1
|
Leeb T, Bannasch D, Schoenebeck JJ. Identification of Genetic Risk Factors for Monogenic and Complex Canine Diseases. Annu Rev Anim Biosci 2023; 11:183-205. [PMID: 36322969 DOI: 10.1146/annurev-animal-050622-055534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Advances in DNA sequencing and other technologies have greatly facilitated the identification of genetic risk factors for inherited diseases in dogs. We review recent technological developments based on selected examples from canine disease genetics. The identification of disease-causing variants in dogs with monogenic diseases may become a widely employed diagnostic approach in clinical veterinary medicine in the not-too-distant future. Diseases with complex modes of inheritance continue to pose challenges to researchers but have also become much more tangible than in the past. In addition to strategies for identifying genetic risk factors, we provide some thoughts on the interpretation of sequence variants that are largely inspired by developments in human clinical genetics.
Collapse
Affiliation(s)
- Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland;
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California, Davis, California, USA;
| | - Jeffrey J Schoenebeck
- The Roslin Institute and Royal (Dick) School for Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom;
| |
Collapse
|
2
|
Whole exome sequencing of 28 families of Danish descent reveals novel candidate genes and pathways in developmental dysplasia of the hip. Mol Genet Genomics 2023; 298:329-342. [PMID: 36454308 PMCID: PMC9938029 DOI: 10.1007/s00438-022-01980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
Developmental dysplasia of the hip (DDH) is a common condition involving instability of the hip with multifactorial etiology. Early diagnosis and treatment are critical as undetected DDH is an important cause of long-term hip complications. Better diagnostics may be achieved through genetic methods, especially for patients with positive family history. Several candidate genes have been reported but the exact molecular etiology of the disease is yet unknown. In the present study, we performed whole exome sequencing of DDH patients from 28 families with at least two affected first-degree relatives. Four genes previously not associated with DDH (METTL21B, DIS3L2, PPP6R2, and TM4SF19) were identified with the same variants shared among affected family members, in more than two families. Among known association genes, we found damaging variants in DACH1, MYH10, NOTCH2, TBX4, EVC2, OTOG, and SHC3. Mutational burden analysis across the families identified 322 candidate genes, and enriched pathways include the extracellular matrix, cytoskeleton, ion-binding, and detection of mechanical stimulus. Taken altogether, our data suggest a polygenic mode of inheritance for DDH, and we propose that an impaired transduction of the mechanical stimulus is involved in the etiopathological mechanism. Our findings refine our current understanding of candidate causal genes in DDH, and provide a foundation for downstream functional studies.
Collapse
|
3
|
Jiang L, Li Z, Hayward JJ, Hayashi K, Krotscheck U, Todhunter RJ, Tang Y, Huang M. Genomic Prediction of Two Complex Orthopedic Traits Across Multiple Pure and Mixed Breed Dogs. Front Genet 2021; 12:666740. [PMID: 34630503 PMCID: PMC8492927 DOI: 10.3389/fgene.2021.666740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
Canine hip dysplasia (CHD) and rupture of the cranial cruciate ligament (RCCL) are two complex inherited orthopedic traits of dogs. These two traits may occur concurrently in the same dog. Genomic prediction of these two diseases would benefit veterinary medicine, the dog’s owner, and dog breeders because of their high prevalence, and because both traits result in painful debilitating osteoarthritis in affected joints. In this study, 842 unique dogs from 6 breeds with hip and stifle phenotypes were genotyped on a customized Illumina high density 183 k single nucleotide polymorphism (SNP) array and also analyzed using an imputed dataset of 20,487,155 SNPs. To implement genomic prediction, two different statistical methods were employed: Genomic Best Linear Unbiased Prediction (GBLUP) and a Bayesian method called BayesC. The cross-validation results showed that the two methods gave similar prediction accuracy (r = 0.3–0.4) for CHD (measured as Norberg angle) and RCCL in the multi-breed population. For CHD, the average correlation of the AUC was 0.71 (BayesC) and 0.70 (GBLUP), which is a medium level of prediction accuracy and consistent with Pearson correlation results. For RCCL, the correlation of the AUC was slightly higher. The prediction accuracy of GBLUP from the imputed genotype data was similar to the accuracy from DNA array data. We demonstrated that the genomic prediction of CHD and RCCL with DNA array genotype data is feasible in a multiple breed population if there is a genetic connection, such as breed, between the reference population and the validation population. Albeit these traits have heritability of about one-third, higher accuracy is needed to implement in a natural population and predicting a complex phenotype will require much larger number of dogs within a breed and across breeds. It is possible that with higher accuracy, genomic prediction of these orthopedic traits could be implemented in a clinical setting for early diagnosis and treatment, and the selection of dogs for breeding. These results need continuous improvement in model prediction through ongoing genotyping and data sharing. When genomic prediction indicates that a dog is susceptible to one of these orthopedic traits, it should be accompanied by clinical and radiographic screening at an acceptable age with appropriate follow-up.
Collapse
Affiliation(s)
- Liping Jiang
- College of Mathematics, Jilin University, Changchun, China.,Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin, China
| | - Zhuo Li
- Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin, China
| | - Jessica J Hayward
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Kei Hayashi
- Department of Clinical Sciences and Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Ursula Krotscheck
- Department of Clinical Sciences and Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Rory J Todhunter
- Department of Clinical Sciences and Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - You Tang
- Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin, China
| | - Meng Huang
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
4
|
Mikkola L, Kyöstilä K, Donner J, Lappalainen AK, Hytönen MK, Lohi H, Iivanainen A. An across-breed validation study of 46 genetic markers in canine hip dysplasia. BMC Genomics 2021; 22:68. [PMID: 33478395 PMCID: PMC7818755 DOI: 10.1186/s12864-021-07375-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022] Open
Abstract
Background Canine hip dysplasia (CHD) is a common disease, with a complex genetic background. Dogs with severe CHD sometimes also suffer from osteoarthritis (OA), an inflammatory, often painful and incurable condition. Previous studies have reported breed-specific genetic loci associated with different hip dysplasia and OA phenotypes. However, the independent replication of the known associations within or across breeds has been difficult due to variable phenotype measures, inadequate sample sizes and the existence of population specific variants. Results We execute a validation study of 46 genetic markers in a cohort of nearly 1600 dogs from ten different breeds. We categorize the dogs into cases and controls according to the hip scoring system defined by the Fédération Cynologique Internationale (FCI). We validate 21 different loci associated on fourteen chromosomes. Twenty of these associated with CHD in specific breeds, whereas one locus is unique to the across-breed study. We show that genes involved in the neddylation pathway are enriched among the genes in the validated loci. Neddylation contributes to many cellular functions including inflammation. Conclusions Our study successfully replicates many loci and highlights the complex genetic architecture of CHD. Further characterisation of the associated loci could reveal CHD-relevant genes and pathways for improved understanding of the disease pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07375-x.
Collapse
Affiliation(s)
- Lea Mikkola
- Department of Veterinary Biosciences, University of Helsinki, P.O. BOX 66 (Agnes Sjöbergin katu 2), 00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Helsinki, Finland
| | - Kaisa Kyöstilä
- Department of Veterinary Biosciences, University of Helsinki, P.O. BOX 66 (Agnes Sjöbergin katu 2), 00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Helsinki, Finland
| | | | - Anu K Lappalainen
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Marjo K Hytönen
- Department of Veterinary Biosciences, University of Helsinki, P.O. BOX 66 (Agnes Sjöbergin katu 2), 00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, P.O. BOX 66 (Agnes Sjöbergin katu 2), 00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Helsinki, Finland
| | - Antti Iivanainen
- Department of Veterinary Biosciences, University of Helsinki, P.O. BOX 66 (Agnes Sjöbergin katu 2), 00014, Helsinki, Finland.
| |
Collapse
|
5
|
Genetic Variability in Polish Lowland Sheepdogs Assessed by Pedigree and Genomic Data. Animals (Basel) 2020; 10:ani10091520. [PMID: 32867351 PMCID: PMC7552306 DOI: 10.3390/ani10091520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 01/23/2023] Open
Abstract
Simple Summary Dogs are an important part of society. The Polish Lowland Sheepdog (PON) is one of 353 of the world’s largest cynological organization listed dog breeds. Breeds with small population sizes, like the PONs, are often characterized by high inbreeding rates and thus an increased risk of congenital diseases. To examine the endangerment of the PONs, measures for genetic diversity and inbreeding were calculated for the German PON population. The study showed that the PONs had to be classified as a minimally endangered population according to threshold values specified by the European Association for Animal Production. However, the very recent trend showed a slight improvement. Abstract Genetic variability of Polish Lowland Sheepdog (PON) population was evaluated using both pedigree and genomic data. The analyzed pedigree encompassed 8628 PONs, including 153 individuals genotyped on the Illumina CanineHD BeadChip. Runs of homozygosity (ROH) were defined for homozygous stretches extending over 60 to 4300 kb. The inbreeding coefficients FPed based on pedigree data and FROH50 based on ROHs were at 0.18 and 0.31. The correlation between both was 0.41 but 0.52 when excluding animals with less than seven complete generations. The realized effective population size (Ne¯) was 22.2 with an increasing trend over years. Five PONs explained 79% of the genetic diversity of the reference population. The effective population size derived from linkage disequilibrium measured by r² was 36. PANTHER analysis of genes in ROHs shared by ≥50% of the PONs revealed four highly over- or underrepresented biological processes. One among those is the 7.35 fold enriched “forelimb morphogenesis”. Candidate loci for hip dysplasia and patent ductus arteriosus were discovered in frequently shared ROHs. In conclusion, the inbreeding measures of the PONs were high and the genetic variability small compared to various dog breeds. Regarding Ne¯, PON population was minimally endangered according to the European Association for Animal Production.
Collapse
|
6
|
Mikkola L, Holopainen S, Pessa-Morikawa T, Lappalainen AK, Hytönen MK, Lohi H, Iivanainen A. Genetic dissection of canine hip dysplasia phenotypes and osteoarthritis reveals three novel loci. BMC Genomics 2019; 20:1027. [PMID: 31881848 PMCID: PMC6935090 DOI: 10.1186/s12864-019-6422-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/22/2019] [Indexed: 12/15/2022] Open
Abstract
Background Hip dysplasia and osteoarthritis continue to be prevalent problems in veterinary and human medicine. Canine hip dysplasia is particularly problematic as it massively affects several large-sized breeds and can cause a severe impairment of the quality of life. In Finland, the complex condition is categorized to five classes from normal to severe dysplasia, but the categorization includes several sub-traits: congruity of the joint, Norberg angle, subluxation degree of the joint, shape and depth of the acetabulum, and osteoarthritis. Hip dysplasia and osteoarthritis have been proposed to have separate genetic etiologies. Results Using Fédération Cynologique Internationale -standardized ventrodorsal radiographs, German shepherds were rigorously phenotyped for osteoarthritis, and for joint incongruity by Norberg angle and femoral head center position in relation to dorsal acetabular edge. The affected dogs were categorized into mild, moderate and severe dysplastic phenotypes using official hip scores. Three different genome-wide significant loci were uncovered. The strongest candidate genes for hip joint incongruity were noggin (NOG), a bone and joint developmental gene on chromosome 9, and nanos C2HC-type zinc finger 1 (NANOS1), a regulator of matrix metalloproteinase 14 (MMP14) on chromosome 28. Osteoarthritis mapped to a long intergenic region on chromosome 1, between genes encoding for NADPH oxidase 3 (NOX3), an intriguing candidate for articular cartilage degradation, and AT-rich interactive domain 1B (ARID1B) that has been previously linked to joint laxity. Conclusions Our findings highlight the complexity of canine hip dysplasia phenotypes. In particular, the results of this study point to the potential involvement of specific and partially distinct loci and genes or pathways in the development of incongruity, mild dysplasia, moderate-to-severe dysplasia and osteoarthritis of canine hip joints. Further studies should unravel the unique and common mechanisms for the various sub-traits.
Collapse
Affiliation(s)
- Lea Mikkola
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66 (Mustialankatu 1), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Saila Holopainen
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66 (Mustialankatu 1), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Pessa-Morikawa
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66 (Mustialankatu 1), FI-00014, Helsinki, Finland
| | - Anu K Lappalainen
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Marjo K Hytönen
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66 (Mustialankatu 1), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66 (Mustialankatu 1), FI-00014, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Antti Iivanainen
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66 (Mustialankatu 1), FI-00014, Helsinki, Finland.
| |
Collapse
|
7
|
Mikkola LI, Holopainen S, Lappalainen AK, Pessa-Morikawa T, Augustine TJP, Arumilli M, Hytönen MK, Hakosalo O, Lohi H, Iivanainen A. Novel protective and risk loci in hip dysplasia in German Shepherds. PLoS Genet 2019; 15:e1008197. [PMID: 31323019 PMCID: PMC6668854 DOI: 10.1371/journal.pgen.1008197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/31/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022] Open
Abstract
Canine hip dysplasia is a common, non-congenital, complex and hereditary disorder. It can inflict severe pain via secondary osteoarthritis and lead to euthanasia. An analogous disorder exists in humans. The genetic background of hip dysplasia in both species has remained ambiguous despite rigorous studies. We aimed to investigate the genetic causes of this disorder in one of the high-risk breeds, the German Shepherd. We performed genetic analyses with carefully phenotyped case-control cohorts comprising 525 German Shepherds. In our genome-wide association studies we identified four suggestive loci on chromosomes 1 and 9. Targeted resequencing of the two loci on chromosome 9 from 24 affected and 24 control German Shepherds revealed deletions of variable sizes in a putative enhancer element of the NOG gene. NOG encodes for noggin, a well-described bone morphogenetic protein inhibitor affecting multiple developmental processes, including joint development. The deletion was associated with the healthy controls and mildly dysplastic dogs suggesting a protective role against canine hip dysplasia. Two enhancer variants displayed a decreased activity in a dual luciferase reporter assay. Our study identifies novel loci and candidate genes for canine hip dysplasia, with potential regulatory variants in the NOG gene. Further research is warranted to elucidate how the identified variants affect the expression of noggin in canine hips, and what the potential effects of the other identified loci are.
Collapse
Affiliation(s)
- Lea I. Mikkola
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Genetics, Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Saila Holopainen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Genetics, Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Anu K. Lappalainen
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | | | | | - Meharji Arumilli
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Genetics, Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Marjo K. Hytönen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Genetics, Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Osmo Hakosalo
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Genetics, Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Genetics, Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Antti Iivanainen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Manz E, Tellhelm B, Krawczak M. Prospective evaluation of a patented DNA test for canine hip dysplasia (CHD). PLoS One 2017; 12:e0182093. [PMID: 28771576 PMCID: PMC5542656 DOI: 10.1371/journal.pone.0182093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 07/12/2017] [Indexed: 11/19/2022] Open
Abstract
Genetic testing has been propagated as a suitable means to specify individual risks for canine hip dysplasia (CHD). However, the current lack of validation of most genetic CHD tests has left dog owners and breeders in the dark about their practical utility. Therefore, the Society for German Shepherd Dogs (Verein für Deutsche Schäferhunde, SV) initiated a prospective study of 935 animals to assess independently the value of a genetic CHD test (European Patent Specification EP 2 123 777 B1) that was developed by Distl et al. (2009) on the basis of the SV animal stock. Dogs were followed-up for 3 years after birth, classified regarding their CHD phenotype using the scheme of the Fédération Cynologique Internationale, and genotyped for the 17 single nucleotide polymorphisms (SNPs) constituting the CHD test in question. Individual SNP genotypes were combined into animal-specific genomic breeding values (GBVs), calculated as the weighted sum of SNP-wise scores as laid down in the patent specification. Logistic regression analysis revealed that, unexpectedly, the odds ratio for CHD decreased, rather than increased, by a factor of 0.98 per unit increase of the GBV. Nevertheless, since this effect was not statistically significant (95% CI: 0.93-1.03), and the area-under-curve of the test was only 0.523, it must be concluded that the genetic test patented by Distl et al. (2009) is unsuitable for individual CHD risk assessment.
Collapse
Affiliation(s)
- Eberhard Manz
- Generatio Sol. GmbH, Veterinarian Institute of Molecular Genetics, Heidelberg, Germany
- * E-mail:
| | - Bernd Tellhelm
- Clinic for Small Animal Surgery, Justus-Liebig University, Gießen, Germany
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, Kiel, Germany
| |
Collapse
|
9
|
Oberbauer AM, Keller GG, Famula TR. Long-term genetic selection reduced prevalence of hip and elbow dysplasia in 60 dog breeds. PLoS One 2017; 12:e0172918. [PMID: 28234985 PMCID: PMC5325577 DOI: 10.1371/journal.pone.0172918] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/10/2017] [Indexed: 11/24/2022] Open
Abstract
Canine hip dysplasia (CHD) and elbow dysplasia (ED) impact the health and welfare of all dogs. The first formally organized assessment scheme to improve canine health centered on reducing the prevalence of these orthopedic disorders. Phenotypic screening of joint conformation remains the currently available strategy for breeders to make selection decisions. The present study evaluated the efficacy of employing phenotypic selection on breed improvement of hips and elbows using the Orthopedic Foundation for Animals complete database spanning the 1970–2015 time period. Sixty breeds having more than 1000 unique hip evaluations and 500 elbow evaluations (1,056,852 and 275,129 hip and elbow records, respectively) were interrogated to derive phenotypic improvement, sex and age at time of assessment effects, correlation between the two joints, heritability estimates, estimated breeding values (EBV), and effectiveness of maternal/paternal selection. The data demonstrated that there has been overall improvement in hip and elbow conformation with a reduction in EBV for disease liability, although the breeds differed in the magnitude of the response to selection. Heritabilities also differed substantially across the breeds as did the correlation of the joints; in the absence of a universal association of these differences with breed size, popularity, or participation in screening, it appears that the breeds themselves vary in genetic control. There was subtle, though again breed specific, impact of sex and older ages on CHD and ED. There was greater paternal impact on a reduction of CHD. In the absence of direct genetic tests for either of these two diseases, phenotypic selection has proven to be effective. Furthermore, the data underscore that selection schemes must be breed specific and that it is likely the genetic profiles will be unique across the breeds for these two conditions. Despite the advances achieved with phenotypic selection, incorporation of EBVs into selection schemes should accelerate advances in hip and elbow improvement.
Collapse
Affiliation(s)
- A M Oberbauer
- Department of Animal Science, University of California, Davis, Davis, CA United States of America
| | - G G Keller
- Orthopedic Foundation for Animals, Columbia, MO United States of America
| | - T R Famula
- Department of Animal Science, University of California, Davis, Davis, CA United States of America
| |
Collapse
|
10
|
Ginja M, Gaspar AR, Ginja C. Emerging insights into the genetic basis of canine hip dysplasia. VETERINARY MEDICINE-RESEARCH AND REPORTS 2015; 6:193-202. [PMID: 30101106 PMCID: PMC6070022 DOI: 10.2147/vmrr.s63536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Canine hip dysplasia (CHD) is the most common inherited polygenic orthopedic trait in dogs with the phenotype influenced also by environmental factors. This trait was described in the dog in 1935 and leads to a debilitating secondary hip osteoarthritis. The diagnosis is confirmed radiographically by evaluating signs of degenerative joint disease, incongruence, and/or passive hip joint laxity. There is no ideal medical or surgical treatment so prevention based on controlled breeding is the optimal approach. The definitive CHD diagnosis based on radiographic examination involves the exposure to ionizing radiation under general anesthesia or heavy sedation but the image does not reveal the underlying genetic quality of the dog. Phenotypic expression of CHD is modified by environmental factors and dogs with a normal phenotype can be carriers of some mutations and transmit these genes to their offspring. Programs based on selection of dogs with better individual phenotypes for breeding are effective when strictly applied but remain inferior to the selection of dogs based on estimation of breeding values. Molecular studies for dissecting the genetic basis of CHD are ongoing, but progress has been slow. In the future, the recommended method to improve hip quality in controlled breeding schemes, which will allow higher selection pressure, would be based on the estimation of the genomic breeding value. Since 2012, a commercial DNA test has been available for Labrador Retrievers using a blood sample and provides a probability for development of CHD but we await evidence that this test reduces the incidence or severity of CHD.
Collapse
Affiliation(s)
- Mário Ginja
- Department of Veterinary Sciences-CITAB, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal,
| | - Ana Rita Gaspar
- Department of Veterinary Sciences-CITAB, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal,
| | - Catarina Ginja
- Ce3C - Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,CIBIO-InBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| |
Collapse
|