Jang SS, Kang DH, Kim YK, Kim HJ, Chung KY, Choi I, Lee SH. Identification of potential biomarkers associated with meat tenderness in Hanwoo (Korean cattle): An expression quantitative trait loci analysis. Anim Genet 2023; 54:786-791. [PMID: 37828654 DOI: 10.1111/age.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
Meat tenderness is considered the most important trait contributing to beef quality, level of consumer satisfaction, willingness to pay premium prices and industry profit. Genomic selection method would be helpful for genetic improvement of traits with low heritability and that are difficult to measure. The identification of core genes can aid genomic selection for complex traits with low heritability that are difficult to measure. We performed statistical analysis of associations between longissimus dorsi muscle tenderness and gene expression in 20 Hanwoo cattle, using Warner-Bratzler shear force and RNAseq data, respectively. We found a total of 166 core genes, from which six (ASAP1, CAPN5, ELN, SUMF2, TTC8 and MGAT4A) were regulated by 16 cis-expression quantitative trait loci (eQTL) SNPs. Notably, we found that a cis-eQTL SNP of the ELN gene contained an MFZ-1 binding site in its putative promoter region. These findings provide useful information for genomic prediction of beef tenderness in Hanwoo cattle.
Collapse
Affiliation(s)
- Yoonji Chung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Sun Sik Jang
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, South Korea
| | - Dong Hun Kang
- Department of Beef Science, Korea National University of Agriculture and Fisheries, Wanju, South Korea
| | - Yeong Kuk Kim
- Quantomic Research and Solution, Daejeon, South Korea
| | - Hyun Joo Kim
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, South Korea
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Ki Yong Chung
- Department of Beef Science, Korea National University of Agriculture and Fisheries, Wanju, South Korea
| | - Inchul Choi
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Seung Hwan Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
2
|
A human adipose tissue cell-type transcriptome atlas. Cell Rep 2022; 40:111046. [PMID: 35830816 DOI: 10.1016/j.celrep.2022.111046] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022] Open
Abstract
The importance of defining cell-type-specific genes is well acknowledged. Technological advances facilitate high-resolution sequencing of single cells, but practical challenges remain. Adipose tissue is composed primarily of adipocytes, large buoyant cells requiring extensive, artefact-generating processing for separation and analysis. Thus, adipocyte data are frequently absent from single-cell RNA sequencing (scRNA-seq) datasets, despite being the primary functional cell type. Here, we decipher cell-type-enriched transcriptomes from unfractionated human adipose tissue RNA-seq data. We profile all major constituent cell types, using 527 visceral adipose tissue (VAT) or 646 subcutaneous adipose tissue (SAT) samples, identifying over 2,300 cell-type-enriched transcripts. Sex-subset analysis uncovers a panel of male-only cell-type-enriched genes. By resolving expression profiles of genes differentially expressed between SAT and VAT, we identify mesothelial cells as the primary driver of this variation. This study provides an accessible method to profile cell-type-enriched transcriptomes using bulk RNA-seq, generating a roadmap for adipose tissue biology.
Collapse
|
3
|
Sweet-Jones J, Lenis VP, Yurchenko AA, Yudin NS, Swain M, Larkin DM. Genotyping and Whole-Genome Resequencing of Welsh Sheep Breeds Reveal Candidate Genes and Variants for Adaptation to Local Environment and Socioeconomic Traits. Front Genet 2021; 12:612492. [PMID: 34220925 PMCID: PMC8253514 DOI: 10.3389/fgene.2021.612492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/10/2021] [Indexed: 12/25/2022] Open
Abstract
Background Advances in genetic tools applied to livestock breeding has prompted research into the previously neglected breeds adapted to harsh local environments. One such group is the Welsh mountain sheep breeds, which can be farmed at altitudes of 300 m above sea level but are considered to have a low productive value because of their poor wool quality and small carcass size. This is contrary to the lowland breeds which are more suited to wool and meat production qualities, but do not fare well on upland pasture. Herein, medium-density genotyping data from 317 individuals representing 15 Welsh sheep breeds were used alongside the whole-genome resequencing data of 14 breeds from the same set to scan for the signatures of selection and candidate genetic variants using haplotype- and SNP-based approaches. Results Haplotype-based selection scan performed on the genotyping data pointed to a strong selection in the regions of GBA3, PPARGC1A, APOB, and PPP1R16B genes in the upland breeds, and RNF24, PANK2, and MUC15 in the lowland breeds. SNP-based selection scan performed on the resequencing data pointed to the missense mutations under putative selection relating to a local adaptation in the upland breeds with functions such as angiogenesis (VASH1), anti-oxidation (RWDD1), cell stress (HSPA5), membrane transport (ABCA13 and SLC22A7), and insulin signaling (PTPN1 and GIGFY1). By contrast, genes containing candidate missense mutations in the lowland breeds are related to cell cycle (CDK5RAP2), cell adhesion (CDHR3), and coat color (MC1R). Conclusion We found new variants in genes with potentially functional consequences to the adaptation of local sheep to their environments in Wales. Knowledge of these variations is important for improving the adaptative qualities of UK and world sheep breeds through a marker-assisted selection.
Collapse
Affiliation(s)
- James Sweet-Jones
- Royal Veterinary College, University of London, London, United Kingdom
| | - Vasileios Panagiotis Lenis
- Institute of Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth, United Kingdom.,School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | - Andrey A Yurchenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Nikolay S Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Martin Swain
- Institute of Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth, United Kingdom
| | - Denis M Larkin
- Royal Veterinary College, University of London, London, United Kingdom.,The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| |
Collapse
|
4
|
Lee J, Park N, Lee D, Kim J. Evolutionary and Functional Analysis of Korean Native Pig Using Single Nucleotide Polymorphisms. Mol Cells 2020; 43:728-738. [PMID: 32868490 PMCID: PMC7468586 DOI: 10.14348/molcells.2020.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 11/27/2022] Open
Abstract
Time and cost-effective production of next-generation sequencing data has enabled the performance of population-scale comparative and evolutionary studies for various species, which are essential for obtaining the comprehensive insight into molecular mechanisms underlying species- or breed-specific traits. In this study, the evolutionary and functional analysis of Korean native pig (KNP) was performed using single nucleotide polymorphism (SNP) data by comparative and population genomic approaches with six different mammalian species and five pig breeds. We examined the evolutionary history of KNP SNPs, and the specific genes of KNP based on the uniqueness of non-synonymous SNPs among the used species and pig breeds. We discovered the evolutionary trajectory of KNP SNPs within the used mammalian species as well as pig breeds. We also found olfaction-associated functions that have been characterized and diversified during evolution, and quantitative trait loci associated with the unique traits of KNP. Our study provides new insight into the evolution of KNP and serves as a good example for a better understanding of domestic animals in terms of evolution and domestication using the combined approaches of comparative and population genomics.
Collapse
Affiliation(s)
- Jongin Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
- These authors contributed equally to this work.
| | - Nayoung Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
- These authors contributed equally to this work.
| | - Daehwan Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Jaebum Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
5
|
Cheng J, Cao X, Hanif Q, Pi L, Hu L, Huang Y, Lan X, Lei C, Chen H. Integrating Genome-Wide CNVs Into QTLs and High Confidence GWAScore Regions Identified Positional Candidates for Sheep Economic Traits. Front Genet 2020; 11:569. [PMID: 32655616 PMCID: PMC7325882 DOI: 10.3389/fgene.2020.00569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Copy number variations (CNVs) are important source of genetic variation, which can affect diverse economic traits through a variety of mechanisms. In addition, genome scan can identify many quantitative trait loci (QTLs) for the economic traits, while genome-wide association studies (GWAS) can localize genetic variants associated with the phenotypic variations. Here, we developed a method called GWAScore which collected GWAS summary data to identify potential candidates, and integrated CNVs into QTLs and high confidence GWAScore regions to detect crucial CNV markers for sheep growth traits. We got 197 candidate genes which were overlapping with the candidate CNVs. Some crucial genes (MYLK3, TTC29, HERC6, ABCG2, RUNX1, etc.) showed significantly elevated GWAScore peaks than other candidate genes. In this study, we developed the GWAScore method to excavate the potential value of candidate genes as markers for the sheep molecular breeding.
Collapse
Affiliation(s)
- Jie Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiukai Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Quratulain Hanif
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Computational Biology Lab, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Li Pi
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Doyle JL, Berry DP, Veerkamp RF, Carthy TR, Evans RD, Walsh SW, Purfield DC. Genomic regions associated with muscularity in beef cattle differ in five contrasting cattle breeds. Genet Sel Evol 2020; 52:2. [PMID: 32000665 PMCID: PMC6993462 DOI: 10.1186/s12711-020-0523-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 01/17/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Linear type traits, which reflect the muscular characteristics of an animal, could provide insight into how, in some cases, morphologically very different animals can yield the same carcass weight. Such variability may contribute to differences in the overall value of the carcass since primal cuts vary greatly in price; such variability may also hinder successful genome-based association studies. Therefore, the objective of our study was to identify genomic regions that are associated with five muscularity linear type traits and to determine if these significant regions are common across five different breeds. Analyses were carried out using linear mixed models on imputed whole-genome sequence data in each of the five breeds, separately. Then, the results of the within-breed analyses were used to conduct an across-breed meta-analysis per trait. RESULTS We identified many quantitative trait loci (QTL) that are located across the whole genome and associated with each trait in each breed. The only commonality among the breeds and traits was a large-effect pleiotropic QTL on BTA2 that contained the MSTN gene, which was associated with all traits in the Charolais and Limousin breeds. Other plausible candidate genes were identified for muscularity traits including PDE1A, PPP1R1C and multiple collagen and HOXD genes. In addition, associated (gene ontology) GO terms and KEGG pathways tended to differ between breeds and between traits especially in the numerically smaller populations of Angus, Hereford, and Simmental breeds. Most of the SNPs that were associated with any of the traits were intergenic or intronic SNPs located within regulatory regions of the genome. CONCLUSIONS The commonality between the Charolais and Limousin breeds indicates that the genetic architecture of the muscularity traits may be similar in these breeds due to their similar origins. Conversely, there were vast differences in the QTL associated with muscularity in Angus, Hereford, and Simmental. Knowledge of these differences in genetic architecture between breeds is useful to develop accurate genomic prediction equations that can operate effectively across breeds. Overall, the associated QTL differed according to trait, which suggests that breeding for a morphologically different (e.g. longer and wider versus shorter and smaller) more efficient animal may become possible in the future.
Collapse
Affiliation(s)
- Jennifer L. Doyle
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork Ireland
- Department of Science, Waterford Institute of Technology, Cork Road, Waterford, Co. Waterford Ireland
| | - Donagh P. Berry
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork Ireland
| | - Roel F. Veerkamp
- Animal Breeding and Genomics Centre, Wageningen University and Research Centre, Livestock Research, Wageningen, The Netherlands
| | - Tara R. Carthy
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork Ireland
| | - Ross D. Evans
- Irish Cattle Breeding Federation, Bandon, Co. Cork Ireland
| | - Siobhán W. Walsh
- Department of Science, Waterford Institute of Technology, Cork Road, Waterford, Co. Waterford Ireland
| | - Deirdre C. Purfield
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork Ireland
| |
Collapse
|
7
|
Abo-Ismail MK, Lansink N, Akanno E, Karisa BK, Crowley JJ, Moore SS, Bork E, Stothard P, Basarab JA, Plastow GS. Development and validation of a small SNP panel for feed efficiency in beef cattle. J Anim Sci 2018; 96:375-397. [PMID: 29390120 DOI: 10.1093/jas/sky020] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
The objective of this study was to develop and validate a customized cost-effective single nucleotide polymorphism (SNP) panel for genetic improvement of feed efficiency in beef cattle. The SNPs identified in previous association studies and through extensive analysis of candidate genomic regions and genes, were screened for their functional impact and allele frequency in Angus and Hereford breeds used as validation candidates for the panel. Association analyses were performed on genotypes of 159 SNPs from new samples of Angus (n = 160), Hereford (n = 329), and Angus-Hereford crossbred (n = 382) cattle using allele substitution and genotypic models in ASReml. Genomic heritabilities were estimated for feed efficiency traits using the full set of SNPs, SNPs associated with at least one of the traits (at P ≤ 0.05 and P < 0.10), as well as the Illumina bovine 50K representing a widely used commercial genotyping panel. A total of 63 SNPs within 43 genes showed association (P ≤ 0.05) with at least one trait. The minor alleles of SNPs located in the GHR and CAST genes were associated with decreasing effects on residual feed intake (RFI) and/or RFI adjusted for backfat (RFIf), whereas minor alleles of SNPs within MKI67 gene were associated with increasing effects on RFI and RFIf. Additionally, the minor allele of rs137400016 SNP within CNTFR was associated with increasing average daily gain (ADG). The SNPs genotypes within UMPS, SMARCAL, CCSER1, and LMCD1 genes showed significant over-dominance effects whereas other SNPs located in SMARCAL1, ANXA2, CACNA1G, and PHYHIPL genes showed additive effects on RFI and RFIf. Gene enrichment analysis indicated that gland development, as well as ion and cation transport are important physiological mechanisms contributing to variation in feed efficiency traits. The study revealed the effect of the Jak-STAT signaling pathway on feed efficiency through the CNTFR, OSMR, and GHR genes. Genomic heritability using the 63 significant (P ≤ 0.05) SNPs was 0.09, 0.09, 0.13, 0.05, 0.05, and 0.07 for ADG, dry matter intake, midpoint metabolic weight, RFI, RFIf, and backfat, respectively. These SNPs contributed to genetic variation in the studied traits and thus can potentially be used or tested to generate cost-effective molecular breeding values for feed efficiency in beef cattle.
Collapse
Affiliation(s)
- M K Abo-Ismail
- Livestock Gentec at University of Alberta, Edmonton, AB, Canada
- Animal and Poultry Production Department, Damanhour University, Damanhour, Egypt
| | - N Lansink
- Livestock Gentec at University of Alberta, Edmonton, AB, Canada
| | - E Akanno
- Livestock Gentec at University of Alberta, Edmonton, AB, Canada
| | - B K Karisa
- Livestock Gentec at University of Alberta, Edmonton, AB, Canada
| | - J J Crowley
- Livestock Gentec at University of Alberta, Edmonton, AB, Canada
- Canadian Beef Breeds Council, Calgary, AB, Canada
| | - S S Moore
- Centre for Animal Science, University of Queensland, St Lucia, Australia
| | - E Bork
- Rangeland Research Institute, Agriculture/Forestry Center, University of Alberta, Edmonton, AB, Canada
| | - P Stothard
- Livestock Gentec at University of Alberta, Edmonton, AB, Canada
| | - J A Basarab
- Alberta Agriculture and Forestry, Lacombe Research Centre, Lacombe, AB, Canada
| | - G S Plastow
- Livestock Gentec at University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
The effect of QTL-rich region polymorphisms identified by targeted DNA-seq on pig production traits. Mol Biol Rep 2018; 45:361-371. [PMID: 29623566 PMCID: PMC5966500 DOI: 10.1007/s11033-018-4170-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/24/2018] [Indexed: 12/27/2022]
Abstract
The aim of the present study was to analyse the effect of PLCD4, PECR, FN1 and PNKD mutations on pig productive traits and tested the usefulness of targeted enrichment DNA sequencing method as tool for preselection of genetic markers. The potential genetic markers for pig productive traits were identified by using targeted enrichment DNA sequencing of chromosome 15 region that is QTL-rich. The selected mutations were genotyped by using HRM, Sanger sequencing and PCR-ACRS methods. The association study was performed by using GLM model in SAS program and included over 500 pigs of 5 populations maintained in Poland. The variation (C/T) of PLCD4 gene affected feed conversion, intramuscular fat and water exudation. The PNKD mutations were associated with texture parameters measured after cooking. In turn, the variation rs792423408 (C/T) in the FN1 gene influenced toughness measured in semimembranosus muscle and growth traits that was observed particularly in Duroc breed. Summarizing, the investigated gene variants delivered valuable information that could be used during developing SNP microarray for genomic estimated breeding value procedure in pigs. Moreover, the study showed that the TEDNA-seq method could be used to preselect the molecular markers associated with pig traits. However, the further association study that included large number animal populations is necessary.
Collapse
|
9
|
Piórkowska K, Tyra M, Ropka-Molik K, Podbielska A. Evolution of peroxisomal trans-2-enoyl-CoA reductase ( PECR ) as candidate gene for meat quality. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Rodriguez-Murillo L, Xu B, Roos JL, Abecasis GR, Gogos JA, Karayiorgou M. Fine mapping on chromosome 13q32-34 and brain expression analysis implicates MYO16 in schizophrenia. Neuropsychopharmacology 2014; 39:934-43. [PMID: 24141571 PMCID: PMC3924527 DOI: 10.1038/npp.2013.293] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 12/30/2022]
Abstract
We previously reported linkage of schizophrenia and schizoaffective disorder to 13q32-34 in the European descent Afrikaner population from South Africa. The nature of genetic variation underlying linkage peaks in psychiatric disorders remains largely unknown and both rare and common variants may be contributing. Here, we examine the contribution of common variants located under the 13q32-34 linkage region. We used densely spaced SNPs to fine map the linkage peak region using both a discovery sample of 415 families and a meta-analysis incorporating two additional replication family samples. In a second phase of the study, we use one family-based data set with 237 families and independent case-control data sets for fine mapping of the common variant association signal using HapMap SNPs. We report a significant association with a genetic variant (rs9583277) within the gene encoding for the myosin heavy-chain Myr 8 (MYO16), which has been implicated in neuronal phosphoinositide 3-kinase signaling. Follow-up analysis of HapMap variation within MYO16 in a second set of Afrikaner families and additional case-control data sets of European descent highlighted a region across introns 2-6 as the most likely region to harbor common MYO16 risk variants. Expression analysis revealed a significant increase in the level of MYO16 expression in the brains of schizophrenia patients. Our results suggest that common variation within MYO16 may contribute to the genetic liability to schizophrenia.
Collapse
Affiliation(s)
| | - Bin Xu
- Department of Psychiatry, Columbia University, New York, NY, USA
- Department of Physiology, Columbia University, New York, NY, USA
| | - J Louw Roos
- Department of Psychiatry and Weskoppies Hospital, University of Pretoria, Pretoria, South Africa
| | - Gonçalo R Abecasis
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Joseph A Gogos
- Department of Physiology, Columbia University, New York, NY, USA
- Department of Neuroscience, Columbia University, New York, NY, USA
| | | |
Collapse
|
11
|
Abo-Ismail MK, Vander Voort G, Squires JJ, Swanson KC, Mandell IB, Liao X, Stothard P, Moore S, Plastow G, Miller SP. Single nucleotide polymorphisms for feed efficiency and performance in crossbred beef cattle. BMC Genet 2014; 15:14. [PMID: 24476087 PMCID: PMC3927660 DOI: 10.1186/1471-2156-15-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/27/2014] [Indexed: 12/23/2022] Open
Abstract
Background This study was conducted to: (1) identify new SNPs for residual feed intake (RFI) and performance traits within candidate genes identified in a genome wide association study (GWAS); (2) estimate the proportion of variation in RFI explained by the detected SNPs; (3) estimate the effects of detected SNPs on carcass traits to avoid undesirable correlated effects on these economically important traits when selecting for feed efficiency; and (4) map the genes to biological mechanisms and pathways. A total number of 339 SNPs corresponding to 180 genes were tested for association with phenotypes using a single locus regression (SLRM) and genotypic model on 726 and 990 crossbred animals for feed efficiency and carcass traits, respectively. Results Strong evidence of associations for RFI were located on chromosomes 8, 15, 16, 18, 19, 21, and 28. The strongest association with RFI (P = 0.0017) was found with a newly discovered SNP located on BTA 8 within the ELP3 gene. SNPs rs41820824 and rs41821600 on BTA 16 within the gene HMCN1 were strongly associated with RFI (P = 0.0064 and P = 0.0033, respectively). A SNP located on BTA 18 within the ZNF423 gene provided strong evidence for association with RFI (P = 0.0028). Genomic estimated breeding values (GEBV) from 98 significant SNPs were moderately correlated (0.47) to the estimated breeding values (EBVs) from a mixed animal model. The significant (P < 0.05) SNPs (98) explained 26% of the genetic variance for RFI. In silico functional analysis for the genes suggested 35 and 39 biological processes and pathways, respectively for feed efficiency traits. Conclusions This study identified several positional and functional candidate genes involved in important biological mechanisms associated with feed efficiency and performance. Significant SNPs should be validated in other populations to establish their potential utilization in genetic improvement programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Stephen P Miller
- Centre for Genetic Improvement of Livestock, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario N1G 2W0, Canada.
| |
Collapse
|
12
|
Komolka K, Albrecht E, Wimmers K, Michal JJ, Maak S. Molecular heterogeneities of adipose depots - potential effects on adipose-muscle cross-talk in humans, mice and farm animals. J Genomics 2014; 2:31-44. [PMID: 25057322 PMCID: PMC4105427 DOI: 10.7150/jgen.5260] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adipose tissue is considered as a major endocrine organ that secretes numerous proteins called adipokines. The heterogeneous nature of adipose tissue in different parts of the body suggests respective heterogeneity of proteomes and secretomes. This review consolidates knowledge from recent studies targeting the diversity of different adipose depots affecting the pattern of secreted adipokines and discusses potential consequences for the cross-talk between adipose and skeletal muscle in humans, rodent models and farm animals. Special attention is paid to muscle-associated fat depots like inter- and intramuscular fat that become focus of attention in the context of the rather new notion of skeletal muscle as a major endocrine organ. Understanding the complexity of communication between adipocytes and skeletal muscle cells will allow developing strategies for improvement of human health and for sustainable production of high quality meat.
Collapse
Affiliation(s)
- Katrin Komolka
- 1. Research Unit Muscle Biology and Growth, Leibniz-Institute for Farm Animal Biology (FBN), W.-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Elke Albrecht
- 1. Research Unit Muscle Biology and Growth, Leibniz-Institute for Farm Animal Biology (FBN), W.-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Klaus Wimmers
- 2. Research Unit Molecular Biology, Leibniz-Institute for Farm Animal Biology (FBN), W.-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Jennifer J Michal
- 3. Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Steffen Maak
- 1. Research Unit Muscle Biology and Growth, Leibniz-Institute for Farm Animal Biology (FBN), W.-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| |
Collapse
|
13
|
Kärst S, Vahdati AR, Brockmann GA, Hager R. Genomic imprinting and genetic effects on muscle traits in mice. BMC Genomics 2012; 13:408. [PMID: 22906226 PMCID: PMC3475036 DOI: 10.1186/1471-2164-13-408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic imprinting refers to parent-of-origin dependent gene expression caused by differential DNA methylation of the paternally and maternally derived alleles. Imprinting is increasingly recognized as an important source of variation in complex traits, however, its role in explaining variation in muscle and physiological traits, especially those of commercial value, is largely unknown compared with genetic effects. RESULTS We investigated both genetic and genomic imprinting effects on key muscle traits in mice from the Berlin Muscle Mouse population, a key model system to study muscle traits. Using a genome scan, we first identified loci with either imprinting or genetic effects on phenotypic variation. Next, we established the proportion of phenotypic variation explained by additive, dominance and imprinted QTL and characterized the patterns of effects. In total, we identified nine QTL, two of which show large imprinting effects on glycogen content and potential, and body weight. Surprisingly, all imprinting patterns were of the bipolar type, in which the two heterozygotes are different from each other but the homozygotes are not. Most QTL had pleiotropic effects and explained up to 40% of phenotypic variance, with individual imprinted loci accounting for 4-5% of variation alone. CONCLUSION Surprisingly, variation in glycogen content and potential was only modulated by imprinting effects. Further, in contrast to general assumptions, our results show that genomic imprinting can impact physiological traits measured at adult stages and that the expression does not have to follow the patterns of paternal or maternal expression commonly ascribed to imprinting effects.
Collapse
Affiliation(s)
- Stefan Kärst
- Department for Crop and Animal Sciences, Humboldt-University Berlin, Berlin, Germany
| | - Ali R Vahdati
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Gudrun A Brockmann
- Department for Crop and Animal Sciences, Humboldt-University Berlin, Berlin, Germany
| | - Reinmar Hager
- Department for Crop and Animal Sciences, Humboldt-University Berlin, Berlin, Germany
| |
Collapse
|
14
|
Nassar MK, Goraga ZS, Brockmann GA. Quantitative trait loci segregating in crosses between New Hampshire and White Leghorn chicken lines: III. Fat deposition and intramuscular fat content. Anim Genet 2012; 44:62-8. [PMID: 22607452 DOI: 10.1111/j.1365-2052.2012.02365.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2012] [Indexed: 11/29/2022]
Abstract
In this study, a genome scan was performed to detect genomic loci that affect fat deposition in white adipose tissues and muscles in 278 F (2) males of reciprocal crosses between the genetically and phenotypically extreme inbred chicken lines New Hampshire (NHI) and White Leghorn (WL77). Genome-wide highly significant quantitative trait loci (QTL) influencing fat deposition in white adipose tissues were found on GGA2 and 4. The peak QTL positions for different visceral and subcutaneous white adipose tissues were located between 41.4 and 112.4 Mb on GGA2 and between 76.2 and 78.7 Mb on GGA4, which explained 4.2-10.4% and 4.3-11.6% respectively of the phenotypic F (2) variances. Contrary to our expectations, the QTL allele descending from the lean line WL77 on GGA4 led to increased fat deposition. We suggest a transgressive action of the obesity allele only if it is not in the genetic background of the line WL77. Additional highly significant loci for subcutaneous adipose tissue mass were identified on GGA12 and 15. For intramuscular fat content, a suggestive QTL was located on GGA14. The analysed crosses provide a valuable resource for further fine mapping of fatness genes and subsequent gene discovery.
Collapse
Affiliation(s)
- M K Nassar
- Breeding Biology and Molecular Genetics, Department of Crop and Animal Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115, Berlin, Germany
| | | | | |
Collapse
|