1
|
Shrivas VL, Choudhary AK, Shidture S, Rambia A, Hariprasad P, Sharma A, Sharma S. Organic amendments modulate the crop yield and rhizospheric bacterial community diversity: a 3-year field study with Cajanus cajan. Int Microbiol 2024; 27:477-490. [PMID: 37500936 DOI: 10.1007/s10123-023-00396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023]
Abstract
Excessive use of chemicals to enhance soil nutrient status and crop yield has resulted in a decline in soil health. Organic farming promotes organic amendments, which help to balance the ecosystem. Understanding the dynamic patterns of belowground microbial populations is essential for developing sustainable agricultural systems. Therefore, the study was designed to evaluate the effect of different agri-practices on rhizospheric bacterial diversity and crop yield in an Indian agricultural system. A 3-year field experiment was set up in a randomized block design using Cajanus cajan as a model crop, comparing conventional farming with organic practice (with animal manure and bio-compost as amendments). Plant and rhizospheric soil samples were collected at the harvest stage for assessing various growth attributes, and for characterizing rhizospheric bacterial diversity. Enhanced crop productivity was seen in conventional farming, with a 2.2-fold increase in grain yield over control. However, over the 3 years, an overall positive impact was observed in the bio-compost-based organic amendment, in terms of bacterial abundance, over other treatments. At the harvest stage of the third cropping season, the bacterial diversity in the organic treatments showed little similarity to the initial bacterial community composition of the amendment applied, indicating stabilization along the growth cycles. The study emphasizes the significance of the choice of the amendment for ushering in agricultural sustainability.
Collapse
Affiliation(s)
- Vijay Laxmi Shrivas
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Anil K Choudhary
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Shubham Shidture
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, 411021, India
| | - Aayushi Rambia
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, 411021, India
| | - P Hariprasad
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Avinash Sharma
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, 411021, India.
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
2
|
Sabino YNV, de Melo MD, da Silva GC, Mantovani HC. Unraveling the diversity and dissemination dynamics of antimicrobial resistance genes in Enterobacteriaceae plasmids across diverse ecosystems. J Appl Microbiol 2024; 135:lxae028. [PMID: 38323496 DOI: 10.1093/jambio/lxae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
AIM The objective of this study was to investigate the antimicrobial resistance genes (ARGs) in plasmids of Enterobacteriaceae from soil, sewage, and feces of food-producing animals and humans. METHODS AND RESULTS The plasmid sequences were obtained from the NCBI database. For the identification of ARG, comprehensive antibiotic resistance database (CARD), and ResFinder were used. Gene conservation and evolution were investigated using DnaSP v.6. The transfer potential of the plasmids was evaluated using oriTfinder and a MOB-based phylogenetic tree was reconstructed using Fastree. We identified a total of 1064 ARGs in all plasmids analyzed, conferring resistance to 15 groups of antibiotics, mostly aminoglycosides, beta-lactams, and sulfonamides. The greatest number of ARGs per plasmid was found in enterobacteria from chicken feces. Plasmids from Escherichia coli carrying multiple ARGs were found in all ecosystems. Some of the most abundant genes were shared among all ecosystems, including aph(6)-Id, aph(3'')-Ib, tet(A), and sul2. A high level of sequence conservation was found among these genes, and tet(A) and sul2 are under positive selective pressure. Approximately 62% of the plasmids carrying at least one ARG were potentially transferable. Phylogenetic analysis indicated a potential co-evolution of Enterobacteriaceae plasmids in nature. CONCLUSION The high abundance of Enterobacteriaceae plasmids from diverse ecosystems carrying ARGs reveals their widespread distribution and importance.
Collapse
Affiliation(s)
| | - Mariana Dias de Melo
- Department of Microbiology, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Giarlã Cunha da Silva
- Department of Microbiology, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Hilario Cuquetto Mantovani
- Department of Microbiology, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706, Madison, WI, USA
| |
Collapse
|
3
|
Webb SE, Orkin JD, Williamson RE, Melin AD. Activity budget and gut microbiota stability and flexibility across reproductive states in wild capuchin monkeys in a seasonal tropical dry forest. Anim Microbiome 2023; 5:63. [PMID: 38102711 PMCID: PMC10724892 DOI: 10.1186/s42523-023-00280-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/05/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Energy demands associated with pregnancy and lactation are significant forces in mammalian evolution. To mitigate increased energy costs associated with reproduction, female mammals have evolved behavioural and physiological responses. Some species alter activity to conserve energy during pregnancy and lactation, while others experience changes in metabolism and fat deposition. Restructuring of gut microbiota with shifting reproductive states may also help females increase the energy gained from foods, especially during pregnancy. The goal of this study was to examine the relationships among behaviour, gut microbiota composition, and reproductive state in a wild, non-human primate to better understand reproductive ecology. We combined life history data with > 13,000 behavioural scans and 298 fecal samples collected longitudinally across multiple years from 33 white-faced capuchin monkey (Cebus imitator) females. We sequenced the V4 region of the 16S rRNA gene and used the DADA2 pipeline to analyze microbial diversity. We used PICRUSt2 to assess putative functions. RESULTS Reproductive state explained some variation in activity, but overall resting behaviours were relatively stable across pregnancy and lactation. Foraging was less frequent among females in the early stage of nursing compared to the cycling stage, though otherwise remained at comparable levels. Maximum temperature was a strong, significantly positive predictor of resting, while social dominance had a small but significantly negative effect on resting. Ecological variables such as available fruit biomass and rainfall had a small but significantly positive effects on measures of foraging time. Gut microbial community structure, including richness, alpha diversity, and beta diversity remained stable across the reproductive cycle. In pairwise comparisons, pregnant females exhibited increased relative abundances of multiple microbial ASVs, suggesting small changes in relation to reproductive state. Reproductive state was not linked to differential abundance of putative metabolic pathways. CONCLUSIONS Previous data suggest that activity budget and the gut microbiome shifts considerably during reproduction. The present study finds that both activity and gut microbial communities are less associated with reproduction compared to other predictors, including ecological contexts. This suggests that behavioural flexibility and gut microbial community plasticity is contrained by ecological factors in this population. These data contribute to a broader understanding of plasticity and stability in response to physiological shifts associated with mammalian reproduction.
Collapse
Affiliation(s)
- Shasta E Webb
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Joseph D Orkin
- Département d'anthropologie, Université de Montréal, 3150 Rue Jean-Brillant, Montréal, QC, H3T 1N8, Canada
| | - Rachel E Williamson
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
4
|
Zenebe T, Eguale T, Desalegn Z, Beshah D, Gebre-Selassie S, Mihret A, Abebe T. Distribution of ß-Lactamase Genes Among Multidrug-Resistant and Extended-Spectrum ß-Lactamase-Producing Diarrheagenic Escherichia coli from Under-Five Children in Ethiopia. Infect Drug Resist 2023; 16:7041-7054. [PMID: 37954506 PMCID: PMC10637226 DOI: 10.2147/idr.s432743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Purpose Escherichia coli strains that produce extended-spectrum ß-lactamase (ESBL) and carbapenemase are among the major threats to global health. The objective of the present study was to determine the distribution of ß-lactamase genes among multidrug-resistant (MDR) and ESBL-producing Diarrheagenic E. coli (DEC) pathotypes isolated from under-five children in Ethiopia. Patients and Methods A cross-sectional study was conducted in Addis Ababa and Debre Berhan, Ethiopia. It was a health-facility-based study and conducted between December 2020 and August 2021. A total of 476 under-five children participated in the study. DEC pathotypes were detected by conventional Polymerase Chain Reaction (PCR) assay. After evaluating the antimicrobial susceptibility profile of the DEC strains by disk diffusion method, confirmation test was done for ESBL and carbapenemase production. ß-lactamase encoding genes were identified from phenotypically ESBLs and carbapenemase positive DEC strains using PCR assay. Results In total, 183 DEC pathotypes were isolated from the 476 under-five children. Seventy-nine (43%, 79/183) MDR-DEC pathotypes were identified. MDR was common among enteroaggregative E. coli (EAEC) (58%, 44/76), followed by enterotoxigenic E. coli (ETEC) (44%, 17/39)) and enteroinvasive E. coli (EIEC) (30%, 7/23). Phenotypically, a total of 30 MDR-DEC pathotypes (16.4%, 30/183) were tested positive for ESBLs. Few ETEC (5.1%, 2/39) and EAEC (2.6%, 2/76) were carbapenemase producers. The predominant β-lactamase genes identified was blaTEM (80%, 24/30) followed by blaCTX-M (73%, 22/30), blaSHV (60%, 18/30), blaNDM (13%, 4/30), and blaOXA-48 (13%, 4/30). Majority of the ß-lactamase encoding genes were detected in EAEC (50%) and ETEC (20%). Co-existence of different β-lactamase genes was found in the present study. Conclusion The blaTEM, blaCTX-M, blaSHV, blaNDM, and blaOXA-48, that are associated with serious and urgent threats globally, were detected in diarrheagenic E. coli isolates from under-five children in Ethiopia. This study also revealed the coexistence of the β-lactamase genes.
Collapse
Affiliation(s)
- Tizazu Zenebe
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, Debre Berhan University, Debre Berhan, Ethiopia
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ohio State University, Global One Health LLC, Addis Ababa, Ethiopia
| | - Zelalem Desalegn
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Beshah
- Department of Medical Laboratory, Tikur Anbessa Specialized Hospital, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Gebre-Selassie
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adane Mihret
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Haidar-Ahmad N, Manigat FO, Silué N, Pontier SM, Campbell-Valois FX. A Tale about Shigella: Evolution, Plasmid, and Virulence. Microorganisms 2023; 11:1709. [PMID: 37512882 PMCID: PMC10383432 DOI: 10.3390/microorganisms11071709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Shigella spp. cause hundreds of millions of intestinal infections each year. They target the mucosa of the human colon and are an important model of intracellular bacterial pathogenesis. Shigella is a pathovar of Escherichia coli that is characterized by the presence of a large invasion plasmid, pINV, which encodes the characteristic type III secretion system and icsA used for cytosol invasion and cell-to-cell spread, respectively. First, we review recent advances in the genetic aspects of Shigella, shedding light on its evolutionary history within the E. coli lineage and its relationship to the acquisition of pINV. We then discuss recent insights into the processes that allow for the maintenance of pINV. Finally, we describe the role of the transcription activators VirF, VirB, and MxiE in the major virulence gene regulatory cascades that control the expression of the type III secretion system and icsA. This provides an opportunity to examine the interplay between these pINV-encoded transcriptional activators and numerous chromosome-encoded factors that modulate their activity. Finally, we discuss novel chromosomal genes icaR, icaT, and yccE that are regulated by MxiE. This review emphasizes the notion that Shigella and E. coli have walked the fine line between commensalism and pathogenesis for much of their history.
Collapse
Affiliation(s)
- Nathaline Haidar-Ahmad
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - France Ourida Manigat
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Navoun Silué
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Stéphanie M Pontier
- Centre de Recherche Santé Environnementale et Biodiversité de l'Outaouais (SEBO), CEGEP de l'Outaouais, Gatineau, QC J8Y 6M4, Canada
| | - François-Xavier Campbell-Valois
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Infection, Immunity and Inflammation, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
6
|
Resendiz-Nava CN, Alonso-Onofre F, Silva-Rojas HV, Rebollar-Alviter A, Rivera-Pastrana DM, Stasiewicz MJ, Nava GM, Mercado-Silva EM. Tomato Plant Microbiota under Conventional and Organic Fertilization Regimes in a Soilless Culture System. Microorganisms 2023; 11:1633. [PMID: 37512805 PMCID: PMC10383152 DOI: 10.3390/microorganisms11071633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Tomato is the main vegetable cultivated under soilless culture systems (SCSs); production of organic tomato under SCSs has increased due to consumer demands for healthier and environmentally friendly vegetables. However, organic tomato production under SCSs has been associated with low crop performance and fruit quality defects. These agricultural deficiencies could be linked to alterations in tomato plant microbiota; nonetheless, this issue has not been sufficiently addressed. Thus, the main goal of the present study was to characterize the rhizosphere and phyllosphere of tomato plants cultivated under conventional and organic SCSs. To accomplish this goal, tomato plants grown in commercial greenhouses under conventional or organic SCSs were tested at 8, 26, and 44 weeks after seedling transplantation. Substrate (n = 24), root (n = 24), and fruit (n = 24) composite samples were subjected to DNA extraction and high-throughput 16S rRNA gene sequencing. The present study revealed that the tomato core microbiota was predominantly constituted by Proteobacteria, Actinobacteria, and Firmicutes. Remarkably, six bacterial families, Bacillaceae, Microbacteriaceae, Nocardioidaceae, Pseudomonadaceae, Rhodobacteraceae, and Sphingomonadaceae, were shared among all substrate, rhizosphere, and fruit samples. Importantly, it was shown that plants under organic SCSs undergo a dysbiosis characterized by significant changes in the relative abundance of Bradyrhizobiaceae, Caulobacteraceae, Chitinophagaceae, Enterobacteriaceae, Erythrobacteraceae, Flavobacteriaceae, Nocardioidaceae, Rhodobacteraceae, and Streptomycetaceae. These results suggest that microbial alterations in substrates, roots, and fruits could be potential factors in contributing to the crop performance and fruit quality deficiencies observed in organic SCSs.
Collapse
Affiliation(s)
- Carolina N Resendiz-Nava
- Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, Mexico
| | | | - Hilda V Silva-Rojas
- Posgrado en Recursos Geneticos y Productividad, Produccion de Semillas, Colegio de Postgraduados, Km 36.5 Carretera Mexico-Texcoco, Texcoco 56264, Mexico
| | - Angel Rebollar-Alviter
- Centro Regional Morelia, Universidad Autonoma de Chapingo, Morelia 58170, Michoacan, Mexico
| | - Dulce M Rivera-Pastrana
- Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, Mexico
| | - Matthew J Stasiewicz
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 1302W Pennsylvania Ave, Urbana, IL 61801, USA
| | - Gerardo M Nava
- Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, Mexico
| | - Edmundo M Mercado-Silva
- Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, Mexico
| |
Collapse
|
7
|
Yan H, Chen H, Jiang L, Zhang J, Chen G, Yu X, Zhu H, Zhao X, Li Y, Tang W, Zhang X, Jiang N. Spatial distribution of airborne bacterial communities in caged poultry houses. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:417-427. [PMID: 36947580 DOI: 10.1080/10962247.2023.2193162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Microbial aerosols in intensive broiler houses whose species and concentrations are closely related to human health are ubiquitous. Based on 16S rRNA gene sequencing, the aim of this study was to investigate the spatial distribution and diversity of bacterial aerosols in the air of broiler houses. Significant spatial variations in airborne bacterial concentrations were observed inside the poultry farmhouse. The results indicated that bacteria in the air samples could be grouped into a total of 1,674 OTUs. Alpha diversity analysis showed that the diversity of the microbial community at the entry of the broiler house was higher than that at the middle or the rear (p < 0.01). The Sankey diagram illustrated species dynamic changes in Proteobacteria, Firmicutes, and Actinobacteria among the different locations. From the aspect of LEfSe (LDA Effect Size) analysis, we discovered that the abundance of Planctomycetes was significantly higher in the entry than in the rear and middle. This study shows the spatial distribution of the entire bacterial community in intensive broiler houses, which offers a new perspective for studying airborne total bacteria in those environments.Implications: The bacteria contained in air aerosols from poultry houses are closely connected to animal health and production. This study aimed to investigate the spatial distribution and diversity of bacterial aerosols in the air of broiler houses. The results observed that bacterial aerosol concentrations in the examined broilers house varied greatly at different positions, and a significantly higher exposure to bacterial aerosol was observed at the middle than at the other positions (p < 0.05). The alpha diversity analysis showed that the diversity of the microbial community at the entry of the broiler house was higher than that at the middle or the rear (P<0.01). Sankey diagram illustrated species dynamic changes of Proteobacteria, Firmicutes and Actinobacteria among the different locations. The microbial communities in genus level in the samples of entry and rear were closer, while the species diversity of middle and rear samples in chicken house was highly similar (P>0.05). Altogether, results revealed that the effects of spatial factors on the diversity and abundance of bacteria in the air of closed-cage broiler houses, which poses a potential threat to the health of animals and workers in those environments.
Collapse
Affiliation(s)
- Han Yan
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, Shandong, China
| | - Huan Chen
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, Shandong, China
| | - Linlin Jiang
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, Shandong, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Ludong University, Yantai, Shandong, China
| | - Jianlong Zhang
- College of Life Science, Ludong University, Yantai, Shandong, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Ludong University, Yantai, Shandong, China
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Ji'nan, China
| | - Guozhong Chen
- College of Life Science, Ludong University, Yantai, Shandong, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Ludong University, Yantai, Shandong, China
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Ji'nan, China
| | - Xin Yu
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, Shandong, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Ludong University, Yantai, Shandong, China
| | - Hongwei Zhu
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, Shandong, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Ludong University, Yantai, Shandong, China
| | - Xiaoyu Zhao
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Ji'nan, China
| | - Youzhi Li
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Ji'nan, China
| | - Wenli Tang
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Ji'nan, China
| | - Xingxiao Zhang
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, Shandong, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Ludong University, Yantai, Shandong, China
| | - Nihong Jiang
- Department of Environmental Management, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
8
|
He QZ, Wei P, Zhang JZ, Liu TT, Shi KQ, Liu HH, Zhang JW, Liu SJ. 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid alleviates ulcerative colitis by suppressing mammalian target of rapamycin complex 1 activation and regulating intestinal microbiota. World J Gastroenterol 2022; 28:6522-6536. [PMID: 36569276 PMCID: PMC9782837 DOI: 10.3748/wjg.v28.i46.6522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 12/08/2022] Open
Abstract
BACKGROUND 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid (BT2) is a benzothiophene carboxylate derivative that can suppress the catabolism of branched-chain amino acid (BCAA)-associated mammalian target of rapamycin complex 1 (mTORC1) activation. Previous studies have demonstrated the therapeutic effects of BT2 on arthritis, liver cancer, and kidney injury. However, the effects of BT2 on ulcerative colitis (UC) are unknown.
AIM To investigate the anti-UC effects of BT2 and the underlying mechanism.
METHODS Mouse UC models were created through the administration of 3.5% dextran sodium sulfate (DSS) for 7 d. The mice in the treated groups were administered salazosulfapyridine (300 mg/kg) or BT2 (20 mg/kg) orally from day 1 to day 7. At the end of the study, all of the mice were sacrificed, and colon tissues were removed for hematoxylin and eosin staining, immunoblot analyses, and immunohistochemical assays. Cytokine levels were measured by flow cytometry. The contents of BCAAs including valine, leucine, and isoleucine, in mouse serum were detected by liquid chromatography-tandem mass spectrometry, and the abundance of intestinal flora was analyzed by 16S ribosomal DNA sequencing.
RESULTS Our results revealed that BT2 significantly ameliorated the inflammatory symptoms and pathological damage induced by DSS in mice. BT2 also reduced the production of the proinflammatory cytokines interleukin 6 (IL-6), IL-9, and IL-2 and increased the anti-inflammatory cytokine IL-10 level. In addition, BT2 notably improved BCAA catabolism and suppressed mTORC1 activation and cyclooxygenase-2 expression in the colon tissues of UC mice. Furthermore, high-throughput sequencing revealed that BT2 restored the gut microbial abundance and diversity in mice with colitis. Compared with the DSS group, BT2 treatment increased the ratio of Firmicutes to Bacteroidetes and decreased the abundance of Enterobacteriaceae and Escherichia-Shigella.
CONCLUSION Our results indicated that BT2 significantly ameliorated DSS-induced UC and that the latent mechanism involved the suppression of BCAA-associated mTORC1 activation and modulation of the intestinal flora.
Collapse
Affiliation(s)
- Qiong-Zi He
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- College of The First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Peng Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- College of The First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Jun-Zhi Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- College of The First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Tong-Tong Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- College of The First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Kun-Qun Shi
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- College of The First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Huan-Huan Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- College of The First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Jing-Wei Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Shi-Jia Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
9
|
Ahlawat S, Sharma KK. Lepidopteran insects: emerging model organisms to study infection by enteropathogens. Folia Microbiol (Praha) 2022; 68:181-196. [PMID: 36417090 DOI: 10.1007/s12223-022-01014-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022]
Abstract
The in vivo analysis of a pathogen is a critical step in gaining greater knowledge of pathogen biology and host-pathogen interactions. In the last two decades, there has been a notable rise in the number of studies on developing insects as a model for studying pathogens, which provides various benefits, such as ethical acceptability, relatively short life cycle, and cost-effective care and maintenance relative to routinely used rodent infection models. Furthermore, lepidopteran insects provide many advantages, such as easy handling and tissue extraction due to their large size relative to other invertebrate models, like Caenorhabditis elegans. Additionally, insects have an innate immune system that is highly analogous to vertebrates. In the present review, we discuss the components of the insect's larval immune system, which strengthens its usage as an alternative host, and present an updated overview of the research findings involving lepidopteran insects (Galleria mellonella, Manduca sexta, Bombyx mori, and Helicoverpa armigera) as infection models to study the virulence by enteropathogens due to the homology between insect and vertebrate gut.
Collapse
Affiliation(s)
- Shruti Ahlawat
- Department of Microbiology, Faculty of Allied Health Sciences, SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram, 122505, Haryana, India.
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| |
Collapse
|
10
|
Fernández-Alonso M, Aguirre Camorlinga A, Messiah SE, Marroquin E. Effect of adding probiotics to an antibiotic intervention on the human gut microbial diversity and composition: a systematic review. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction. Millions of antibiotic prescriptions are written annually in the USA.
Gap Statement. Probiotics reduce antibiotic-induced gastrointestinal side effects; however, the effect of probiotics on preserving gut microbial composition in response to antibiotics is not well understood.
Aim. To evaluate whether the addition of probiotics is capable of reverting the changes in alpha diversity and gut microbial composition commonly observed in adult participants receiving antibiotics.
Methodology. A search was conducted by two researchers following the PRISMA guidelines using PubMed, Science Direct, Cochrane and Embase from January to December 2021 with the following inclusion criteria: (i) randomized clinical trials assessing the effect of antibiotics, probiotics or antibiotics+probiotics; (ii) 16S rRNA; (iii) adult participants; and (iv) in English. Once data was extracted in tables, a third researcher compared, evaluated and merged the collected data. The National Institutes of Health (NIH) rating system was utilized to analyse risk of bias.
Results. A total of 29 articles (n=11 antibiotics, n=11 probiotics and n=7 antibiotics+probiotics) met the inclusion criteria. The lack of standardization of protocols to analyse the gut microbial composition and the wide range of selected antibiotics/probiotics complicated data interpretation; however, despite these discrepancies, probiotic co-administration with antibiotics seemed to prevent some, but not all, of the gut microbial diversity and composition changes induced by antibiotics, including restoration of health-related bacteria such as
Faecalibacterium prausnitzii
.
Conclusion. Addition of probiotics to antibiotic interventions seems to preserve alpha diversity and ameliorate the changes to gut microbial composition caused by antibiotic interventions.
Collapse
Affiliation(s)
- Melissa Fernández-Alonso
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | - Sarah E. Messiah
- Center for Pediatric Population Health, UTHealth School of Public Health and Children's Health System of Texas, Dallas, TX, USA
- School of Public Health, University of Texas Health Science Center at Houston, Dallas Campus, Dallas, TX, USA
| | - Elisa Marroquin
- Department of Nutritional Sciences, College of Science and Engineering, Texas Christian University, Fort Worth, TX, USA
| |
Collapse
|
11
|
Juliawan IMP, Suwana FP, Annas JY, Akbar MF, Widjiati W. High Sucrose and Cholic Acid Diet Triggers PCOS-like Phenotype and Reduces Enterobacteriaceae Colonies in Female Wistar Rats. PATHOPHYSIOLOGY 2022; 29:344-353. [PMID: 35893596 PMCID: PMC9326763 DOI: 10.3390/pathophysiology29030026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Polycystic ovary syndrome (PCOS), a common hormonal disorder in women of reproductive age, is associated with a poor and unhealthy diet. This study aimed to investigate the effect of a high sucrose and cholic acid (HSCA) diet in the presence of PCOS-like phenotypes. Female Wistar rats were divided into HSCA and normal diet groups for four weeks, each with twenty rats. Body weight was assessed before and after the study. Blood and fecal samples were obtained to measure HOMA-IR and testosterone level (ELISA) and Enterobacteriaceae isolates grown on MacConkey Agar. Obtained ovarian tissues were H&E-stained. HSCA rats demonstrated a reduction in Enterobacteriaceae colonies (median 4.75 × 105 vs. 2.47 × 104/CFU, p < 0.001) and an elevated HOMA-IR (mean 2.94 ± 1.30 vs. 4.92 ± 0.51, p < 0.001), as well as an increase in testosterone level (median 0.65 vs. 3.00 ng/mL, p < 0.001), despite no statistical differences in the change in body weight (mean −2.31 ± 14.42 vs. −3.45 ± 9.32, p = 0.769). In H&E staining, HSCA rats had a reduction in preovulatory follicle count (median 0.50 vs. 0.00, p = 0.005). The HSCA diet caused insulin resistance and high testosterone levels, which contribute to the development of PCOS, and affected folliculogenesis by altering follicular maturation, but had no effect on ovulation.
Collapse
Affiliation(s)
- I Made Putra Juliawan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, Surabaya 75320, Indonesia; (I.M.P.J.); (J.Y.A.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Mataram, Mataram 83115, Indonesia
| | - Febie Putra Suwana
- Department of Obstetrics and Gynecology, General Hospital of West Nusa Tenggara, Mataram 83127, Indonesia;
| | - Jimmy Yanuar Annas
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, Surabaya 75320, Indonesia; (I.M.P.J.); (J.Y.A.)
| | - Muhammad Firman Akbar
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 400, Taiwan
- Centre of Medical Education and Research, The University of Mataram Teaching Hospital, Mataram 83115, Indonesia
- Correspondence: (M.F.A.); (W.W.)
| | - Widjiati Widjiati
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Airlangga University, Surabaya 75320, Indonesia
- Correspondence: (M.F.A.); (W.W.)
| |
Collapse
|
12
|
Apiwatsiri P, Pupa P, Sirichokchatchawan W, Sawaswong V, Nimsamer P, Payungporn S, Hampson DJ, Prapasarakul N. Metagenomic analysis of the gut microbiota in piglets either challenged or not with enterotoxigenic Escherichia coli reveals beneficial effects of probiotics on microbiome composition, resistome, digestive function and oxidative stress responses. PLoS One 2022; 17:e0269959. [PMID: 35749527 PMCID: PMC9231746 DOI: 10.1371/journal.pone.0269959] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/01/2022] [Indexed: 01/12/2023] Open
Abstract
This study used metagenomic analysis to investigate the gut microbiota and resistome in piglets that were or were not challenged with enterotoxigenic Escherichia coli (ETEC) and had or had not received dietary supplementation with microencapsulated probiotics. The 72 piglets belonged to six groups that were either non-ETEC challenged (groups 1–3) or ETEC challenged (receiving 5ml of 109 CFU/ml pathogenic ETEC strain L3.2 one week following weaning at three weeks of age: groups 4–6). On five occasions at 2, 5, 8, 11, and 14 days of piglet age, groups 2 and 5 were supplemented with 109 CFU/ml of multi-strain probiotics (Lactiplantibacillus plantarum strains 22F and 25F, and Pediococcus acidilactici 72N) while group 4 received 109 CFU/ml of P. acidilactici 72N. Group 3 received 300mg/kg chlortetracycline in the weaner diet to mimic commercial conditions. Rectal faecal samples were obtained for metagenomic and resistome analysis at 2 days of age, and at 12 hours and 14 days after the timing of post-weaning challenge with ETEC. The piglets were all euthanized at 42 days of age. The piglets in groups 2 and 5 were enriched with several desirable microbial families, including Lactobacillaceae, Lachnospiraceae and Ruminococcaceae, while piglets in group 3 had increases in members of the Bacteroidaceae family and exhibited an increase in tetW and tetQ genes. Group 5 had less copper and multi-biocide resistance. Mobile genetic elements IncQ1 and IncX4 were the most prevalent replicons in antibiotic-fed piglets. Only groups 6 and 3 had the integrase gene (intl) class 2 and 3 detected, respectively. The insertion sequence (IS) 1380 was prevalent in group 3. IS3 and IS30, which are connected to dietary intake, were overrepresented in group 5. Furthermore, only group 5 showed genes associated with detoxification, with enrichment of genes associated with oxidative stress, glucose metabolism, and amino acid metabolism compared to the other groups. Overall, metagenomic analysis showed that employing a multi-strain probiotic could transform the gut microbiota, reduce the resistome, and boost genes associated with food metabolism.
Collapse
Affiliation(s)
- Prasert Apiwatsiri
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pawiya Pupa
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Vorthon Sawaswong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattaraporn Nimsamer
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - David J. Hampson
- School of Veterinary Medicine, Murdoch University, Perth, Western Australia, Australia
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Diagnosis and Monitoring of Animal Pathogens, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
13
|
icaR
and
icaT
Are Ancient Chromosome Genes Encoding Substrates of the Type III Secretion Apparatus in Shigella flexneri. mSphere 2022; 7:e0011522. [PMID: 35582904 PMCID: PMC9241512 DOI: 10.1128/msphere.00115-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella is an Escherichia coli pathovar that colonizes the cytosol of mucosal cells in the human large intestine. To do this, Shigella uses a Type III Secretion Apparatus (T3SA) to translocate several proteins into host cells. The T3SA and its substrates are encoded by genes of the virulence plasmid pINV or by chromosomal genes derived thereof. We recently discovered two chromosomal genes, which seem unrelated to pINV, although they are activated by MxiE and IpgC similarly to some of the canonical substrates of the T3SA. Here, we showed that the production of the corresponding proteins depended on the conservation of a MxiE box in their cognate promoters. Furthermore, both proteins were secreted by the T3SA in a chaperone-independent manner through the recognition of their respective amino-terminal secretion signal. Based on these observations, we named these new genes icaR and icaT, which stand for invasion chromosome antigen with homology for a transcriptional regulator and a transposase, respectively. icaR and icaT have orthologs in commensal and pathogenic E. coli strains belonging mainly to phylogroups A, B1, D and E. Finally, we demonstrated that icaR and icaT orthologs could be activated by the coproduction of IpgC and MxiE in strains MG1655 K-12 (phylogroup A) and O157:H7 ATCC 43888 (phylogroup E). In contrast, the coproduction of EivF and YgeG, which are homologs of MxiE and IpgC in the E. coli T3SS 2 (ETT2), failed to activate icaR and icaT. IMPORTANCEicaR and icaT are the latest members of the MxiE regulon discovered in the chromosome. The proteins IcaR and IcaT, albeit produced in small amounts, are nonetheless secreted by the T3SA comparably to canonical substrates. The high occurrence of icaR and icaT in phylogroups A, B1, D, and E coupled with their widespread absence in their B2 counterparts agree with the consensus E. coli phylogeny. The widespread conservation of the MxiE box among icaR and icaT orthologs supports the notion that both genes had already undergone coevolution with transcriptional activators ipgC and mxiE- harbored in pINV or a relative- in the last common ancestor of Shigella and of E. coli from phylogroups A, B1, D, and E. The possibility that icaR and icaT may contribute to Shigella pathogenesis cannot be excluded, although some of their characteristics suggest they are fossil genes.
Collapse
|
14
|
The gut microbiome of exudivorous marmosets in the wild and captivity. Sci Rep 2022; 12:5049. [PMID: 35322053 PMCID: PMC8942988 DOI: 10.1038/s41598-022-08797-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Mammalian captive dietary specialists like folivores are prone to gastrointestinal distress and primate dietary specialists suffer the greatest gut microbiome diversity losses in captivity compared to the wild. Marmosets represent another group of dietary specialists, exudivores that eat plant exudates, but whose microbiome remains relatively less studied. The common occurrence of gastrointestinal distress in captive marmosets prompted us to study the Callithrix gut microbiome composition and predictive function through bacterial 16S ribosomal RNA V4 region sequencing. We sampled 59 wild and captive Callithrix across four species and their hybrids. Host environment had a stronger effect on the gut microbiome than host taxon. Wild Callithrix gut microbiomes were enriched for Bifidobacterium, which process host-indigestible carbohydrates. Captive marmoset guts were enriched for Enterobacteriaceae, a family containing pathogenic bacteria. While gut microbiome function was similar across marmosets, Enterobacteriaceae seem to carry out most functional activities in captive host guts. More diverse bacterial taxa seem to perform gut functions in wild marmosets, with Bifidobacterium being important for carbohydrate metabolism. Captive marmosets showed gut microbiome composition aspects seen in human gastrointestinal diseases. Thus, captivity may perturb the exudivore gut microbiome, which raises implications for captive exudivore welfare and calls for husbandry modifications.
Collapse
|
15
|
Rogovski P, da Silva R, Cadamuro RD, de Souza EB, Savi BP, Viancelli A, Michelon W, Tápparo DC, Treichel H, Rodríguez-Lazaro D, Fongaro G. Salmonella enterica Serovar Enteritidis Control in Poultry Litter Mediated by Lytic Bacteriophage Isolated from Swine Manure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168862. [PMID: 34444610 PMCID: PMC8393653 DOI: 10.3390/ijerph18168862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/01/2022]
Abstract
We report the use of bacteriophages for control of Salmonella Enteritidis in poultry production. Phage was isolated by the double-agar plate assay from agricultural waste samples, and one isolate, named SM1, was selected and propagated for application in poultry litter. Two experimental protocols were tested: single treatment and repeated treatment (re-application of phage SM1 after 6 h and 12 h). Each treatment cycle involved 25 g of poultry litter placed in plastic boxes and contaminated with 105 Colony Forming Units mL−1 (CFU mL−1) of S. Enteritidis, in independent duplicates. The contaminated litter was treated with 106 Plaque Forming Units mL−1 (PFU mL−1) of SM1 phage by dripping. Repeated application of phage SM1 reduced Salmonella counts by over 99.9%; the phage persisted in poultry litter for over 35 days. This study illustrates the application of SM1 treatment as a promising technology for bacterial control in production matrices that could allow safe and sustainable use of agricultural waste products as biofertilizers.
Collapse
Affiliation(s)
- Paula Rogovski
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (P.R.); (R.d.S.); (R.D.C.); (E.B.d.S.); (B.P.S.)
| | - Raphael da Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (P.R.); (R.d.S.); (R.D.C.); (E.B.d.S.); (B.P.S.)
| | - Rafael Dorighello Cadamuro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (P.R.); (R.d.S.); (R.D.C.); (E.B.d.S.); (B.P.S.)
| | - Estêvão Brasiliense de Souza
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (P.R.); (R.d.S.); (R.D.C.); (E.B.d.S.); (B.P.S.)
| | - Beatriz Pereira Savi
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (P.R.); (R.d.S.); (R.D.C.); (E.B.d.S.); (B.P.S.)
| | - Aline Viancelli
- Research Group on Engineering, Performance and Environmental Quality, Universidade do Contestado (PMPECSA), Concórdia 89711-330, SC, Brazil; (A.V.); (W.M.)
| | - William Michelon
- Research Group on Engineering, Performance and Environmental Quality, Universidade do Contestado (PMPECSA), Concórdia 89711-330, SC, Brazil; (A.V.); (W.M.)
| | - Deisi Cristina Tápparo
- Centro de Engenharias e Ciências Exatas, Western Paraná State University, Cascavel 85819-110, PR, Brazil;
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim 89802-112, RS, Brazil;
| | - David Rodríguez-Lazaro
- Division of Microbiology, Department of Biotechnology and Food Science, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
- Correspondence: (D.R.-L.); (G.F.); Tel.: +34-637-451-110 (D.R.-L.)
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (P.R.); (R.d.S.); (R.D.C.); (E.B.d.S.); (B.P.S.)
- Correspondence: (D.R.-L.); (G.F.); Tel.: +34-637-451-110 (D.R.-L.)
| |
Collapse
|
16
|
Xiao X, Fu Z, Li N, Yang H, Wang W, Lyu W. Modulation of the Intestinal Microbiota by the Early Intervention with Clostridium Butyricum in Muscovy Ducks. Antibiotics (Basel) 2021; 10:antibiotics10070826. [PMID: 34356746 PMCID: PMC8300754 DOI: 10.3390/antibiotics10070826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 01/12/2023] Open
Abstract
This study evaluated the effects of early intervention with Clostridium butyricum (C. butyricum) on shaping the intestinal microbiota of Muscovy ducklings. A total of 160 1-day-old male ducks were randomly divided into two groups: the CB group was administered with 1 mL of C. butyricum (2 × 109 CFU/mL), while the C group was given 1 mL of saline. The administration lasted for 3 days. We found that C. butyricum had no significant effect on growth performance. The results indicated that inoculation with C. butyricum could significantly increase the abundance of genera Bacteroides, Lachnospiraceae_uncultured, and Ruminococcaceae on Day 14 and reduce the abundance of Escherichia–Shigella and Klebsiella on Days 1 and 3. Moreover, the CB group ducks had higher concentrations of acetic, propionic, and butyrate in the cecum than the C group. Overall, these results suggest that early intervention with C. butyricum could have positive effects on Muscovy ducks’ intestinal health, which might be attributed to the modulation in the intestinal microbial composition and the increased concentrations of short-chain fatty acids (SCFAs). C. butyricum might even have the potential to help the colonization of beneficial bacteria in the intestine microbiota in Muscovy ducks in poultry and other livestock.
Collapse
Affiliation(s)
- Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (Z.F.); (N.L.); (H.Y.); (W.W.)
| | - Zixian Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (Z.F.); (N.L.); (H.Y.); (W.W.)
- College of Animal Science, Zhejiang A&F University, Hangzhou 310058, China
| | - Na Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (Z.F.); (N.L.); (H.Y.); (W.W.)
- College of Animal Science, Zhejiang A&F University, Hangzhou 310058, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (Z.F.); (N.L.); (H.Y.); (W.W.)
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (Z.F.); (N.L.); (H.Y.); (W.W.)
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (Z.F.); (N.L.); (H.Y.); (W.W.)
- Correspondence:
| |
Collapse
|
17
|
Manure Microbial Communities and Resistance Profiles Reconfigure after Transition to Manure Pits and Differ from Those in Fertilized Field Soil. mBio 2021; 12:mBio.00798-21. [PMID: 33975936 PMCID: PMC8262906 DOI: 10.1128/mbio.00798-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In agricultural settings, microbes and antimicrobial resistance genes (ARGs) have the potential to be transferred across diverse environments and ecosystems. The consequences of these microbial transfers are unclear and understudied. On dairy farms, the storage of cow manure in manure pits and subsequent application to field soil as a fertilizer may facilitate the spread of the mammalian gut microbiome and its associated ARGs to the environment. To determine the extent of both taxonomic and resistance similarity during these transitions, we collected fresh manure, manure from pits, and field soil across 15 different dairy farms for three consecutive seasons. We used a combination of shotgun metagenomic sequencing and functional metagenomics to quantitatively interrogate taxonomic and ARG compositional variation on farms. We found that as the microbiome transitions from fresh dairy cow manure to manure pits, microbial taxonomic compositions and resistance profiles experience distinct restructuring, including decreases in alpha diversity and shifts in specific ARG abundances that potentially correspond to fresh manure going from a gut-structured community to an environment-structured community. Further, we did not find evidence of shared microbial community or a transfer of ARGs between manure and field soil microbiomes. Our results suggest that fresh manure experiences a compositional change in manure pits during storage and that the storage of manure in manure pits does not result in a depletion of ARGs. We did not find evidence of taxonomic or ARG restructuring of soil microbiota with the application of manure to field soils, as soil communities remained resilient to manure-induced perturbation.
Collapse
|
18
|
Cui Y, Zhu L, Li Y, Jiang S, Sun Q, Xie E, Chen H, Zhao Z, Qiao W, Xu J, Dong C. Structure of a laminarin-type β-(1→3)-glucan from brown algae Sargassum henslowianum and its potential on regulating gut microbiota. Carbohydr Polym 2021; 255:117389. [PMID: 33436218 DOI: 10.1016/j.carbpol.2020.117389] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
A homogeneous polysaccharide named SHNP with apparent molecular weight of 8.4 kDa was purified from brown algae Sargassum henslowianum using ethanol precipitation, ion-exchange chromatography, and gel-filtration column chromatography. Structural analyses reveal that SHNP is completely composed of glucose, and its backbone consists of β-D-(1→3)-Glcp with side chains comprising t-β-D-Glcp attached at the O-6 position. Thus, SHNP is a laminarin-type polysaccharide. In vitro fermentation test results showed that SHNP was digested by gut microbiota; the pH value in the fecal culture of SHNP was significantly decreased; and total short-chain fatty acids, acetic, propionic and n-butyric acids were significantly increased. Furthermore, SHNP regulated the intestinal microbiota composition by stimulating the growth of species belonging to Enterobacteriaceae while depleting Haemophilus parainfluenzae and Gemmiger formicilis. Taken together, these results indicate that SHNP has the potential for regulating gut microbiota, but its specific role in the regulation requires to be further investigated.
Collapse
Affiliation(s)
- Yongsheng Cui
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Lixia Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong; The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518000, China
| | - Yixuan Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Siliang Jiang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Qili Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Enyi Xie
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Zhongzhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Wei Qiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, China.
| | - Caixia Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
19
|
In vitro-in vivo Validation of Stimulatory Effect of Oat Ingredients on Lactobacilli. Pathogens 2021; 10:pathogens10020235. [PMID: 33669689 PMCID: PMC7922649 DOI: 10.3390/pathogens10020235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
The prebiotic activity of a commercially available oat product and a novel oat ingredient, at similar β-glucan loads, was tested using a validated in vitro gut model (M-SHIME®). The novel oat ingredient was tested further at lower β-glucan loads in vitro, while the commercially available oat product was assessed in a randomised, single-blind, placebo-controlled, and cross-over human study. Both approaches focused on healthy individuals with mild hypercholesterolemia. In vitro analysis revealed that both oat products strongly stimulated Lactobacillaceae and Bifidobacteriaceae in the intestinal lumen and the simulated mucus layer, and corresponded with enhanced levels of acetate and lactate with cross-feeding interactions leading to an associated increase in propionate and butyrate production. The in vitro prebiotic activity of the novel oat ingredient remained at lower β-glucan levels, indicating the prebiotic potential of the novel oat product. Finally, the stimulation of Lactobacillus spp. was confirmed during the in vivo trial, where lactobacilli abundance significantly increased in the overall population at the end of the intervention period with the commercially available oat product relative to the control product, indicating the power of in vitro gut models in predicting in vivo response of the microbial community to dietary modulation.
Collapse
|
20
|
Fructans with Varying Degree of Polymerization Enhance the Selective Growth of Bifidobacterium animalis subsp. lactis BB-12 in the Human Gut Microbiome In Vitro. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Synbiotics aim to improve gastrointestinal health by combining pre- and probiotics. This study evaluated combinations of Bifidobacterium animalis subsp. lactis BB-12 with seven fructans: oligofructoses (OF1-OF2; low degree of polymerization (DP)), inulins (IN1-IN2-IN3; high DP) and OF/IN mixtures (OF/IN1-OF/IN2). During monoculture incubations, all fructans were fermented by BB-12 as followed from increased BB-12 numbers and increased acetate and lactate concentrations, with most pronounced fermentation for low DP fructans (OF1-OF2). Further, short-term colonic incubations for three human donors revealed that also in presence of a complex microbiota, all fructans (particularly OF1) consistently selectively enhanced the growth of BB-12. While each fructan as such already increased Bifidobacteriaceae numbers with 0.94–1.26 log(cells/mL), BB-12 co-supplementation additionally increased Bifidobacteriaceae with 0.17–0.46 log(cells/mL). Further, when co-supplemented with fructans, BB-12 decreased Enterobacteriaceae numbers (significant except for IN1-IN3). At metabolic level, all fructans decreased pH due to increased acetate and lactate production, while OF/IN2-IN1-IN2-IN3 also stimulated propionate and butyrate production. BB-12 co-supplementation further increased propionate and butyrate for OF/IN2-IN3 and IN1-IN2, respectively. Overall, combinations of BB-12 with fructans are promising synbiotic concepts, likely due to intracellular consumption of low DP-fructans by BB-12 (either present in starting product or released upon fermentation by indigenous microbes), thereby enhancing effects of the co-administered fructan.
Collapse
|
21
|
Development of a new spectrophotometric assay for rapid detection and differentiation of KPC, MBL and OXA-48 carbapenemase-producing Klebsiella pneumoniae clinical isolates. Int J Antimicrob Agents 2020; 56:106211. [PMID: 33172591 DOI: 10.1016/j.ijantimicag.2020.106211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 11/21/2022]
Abstract
The increased prevalence of carbapenemase-producing Enterobacteriaceae (CPE) has made essential the design of quicker tests for CPE detection. In the present study, a simple and rapid assay was developed based on measurement of the hydrolytic activity of imipenem at a final concentration of 65 µg/mL (100 µM) through ultraviolet-visible (UV-Vis) spectrophotometry. All measurements were conducted at 297 nm. A total of 83 carbapenem-non-susceptible CPE, consisting of Klebsiella pneumoniae clinical isolates and genotypically characterised as KPC-, VIM-, NDM- or OXA-48-producers, were tested. For comparison, 30 carbapenem-non-susceptible clinical isolates, consisting of Escherichia coli and K. pneumoniae and genotypically confirmed as non-CPE, were also examined. The spectrophotometric assay enabled efficient discrimination of CPE from non-CPE isolates even in 45 min (P < 0.0001). Moreover, the presence of phenylboronic acid (PBA) or ethylene diamine tetra-acetic acid (EDTA) in the reaction mixture was able to inhibit the hydrolytic capacity of KPC- or metallo-β-lactamase (MBL)-producers, respectively, while the hydrolytic activity of OXA-48-producing strains was not affected by the presence of these inhibitors (P < 0.001). The newly developed assay presented 100% sensitivity and specificity to detect and differentiate KPC-, MBL- and OXA-48-producers compared with genotypic characterisation. Thus, the proposed spectrophotometric method can be considered as an easy, fast, accurate and cost-effective diagnostic tool for screening carbapenem-non-susceptible K. pneumoniae isolates in the clinical laboratory.
Collapse
|
22
|
Nigro G, Arena ET, Sachse M, Moya-Nilges M, Marteyn BS, Sansonetti PJ, Campbell-Valois FX. Mapping of Shigella flexneri's tissue distribution and type III secretion apparatus activity during infection of the large intestine of guinea pigs. Pathog Dis 2020; 77:5580288. [PMID: 31578543 PMCID: PMC6920510 DOI: 10.1093/femspd/ftz054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
Shigella spp. are bacterial pathogens that invade the human colonic mucosa using a type III secretion apparatus (T3SA), a proteinaceous device activated upon contact with host cells. Active T3SAs translocate proteins that carve the intracellular niche of Shigella spp. Nevertheless, the activation state of the T3SA has not been addressed in vivo. Here, we used a green fluorescent protein transcription-based secretion activity reporter (TSAR) to provide a spatio-temporal description of S. flexneri T3SAs activity in the colon of Guinea pigs. First, we observed that early mucus release is triggered in the vicinity of luminal bacteria with inactive T3SA. Subsequent mucosal invasion showed bacteria with active T3SA associated with the brush border, eventually penetrating into epithelial cells. From 2 to 8 h post-challenge, the infection foci expanded, and these intracellular bacteria displayed homogeneously high-secreting activity, while extracellular foci within the lamina propria featured bacteria with low secretion activity. We also found evidence that within lamina propria macrophages, bacteria reside in vacuoles instead of accessing the cytosol. Finally, bacteria were cleared from tissues between 8 and 24 h post-challenge, highlighting the hit-and-run colonization strategy of Shigella. This study demonstrates how genetically encoded reporters can contribute to deciphering pathogenesis in vivo.
Collapse
Affiliation(s)
- Giulia Nigro
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, INSERM U1202, 24-28 rue du Docteur-Roux, 75015 Paris, France
| | - Ellen T Arena
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, INSERM U1202, 24-28 rue du Docteur-Roux, 75015 Paris, France.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Laboratory for Optical and Computational Instrumentation, 271 Animal Sciences, 1675 Observatory Drive, Madison, WI 53706, USA
| | - Martin Sachse
- Ultrastructural Bioimaging unit, Institut Pasteur, 24-28 rue du Docteur-Roux, 75015 Paris, France
| | - Maryse Moya-Nilges
- Ultrastructural Bioimaging unit, Institut Pasteur, 24-28 rue du Docteur-Roux, 75015 Paris, France
| | - Benoit S Marteyn
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, INSERM U1202, 24-28 rue du Docteur-Roux, 75015 Paris, France.,Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS UPR9002, 2 Allée Konrad Roentgen, 67084 Strasbourg, France.,Unité Pathogenèse des Infections Vasculaires, Institut Pasteur, 24-28 rue du Docteur-Roux, 75015 Paris, France
| | - Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, INSERM U1202, 24-28 rue du Docteur-Roux, 75015 Paris, France.,Chaire de Microbiologie et Maladies Infectieuses, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris, France
| | - F-X Campbell-Valois
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, INSERM U1202, 24-28 rue du Docteur-Roux, 75015 Paris, France.,The Host-Microbe Interactions Laboratory, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur private, Ottawa, ON, K1N 6N5, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Rd, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
23
|
A Loss-of-Function Mutation in the Integrin Alpha L ( Itgal) Gene Contributes to Susceptibility to Salmonella enterica Serovar Typhimurium Infection in Collaborative Cross Strain CC042. Infect Immun 2019; 88:IAI.00656-19. [PMID: 31636138 DOI: 10.1128/iai.00656-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/05/2019] [Indexed: 12/18/2022] Open
Abstract
Salmonella is an intracellular bacterium found in the gastrointestinal tract of mammalian, avian, and reptilian hosts. Mouse models have been extensively used to model in vivo distinct aspects of human Salmonella infections and have led to the identification of several host susceptibility genes. We have investigated the susceptibility of Collaborative Cross strains to intravenous infection with Salmonella enterica serovar Typhimurium as a model of human systemic invasive infection. In this model, strain CC042/GeniUnc (CC042) mice displayed extreme susceptibility with very high bacterial loads and mortality. CC042 mice showed lower spleen weights and decreased splenocyte numbers before and after infection, affecting mostly CD8+ T cells, B cells, and all myeloid cell populations, compared with control C57BL/6J mice. CC042 mice also had lower thymus weights with a reduced total number of thymocytes and double-negative and double-positive (CD4+, CD8+) thymocytes compared to C57BL/6J mice. Analysis of bone marrow-resident hematopoietic progenitors showed a strong bias against lymphoid-primed multipotent progenitors. An F2 cross between CC042 and C57BL/6N mice identified two loci on chromosome 7 (Stsl6 and Stsl7) associated with differences in bacterial loads. In the Stsl7 region, CC042 carried a loss-of-function variant, unique to this strain, in the integrin alpha L (Itgal) gene, the causative role of which was confirmed by a quantitative complementation test. Notably, Itgal loss of function increased the susceptibility to S. Typhimurium in a (C57BL/6J × CC042)F1 mouse background but not in a C57BL/6J mouse inbred background. These results further emphasize the utility of the Collaborative Cross to identify new host genetic variants controlling susceptibility to infections and improve our understanding of the function of the Itgal gene.
Collapse
|
24
|
Gu W, Tong P, Liu C, Wang W, Lu C, Han Y, Sun X, Kuang DX, Li N, Dai J. The characteristics of gut microbiota and commensal Enterobacteriaceae isolates in tree shrew (Tupaia belangeri). BMC Microbiol 2019; 19:203. [PMID: 31477004 PMCID: PMC6721287 DOI: 10.1186/s12866-019-1581-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tree shrew is a novel laboratory animal with specific characters for human disease researches in recent years. However, little is known about its characteristics of gut microbial community and intestinal commensal bacteria. In this study, 16S rRNA sequencing method was used to illustrate the gut microbiota structure and commensal Enterobacteriaceae bacteria were isolated to demonstrate their features. RESULTS The results showed Epsilonbacteraeota (30%), Proteobacteria (25%), Firmicutes (19%), Fusobacteria (13%), and Bacteroidetes (8%) were the most abundant phyla in the gut of tree shrew. Campylobacteria, Campylobacterales, Helicobacteraceae and Helicobacter were the predominant abundance for class, order, family and genus levels respectively. The alpha diversity analysis showed statistical significance (P < 0.05) for operational taxonomic units (OTUs), the richness estimates, and diversity indices for age groups of tree shrew. Beta diversity revealed the significant difference (P < 0.05) between age groups, which showed high abundance of Epsilonbacteraeota and Spirochaetes in infant group, Proteobacteria in young group, Fusobacteria in middle group, and Firmicutes in senile group. The diversity of microbial community was increased followed by the aging process of this animal. 16S rRNA gene functional prediction indicated that highly hot spots for infectious diseases, and neurodegenerative diseases in low age group of tree shrew (infant and young). The most isolated commensal Enterobacteriaceae bacteria from tree shrew were Proteus spp. (67%) and Escherichia coli (25%). Among these strains, the antibiotic resistant isolates were commonly found, and pulsed-field gel electrophoresis (PFGE) results of Proteus spp. indicated a high degree of similarity between isolates in the same age group, which was not observed for other bacteria. CONCLUSIONS In general, this study made understandings of the gut community structure and diversity of tree shrew.
Collapse
Affiliation(s)
- Wenpeng Gu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China.,Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, 650022, China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China
| | - Chenxiu Liu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China
| | - Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China
| | - Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China
| | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China
| | - De Xuan Kuang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Zhao zong Road 66, Kunming, 650118, China.
| |
Collapse
|
25
|
Silué N, Marcantonio E, Campbell-Valois FX. RNA-Seq analysis of the T3SA regulon in Shigella flexneri reveals two new chromosomal genes upregulated in the on-state. Methods 2019; 176:71-81. [PMID: 30905752 DOI: 10.1016/j.ymeth.2019.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
Shigella spp. are enterobacteria that invade human colonic mucosal cells using their Type Three Secretion Apparatus (T3SA). Shigella spp. possess a large plasmid that encodes most of its virulence factors and has been the focus of seminal work that defined the T3SA regulon. Thus, a global assessment of the transcriptional response regulated by the T3SA has been lacking. Herein we used RNA-Seq to identify genes that are differentially expressed when the T3SA is active (on-state) versus inactive (off-state). The quality of the RNA-Seq dataset was validated by its correlation with a prior microarray study. Using novel insights about the expression of non-coding regions, bioinformatic tools and experimentations, we demonstrated the existence of six operons and evidence that ipaH2.5 is a pseudogene. In addition, 86 chromosomal genes were downregulated in the on-state including several non-coding transcripts corresponding to short antisense RNA embedded in the 16S and 23S RNA genes, and 40 coding transcripts, whose cognate proteins were highly connected at the genetic and biochemical levels. Finally, we identified two novel chromosomal genes dubbed gem1 and gem3, which were upregulated in the on-state similarly to genes belonging to the T3SA regulon. The latter findings were validated on biological triplicates by droplet digital PCR. To our knowledge gem1 and gem3 are the first chromosomal members of the T3SA regulon that have no homologs on the plasmid. Our approach provides a path to optimizing RNA-Seq studies in case of bacterial models that had previously been the subject of medium to large scale studies.
Collapse
Affiliation(s)
- Navoun Silué
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Endrei Marcantonio
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - F-X Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|