1
|
Echevarria-Cooper DM, Hawkins NA, Kearney JA. Strain-dependent effects on neurobehavioral and seizure phenotypes in Scn2aK1422E mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543929. [PMID: 37333275 PMCID: PMC10274703 DOI: 10.1101/2023.06.06.543929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Pathogenic variants in SCN2A are associated with a range of neurodevelopmental disorders (NDD). Despite being largely monogenic, SCN2A-related NDD show considerable phenotypic variation and complex genotype-phenotype correlations. Genetic modifiers can contribute to variability in disease phenotypes associated with rare driver mutations. Accordingly, different genetic backgrounds across inbred rodent strains have been shown to influence disease-related phenotypes, including those associated with SCN2A-related NDD. Recently, we developed a mouse model of the variant SCN2A-p.K1422E that was maintained as an isogenic line on the C57BL/6J (B6) strain. Our initial characterization of NDD phenotypes in heterozygous Scn2aK1422E mice revealed alterations in anxiety-related behavior and seizure susceptibility. To determine if background strain affects phenotype severity in the Scn2aK1422E mouse model, phenotypes of mice on B6 and [DBA/2J×B6]F1 hybrid (F1D2) strains were compared. Convergent evidence from neurobehavioral assays demonstrated lower anxiety-like behavior in Scn2aK1422E mice compared to wild-type and further suggested that this effect is more pronounced on the B6 background compared to the F1D2 background. Although there were no strain-dependent differences in occurrence of rare spontaneous seizures, response to the chemoconvulsant kainic acid revealed differences in seizure generalization and lethality risk, with variation based on strain and sex. Continued examination of strain-dependent effects in the Scn2aK1422E mouse model could reveal genetic backgrounds with unique susceptibility profiles that would be relevant for future studies on specific traits and enable the identification of highly penetrant phenotypes and modifier genes that could provide clues about the primary pathogenic mechanism of the K1422E variant.
Collapse
Affiliation(s)
- Dennis M. Echevarria-Cooper
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA
| | - Nicole A. Hawkins
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jennifer A. Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Gu B, Shorter JR, Williams LH, Bell TA, Hock P, Dalton KA, Pan Y, Miller DR, Shaw GD, Philpot BD, Pardo-Manuel de Villena F. Collaborative Cross mice reveal extreme epilepsy phenotypes and genetic loci for seizure susceptibility. Epilepsia 2020; 61:2010-2021. [PMID: 32852103 DOI: 10.1111/epi.16617] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Animal studies remain essential for understanding mechanisms of epilepsy and identifying new therapeutic targets. However, existing animal models of epilepsy do not reflect the high level of genetic diversity found in the human population. The Collaborative Cross (CC) population is a genetically diverse recombinant inbred panel of mice. The CC offers large genotypic and phenotypic diversity, inbred strains with stable genomes that allow for repeated phenotypic measurements, and genomic tools including whole genome sequence to identify candidate genes and candidate variants. METHODS We evaluated multiple complex epileptic traits in a sampling of 35 CC inbred strains using the flurothyl-induced seizure and kindling paradigm. We created an F2 population of 297 mice with extreme seizure susceptibility and performed quantitative trait loci (QTL) mapping to identify genomic regions associated with seizure sensitivity. We used quantitative RNA sequencing from CC hippocampal tissue to identify candidate genes and whole genome sequence to identify genetic variants likely affecting gene expression. RESULTS We identified new mouse models with extreme seizure susceptibility, seizure propagation, epileptogenesis, and SUDEP (sudden unexpected death in epilepsy). We performed QTL mapping and identified one known and seven novel loci associated with seizure sensitivity. We combined whole genome sequencing and hippocampal gene expression to pinpoint biologically plausible candidate genes (eg, Gabra2) and variants associated with seizure sensitivity. SIGNIFICANCE New mouse models of epilepsy are needed to better understand the complex genetic architecture of seizures and to identify therapeutics. We performed a phenotypic screen utilizing a novel genetic reference population of CC mice. The data we provide enable the identification of protective/risk genes and novel molecular mechanisms linked to complex seizure traits that are currently challenging to study and treat.
Collapse
Affiliation(s)
- Bin Gu
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.,Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - John R Shorter
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.,Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services, Copenhagen, Denmark.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Lucy H Williams
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Katherine A Dalton
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Yiyun Pan
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Darla R Miller
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin D Philpot
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.,Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.,Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Kapur M, Ganguly A, Nagy G, Adamson SI, Chuang JH, Frankel WN, Ackerman SL. Expression of the Neuronal tRNA n-Tr20 Regulates Synaptic Transmission and Seizure Susceptibility. Neuron 2020; 108:193-208.e9. [PMID: 32853550 DOI: 10.1016/j.neuron.2020.07.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/07/2020] [Accepted: 07/19/2020] [Indexed: 12/31/2022]
Abstract
The mammalian genome has hundreds of nuclear-encoded tRNAs, but the contribution of individual tRNA genes to cellular and organismal function remains unknown. Here, we demonstrate that mutations in a neuronally enriched arginine tRNA, n-Tr20, increased seizure threshold and altered synaptic transmission. n-Tr20 expression also modulated seizures caused by an epilepsy-linked mutation in Gabrg2, a gene encoding a GABAA receptor subunit. Loss of n-Tr20 altered translation initiation by activating the integrated stress response and suppressing mTOR signaling, the latter of which may contribute to altered neurotransmission in mutant mice. Deletion of a highly expressed isoleucine tRNA similarly altered these signaling pathways in the brain, suggesting that regulation of translation initiation is a conserved response to tRNA loss. Our data indicate that loss of a single member of a tRNA family results in multiple cellular phenotypes, highlighting the disease-causing potential of tRNA mutations.
Collapse
Affiliation(s)
- Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Archan Ganguly
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gabor Nagy
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Scott I Adamson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Wayne N Frankel
- Institute for Genomic Medicine, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Mai HN, Sharma N, Jeong JH, Shin EJ, Pham DT, Trinh QD, Lee YJ, Jang CG, Nah SY, Bing G, Kim HC. P53 knockout mice are protected from cocaine-induced kindling behaviors via inhibiting mitochondrial oxidative burdens, mitochondrial dysfunction, and proapoptotic changes. Neurochem Int 2019; 124:68-81. [DOI: 10.1016/j.neuint.2018.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 11/30/2022]
|
5
|
IL-6 knockout mice are protected from cocaine-induced kindling behaviors; possible involvement of JAK2/STAT3 and PACAP signalings. Food Chem Toxicol 2018; 116:249-263. [PMID: 29673861 DOI: 10.1016/j.fct.2018.04.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/27/2018] [Accepted: 04/13/2018] [Indexed: 01/12/2023]
Abstract
IL-6 has been recognized as an anticonvulsant against certain neuroexcitotoxicities. We aimed to investigate on the interactive role between IL-6 and PACAP in cocaine-induced kindling behaviors. Although we found that cocaine (45 mg/kg, i.p./day x 5) significantly increased IL-6 and TNF-α expression, it resulted in a decrease in IFN-γ expression. We observed that the cocaine-induced increase in IL-6 expression was more pronounced than that in TNF-α expression. Genetic depletion of IL-6 significantly activated cocaine kindling behaviors. This phenomenon was also consistently observed in WT mice that received a neutralizing IL-6 receptor antibody. Cocaine-treated IL-6 knockout mice exhibited significantly decreased PACAP and PACAP receptor (PAC1R) mRNA levels and significantly increased TNF-α gene expression. TNF-α knockout mice were protected from cocaine kindling via an up-regulation of IL-6, phospho-JAK2/STAT3, PACAP, and PAC1R levels, which produced anti-apoptotic effects. Recombinant IL-6 protein (rIL-6, 2 μg, i.v./mouse/day x 5) also up-regulated phospho-JAK2/STAT3, PACAP, and PAC1R mRNA levels, leading to anti-apoptotic effects in IL-6 knockout mice. Consistently, AG490, a JAK2/STAT3 inhibitor, and PACAP 6-38, a PAC1 receptor antagonist, counteracted rIL-6-mediated protection. Combined, our results suggest that IL-6 gene requires up-regulation of phospho-JAK2/STAT3, PACAP, and PAC1R and down-regulation of the TNF-α gene to modulate its anticonvulsive/neuroprotective potential.
Collapse
|
6
|
Multidimensional Genetic Analysis of Repeated Seizures in the Hybrid Mouse Diversity Panel Reveals a Novel Epileptogenesis Susceptibility Locus. G3-GENES GENOMES GENETICS 2017; 7:2545-2558. [PMID: 28620084 PMCID: PMC5555461 DOI: 10.1534/g3.117.042234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Epilepsy has many causes and comorbidities affecting as many as 4% of people in their lifetime. Both idiopathic and symptomatic epilepsies are highly heritable, but genetic factors are difficult to characterize among humans due to complex disease etiologies. Rodent genetic studies have been critical to the discovery of seizure susceptibility loci, including Kcnj10 mutations identified in both mouse and human cohorts. However, genetic analyses of epilepsy phenotypes in mice to date have been carried out as acute studies in seizure-naive animals or in Mendelian models of epilepsy, while humans with epilepsy have a history of recurrent seizures that also modify brain physiology. We have applied a repeated seizure model to a genetic reference population, following seizure susceptibility over a 36-d period. Initial differences in generalized seizure threshold among the Hybrid Mouse Diversity Panel (HMDP) were associated with a well-characterized seizure susceptibility locus found in mice: Seizure susceptibility 1. Remarkably, Szs1 influence diminished as subsequent induced seizures had diminishing latencies in certain HMDP strains. Administration of eight seizures, followed by an incubation period and an induced retest seizure, revealed novel associations within the calmodulin-binding transcription activator 1, Camta1. Using systems genetics, we have identified four candidate genes that are differentially expressed between seizure-sensitive and -resistant strains close to our novel Epileptogenesis susceptibility factor 1 (Esf1) locus that may act individually or as a coordinated response to the neuronal stress of seizures.
Collapse
|
7
|
Löscher W, Ferland RJ, Ferraro TN. The relevance of inter- and intrastrain differences in mice and rats and their implications for models of seizures and epilepsy. Epilepsy Behav 2017; 73. [PMID: 28651171 PMCID: PMC5909069 DOI: 10.1016/j.yebeh.2017.05.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is becoming increasingly clear that the genetic background of mice and rats, even in inbred strains, can have a profound influence on measures of seizure susceptibility and epilepsy. These differences can be capitalized upon through genetic mapping studies to reveal genes important for seizures and epilepsy. However, strain background and particularly mixed genetic backgrounds of transgenic animals need careful consideration in both the selection of strains and in the interpretation of results and conclusions. For instance, mice with targeted deletions of genes involved in epilepsy can have profoundly disparate phenotypes depending on the background strain. In this review, we discuss findings related to how this genetic heterogeneity has and can be utilized in the epilepsy field to reveal novel insights into seizures and epilepsy. Moreover, we discuss how caution is needed in regards to rodent strain or even animal vendor choice, and how this can significantly influence seizure and epilepsy parameters in unexpected ways. This is particularly critical in decisions regarding the strain of choice used in generating mice with targeted deletions of genes. Finally, we discuss the role of environment (at vendor and/or laboratory) and epigenetic factors for inter- and intrastrain differences and how such differences can affect the expression of seizures and the animals' performance in behavioral tests that often accompany acute and chronic seizure testing.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Neurology, Albany Medical College, Albany, NY, United States
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
8
|
Brodkin ES, Nestler EJ. Quantitative Trait Locus Analysis: A New Tool for Psychiatric Genetics. Neuroscientist 2016. [DOI: 10.1177/107385849800400511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This update provides a brief overview of the principles underlying quantitative trait locus (QTL) analysis and of the usefulness of this analysis as a new tool for psychiatric ge netics. We review the criteria by which inbred rodent strains are chosen for QTL analysis; the various breeding protocols that may be used in QTL analysis; the principles underlying the phenotyping and genotyping of animals; the statistical analysis by which genetic loci are identified; and, finally, the challenge of discovering the specific genes within the identified loci that affect the trait of interest. QTL analysis offers promise for advancing our understanding of the genetics of mammalian behavior and, ultimately, of the etiology of psychiatric disorders. NEUROSCIENTIST 4:317-323, 1998
Collapse
|
9
|
Schauwecker PE. Susceptibility to seizure-induced excitotoxic cell death is regulated by an epistatic interaction between Chr 18 (Sicd1) and Chr 15 (Sicd2) loci in mice. PLoS One 2014; 9:e110515. [PMID: 25333963 PMCID: PMC4198259 DOI: 10.1371/journal.pone.0110515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/15/2014] [Indexed: 12/02/2022] Open
Abstract
Seizure-induced cell death is believed to be regulated by multiple genetic components in addition to numerous external factors. We previously defined quantitative trait loci that control susceptibility to seizure-induced cell death in FVB/NJ (susceptible) and C57BL/6J (resistant) mice. Two of these quantitative trait loci assigned to chromosomes 18 (Sicd1) and 15 (Sicd2), control seizure-induced cell death resistance. In this study, through the use of a series of novel congenic strains containing the Sicd1 and Sicd2 congenic strains and different combinations of the Sicd1 or Sicd2 sub region(s), respectively, we defined these genetic interactions. We generated a double congenic strain, which contains the two C57BL/6J differential segments from chromosome 18 and 15, to determine how these two segments interact with one another. Phenotypic comparison between FVB-like littermates and the double congenic FVB.B6-Sicd1/Sicd2 strain identified an additive effect with respect to resistance to seizure-induced excitotoxic cell death. It thus appears that C57BL/6J alleles located on chromosomes 18 and 15 interact epistatically in an additive manner to control the extent of seizure-induced excitotoxic cell death. Three interval-specific congenic lines were developed, in which either segments of C57BL/6J Chr 18 or C57BL/6J Chr 15 were introduced in the FVB/NJ genetic background, and progeny were treated with kainate and examined for the extent of seizure-induced cell death. All of the interval-specific congenic lines exhibited reduced cell death in both area CA3 and the dentate hilus, associated with the C57BL/6J phenotype. These experiments demonstrate functional interactions between Sicd1 and Sicd2 that improve resistance to seizure-induced excitotoxic cell death, validating the critical role played by gene-gene interactions in excitotoxic cell death.
Collapse
Affiliation(s)
- Paula Elyse Schauwecker
- Department of Cell and Neurobiology, USC Keck School of Medicine, Los Angeles, California, United States of America
| |
Collapse
|
10
|
Miller AR, Hawkins NA, McCollom CE, Kearney JA. Mapping genetic modifiers of survival in a mouse model of Dravet syndrome. GENES BRAIN AND BEHAVIOR 2013; 13:163-72. [PMID: 24152123 DOI: 10.1111/gbb.12099] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/06/2013] [Accepted: 10/21/2013] [Indexed: 12/26/2022]
Abstract
Epilepsy is a common neurological disorder affecting approximately 1% of the population. Mutations in voltage-gated sodium channels are responsible for several monogenic epilepsy syndromes. More than 800 mutations in the voltage-gated sodium channel SCN1A have been reported in patients with generalized epilepsy with febrile seizures plus and Dravet syndrome. Heterozygous loss-of-function mutations in SCN1A result in Dravet syndrome, a severe infant-onset epileptic encephalopathy characterized by intractable seizures, developmental delays and increased mortality. A common feature of monogenic epilepsies is variable expressivity among individuals with the same mutation, suggesting that genetic modifiers may influence clinical severity. Mice with heterozygous deletion of Scn1a (Scn1a(+/-) ) model a number of Dravet syndrome features, including spontaneous seizures and premature lethality. Phenotype severity in Scn1a(+/-) mice is strongly dependent on strain background. On the 129S6/SvEvTac strain Scn1a(+/-) mice exhibit no overt phenotype, whereas on the (C57BL/6J × 129S6/SvEvTac)F1 strain Scn1a(+/-) mice exhibit spontaneous seizures and early lethality. To systematically identify loci that influence premature lethality in Scn1a(+/-) mice, we performed genome scans on reciprocal backcrosses. Quantitative trait locus mapping revealed modifier loci on mouse chromosomes 5, 7, 8 and 11. RNA-seq analysis of strain-dependent gene expression, regulation and coding sequence variation provided a list of potential functional candidate genes at each locus. Identification of modifier genes that influence survival in Scn1a(+/-) mice will improve our understanding of the pathophysiology of Dravet syndrome and may suggest novel therapeutic strategies for improved treatment of human patients.
Collapse
Affiliation(s)
- A R Miller
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | | | | | | |
Collapse
|
11
|
Reid CA, Kim T, Phillips AM, Low J, Berkovic SF, Luscher B, Petrou S. Multiple molecular mechanisms for a single GABAA mutation in epilepsy. Neurology 2013; 80:1003-8. [PMID: 23408872 DOI: 10.1212/wnl.0b013e3182872867] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To understand the molecular basis and differential penetrance of febrile seizures and absence seizures in patients with the γ2(R43Q) GABA receptor mutation. METHODS Spike-and-wave discharges and thermal seizure susceptibility were measured in heterozygous GABA γ2 knock-out and GABA γ2(R43Q) knock-in mice models crossed to different mouse strains. RESULTS By comparing the GABA γ2 knock-out with the GABA γ2(R43Q) knock-in mouse model we show that haploinsufficiency underlies the genesis of absence seizures but cannot account for the thermal seizure susceptibility. Additionally, while the expression of the absence seizure phenotype was very sensitive to mouse background genetics, the thermal seizure phenotype was not. CONCLUSIONS Our results show that a single gene mutation can cause distinct seizure phenotypes through independent molecular mechanisms. A lack of effect of genetic background on thermal seizure susceptibility is consistent with the higher penetrance of febrile seizures compared to absence seizures seen in family members with the mutation. These mouse studies help to provide a conceptual framework within which clinical heterogeneity seen in genetic epilepsy can be explained.
Collapse
Affiliation(s)
- Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
12
|
BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures. Neuron 2012; 74:719-30. [PMID: 22632729 DOI: 10.1016/j.neuron.2012.03.032] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2012] [Indexed: 01/07/2023]
Abstract
Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phosphoregulation of BAD and are independent of its apoptotic function. BAD modifications that reduce glucose metabolism produce a marked increase in the activity of metabolically sensitive K(ATP) channels in neurons, as well as resistance to behavioral and electrographic seizures in vivo. Seizure resistance is reversed by genetic ablation of the K(ATP) channel, implicating the BAD-K(ATP) axis in metabolic control of neuronal excitation and seizure responses.
Collapse
|
13
|
Bessaïh T, de Yebenes EG, Kirkland K, Higley MJ, Buono RJ, Ferraro TN, Contreras D. Quantitative trait locus on distal chromosome 1 regulates the occurrence of spontaneous spike-wave discharges in DBA/2 mice. Epilepsia 2012; 53:1429-35. [PMID: 22612065 DOI: 10.1111/j.1528-1167.2012.03512.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Most common forms of human epilepsy result from a complex combination of polygenetic and environmental factors. Quantitative trait locus (QTL) mapping is a first step toward the nonbiased discovery of epilepsy-related candidate genes. QTL studies of susceptibility to induced seizures in mouse strains have consistently converged on a distal region of chromosome 1 as a major phenotypic determinant; however, its influence on spontaneous epilepsy remains unclear. In the present study we characterized the influence of allelic variations within this QTL, termed Szs1, on the occurrence of spontaneous spike-wave discharges (SWDs) characteristic of absence seizures in DBA/2 (D2) mice. METHODS We analyzed SWD occurrence and patterns in freely behaving D2, C57BL/6 (B6) and the congenic strains D2.B6-Szs1 and B6.D2-Szs1. KEY FINDINGS We showed that congenic manipulation of the Szs1 locus drastically reduced the number and the duration of SWDs in D2.B6-Szs1 mice, which are homozygous for Szs1 from B6 strain on a D2 strain background. However, it failed to induce the full expression of SWDs in the reverse congenic animals B6.D2-Szs1. SIGNIFICANCE Our results demonstrate that the occurrence of SWDs in D2 animals is under polygenic control and, therefore, the D2 and B6 strains might be a useful model to dissect the genetic determinants of polygenic SWDs characteristic of typical absence seizures. Furthermore, we point to the existence of epistatic interactions between at least one modifier gene within Szs1 and genes within unlinked QTLs in regulating the occurrence of spontaneous nonconvulsive forms of epilepsies.
Collapse
Affiliation(s)
- Thomas Bessaïh
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19106-6074, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Schauwecker PE. The relevance of individual genetic background and its role in animal models of epilepsy. Epilepsy Res 2011; 97:1-11. [PMID: 22001434 DOI: 10.1016/j.eplepsyres.2011.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 09/07/2011] [Accepted: 09/09/2011] [Indexed: 02/09/2023]
Abstract
Growing evidence has indicated that genetic factors contribute to the etiology of seizure disorders. Most epilepsies are multifactorial, involving a combination of additive and epistatic genetic variables. However, the genetic factors underlying epilepsy have remained unclear, partially due to epilepsy being a clinically and genetically heterogeneous syndrome. Similar to the human situation, genetic background also plays an important role in modulating both seizure susceptibility and its neuropathological consequences in animal models of epilepsy, which has too often been ignored or not been paid enough attention to in published studies. Genetic homogeneity within inbred strains and their general amenability to genetic manipulation have made them an ideal resource for dissecting the physiological function(s) of individual genes. However, the inbreeding that makes inbred mice so useful also results in genetic divergence between them. This genetic divergence is often unaccounted for but may be a confounding factor when comparing studies that have utilized distinct inbred strains. The purpose of this review is to discuss the effects of genetic background strain on epilepsy phenotypes of mice, to remind researchers that the background genetics of a knockout strain can have a profound influence on any observed phenotype, and outline the means by which to overcome potential genetic background effects in experimental models of epilepsy.
Collapse
Affiliation(s)
- P Elyse Schauwecker
- Department of Cell and Neurobiology, USC Keck School of Medicine, 1333 San Pablo Street, BMT 403, Los Angeles, CA 90089-9112, United States.
| |
Collapse
|
15
|
Aydin-Abidin S, Yildirim M, Abidin İ, Akca M, Cansu A. Comparison of focally induced epileptiform activities in C57BL/6 and BALB/c mice by using in vivo EEG recording. Neurosci Lett 2011; 504:165-169. [PMID: 21964381 DOI: 10.1016/j.neulet.2011.09.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/30/2011] [Accepted: 09/15/2011] [Indexed: 11/18/2022]
Abstract
Epilepsy characterized by repeated seizures is influenced by genetic factors. Seizure response of inbred mouse strains changes depending on the variety of stimuli including chemical (e.g., pentylenetetrazole, nicotine, cocaine, NMDA, kainate), physical (e.g., auditory) or electrical. In this study, we compared the susceptibilities of C57BL/6 and BALB/c mice strains to penicillin induced epileptiform activity (a focally induced, experimental epilepsy model), by analyzing the spike onset latency, spike amplitude and spike frequency. The power spectrums of baseline EEGs were also investigated. We found no alterations of spike onset latencies between the C57 and BALB mice. However, spike amplitudes and spike frequencies were found to be higher in BALB mice than C57 mice. With regard to EEG power spectrum, absolute power of investigated bands was not different between the two strains. Interestingly, the relative power of all investigated bands differed significantly between two strains. The relative power of delta and theta was lower whereas relative power of alpha, beta and gamma was higher in C57 mice compared to BALB mice. In conclusion, our findings showed that BALB mice are more sensitive to penicillin induced epileptiform activity when compared to C57 strain.
Collapse
Affiliation(s)
- Selcen Aydin-Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Mehmet Yildirim
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - İsmail Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Metehan Akca
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ali Cansu
- Department of Pediatric Neurology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
16
|
Winawer MR, Gildersleeve SS, Phillips AG, Rabinowitz D, Palmer AA. Mapping a mouse limbic seizure susceptibility locus on chromosome 10. Epilepsia 2011; 52:2076-83. [PMID: 21906048 DOI: 10.1111/j.1528-1167.2011.03256.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Mapping seizure susceptibility loci in mice provides a framework for identifying potentially novel candidate genes for human epilepsy. Using C57BL/6J × A/J chromosome substitution strains (CSS), we previously identified a locus on mouse chromosome 10 (Ch10) conferring susceptibility to pilocarpine, a muscarinic cholinergic agonist that models human temporal lobe epilepsy by inducing initial limbic seizures and status epilepticus (status), followed by hippocampal cell loss and delayed-onset chronic spontaneous limbic seizures. Herein we report further genetic mapping of pilocarpine quantitative trait loci (QTLs) on Ch10. METHODS Seventy-nine Ch10 F(2) mice were used to map QTLs for duration of partial status epilepticus and the highest stage reached in response to pilocarpine. Based on those results we created interval-specific congenic lines to confirm and extend the results, using sequential rounds of breeding selectively by genotype to isolate segments of A/J Ch10 genome on a B6 background. KEY FINDINGS Analysis of Ch10 F(2) genotypes and seizure susceptibility phenotypes identified significant, overlapping QTLs for duration of partial status and severity of pilocarpine-induced seizures on distal Ch10. Interval-specific Ch10 congenics containing the susceptibility locus on distal Ch10 also demonstrated susceptibility to pilocarpine-induced seizures, confirming results from the F(2) mapping population and strongly supporting the presence of a QTL between rs13480781 (117.6 Mb) and rs13480832 (127.7 Mb). SIGNIFICANCE QTL mapping can identify loci that make a quantitative contribution to a trait, and eventually identify the causative DNA-sequence polymorphisms. We have mapped a locus on mouse Ch10 for pilocarpine-induced limbic seizures. Novel candidate genes identified in mice can be investigated in functional studies and tested for their role in human epilepsy.
Collapse
Affiliation(s)
- Melodie R Winawer
- Department of Neurology, Columbia University, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
17
|
Ferraro TN, Smith GG, Ballard D, Zhao H, Schwebel CL, Gupta A, Rappaport EF, Ruiz SE, Lohoff FW, Doyle GA, Berrettini WH, Buono RJ. Quantitative trait loci for electrical seizure threshold mapped in C57BLKS/J and C57BL/10SnJ mice. GENES BRAIN AND BEHAVIOR 2010; 10:309-15. [PMID: 21129161 DOI: 10.1111/j.1601-183x.2010.00668.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We mapped the quantitative trait loci (QTL) that contribute to the robust difference in maximal electroshock seizure threshold (MEST) between C57BLKS/J (BKS) and C57BL10S/J (B10S) mice. BKS, B10S, BKS × B10S F1 and BKS × B10S F2 intercross mice were tested for MEST at 8-9 weeks of age. Results of F2 testing showed that, in this cross, MEST is a continuously distributed trait determined by polygenic inheritance. Mice from the extremes of the trait distribution were genotyped using microarray technology. MEST correlated significantly with body weight and sex; however, because of the high correlation between these factors, the QTL mapping was conditioned on sex alone. A sequential series of statistical analyses was used to map QTLs including single-point, multipoint and multilocus methods. Two QTLs reached genome-wide levels of significance based upon an empirically determined permutation threshold: chromosome 6 (LOD = 6.0 at ∼69 cM) and chromosome 8 (LOD = 5.7 at ∼27 cM). Two additional QTLs were retained in a multilocus regression model: chromosome 3 (LOD = 2.1 at ∼68 cM) and chromosome 5 (LOD = 2.7 at ∼73 cM). Together the four QTLs explain one third of the total phenotypic variance in the mapping population. Lack of overlap between the major MEST QTLs mapped here in BKS and B10S mice and those mapped previously in C57BL/6J and DBA/2J mice (strains that are closely related to BKS and B10S) suggest that BKS and B10S represent a new polygenic mouse model for investigating susceptibility to seizures.
Collapse
Affiliation(s)
- T N Ferraro
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ferraro TN, Smith GG, Schwebel CL, Doyle GA, Ruiz SE, Oleynick JU, Lohoff FW, Berrettini WH, Buono RJ. Confirmation of multiple seizure susceptibility QTLs on chromosome 15 in C57BL/6J and DBA/2J inbred mice. Physiol Genomics 2010; 42A:1-7. [PMID: 20571108 DOI: 10.1152/physiolgenomics.00096.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To confirm seizure susceptibility (SZS) quantitative trait loci (QTLs) on chromosome (chr) 15 identified previously using C57BL/6J (B6) and DBA/2J (D2) mice and to refine their genomic map position, we studied a set of three congenic strains in which overlapping segments of chr 15 from D2 were transferred onto the B6 background. We measured thresholds for generalized electroshock seizure (GEST) and maximal electroshock seizure (MEST) in congenic strains and B6-like littermates and also tested their responses to kainic acid (KA) and pentylenetetrazol (PTZ). Results document that MEST is significantly lower in strains 15M and 15D, which harbor medial and distal (telomeric) segments of chr 15 (respectively) from D2, compared with strain 15P, which harbors the proximal (acromeric) segment of chr 15 from D2, and with control littermates. Congenic strains 15P and 15M exhibited greater KA SZS compared with strain 15D and B6-like controls. All congenic strains were similar to controls with regard to PTZ SZS. Taken together, results suggest there are multiple SZS QTLs on chr 15 and that two QTLs harbor gene variants that affect MEST and KA SZS independently. The MEST QTL is refined to a 19 Mb region flanked by rs13482630 and D15Mit159. This interval contains 350 genes, 183 of which reside in areas where the polymorphism rate between B6 and D2 is high. The KA QTL interval spans a 65 Mb region flanked by markers D15Mit13 and rs31271969. It harbors 83 genes in highly polymorphic areas, 310 genes in all. Complete dissection of these loci will lead to identification of genetic variants that influence SZS in mice and provide a better understanding of seizure biology.
Collapse
Affiliation(s)
- T N Ferraro
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-3403, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mapping a barbiturate withdrawal locus to a 0.44 Mb interval and analysis of a novel null mutant identify a role for Kcnj9 (GIRK3) in withdrawal from pentobarbital, zolpidem, and ethanol. J Neurosci 2009; 29:11662-73. [PMID: 19759313 DOI: 10.1523/jneurosci.1413-09.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we map a quantitative trait locus (QTL) with a large effect on predisposition to barbiturate (pentobarbital) withdrawal to a 0.44 Mb interval of mouse chromosome 1 syntenic with human 1q23.2. We report a detailed analysis of the genes within this interval and show that it contains 15 known and predicted genes, 12 of which demonstrate validated genotype-dependent transcript expression and/or nonsynonymous coding sequence variation that may underlie the influence of the QTL on withdrawal. These candidates are involved in diverse cellular functions including intracellular trafficking, potassium conductance and spatial buffering, and multimolecular complex dynamics, and indicate both established and novel aspects of neurobiological response to sedative-hypnotics. This work represents a substantial advancement toward identification of the gene(s) that underlie the phenotypic effects of the QTL. We identify Kcnj9 as a particularly promising candidate and report the development of a Kcnj9-null mutant model that exhibits significantly less severe withdrawal from pentobarbital as well as other sedative-hypnotics (zolpidem and ethanol) versus wild-type littermates. Reduced expression of Kcnj9, which encodes GIRK3 (Kir3.3), is associated with less severe sedative-hypnotic withdrawal. A multitude of QTLs for a variety of complex traits, including diverse responses to sedative-hypnotics, have been detected on distal chromosome 1 in mice, and as many as four QTLs on human chromosome 1q have been implicated in human studies of alcohol dependence. Thus, our results will be primary to additional efforts to identify genes involved in a wide variety of behavioral responses to sedative-hypnotics and may directly facilitate progress in human genetics.
Collapse
|
20
|
Müller CJ, Gröticke I, Hoffmann K, Schughart K, Löscher W. Differences in sensitivity to the convulsant pilocarpine in substrains and sublines of C57BL/6 mice. GENES BRAIN AND BEHAVIOR 2009; 8:481-92. [PMID: 19493016 DOI: 10.1111/j.1601-183x.2009.00490.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In rodents, the cholinomimetic convulsant pilocarpine is widely used to induce status epilepticus (SE), followed by hippocampal damage and spontaneous recurrent seizures, resembling temporal lobe epilepsy. This model has initially been described in rats, but is increasingly used in mice, including the C57BL/6 (B6) inbred strain. In the present study, we compared the effects of pilocarpine in three B6 substrains (B6JOla, B6NHsd and B6NCrl) that were previously reported to differ in several behavioral and genetic aspects. In B6JOla and B6NHsd, only a small percentage of mice developed SE independently of whether pilocarpine was administered at high bolus doses or with a ramping up dosing protocol, but mortality was high. The reverse was true in B6NCrl, in which a high percentage of mice developed SE, but mortality was much lower compared to the other substrains. However, in subsequent experiments with B6NCrl mice, striking differences in SE induction and mortality were found in sublines of this substrain coming from different barrier rooms of the same vendor. In B6NCrl from Barrier #8, administration of pilocarpine resulted in a high percentage of mice developing SE, but mortality was low, whereas the opposite was found in B6NCrl mice from four other barriers of the same vendor. The analysis of F1 mice from a cross of female Barrier 8 pilocarpine-susceptible mice with resistant male mice from another barrier (#9) revealed that F1 male mice were significantly more sensitive to pilocarpine than the resistant parental male mice whereas female F1 mice were not significantly different from resistant Barrier 9 females. These observations strongly indicate X-chromosome linked genetic variation as the cause of the observed phenotypic alterations. To our knowledge, this is the first report which demonstrates that not only the specific B6 substrain but also sublines derived from the same substrain may markedly differ in their response to convulsants such as pilocarpine. As the described differences have a genetic basis, they offer a unique opportunity to identify the genes and pathways involved and contribute to a better understanding of the underlying molecular mechanisms of seizure susceptibility.
Collapse
Affiliation(s)
- C J Müller
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, D-30559 Hannover, Germany
| | | | | | | | | |
Collapse
|
21
|
Kozell L, Belknap JK, Hofstetter JR, Mayeda A, Buck KJ. Mapping a locus for alcohol physical dependence and associated withdrawal to a 1.1 Mb interval of mouse chromosome 1 syntenic with human chromosome 1q23.2-23.3. GENES BRAIN AND BEHAVIOR 2008; 7:560-7. [PMID: 18363856 DOI: 10.1111/j.1601-183x.2008.00391.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Physiological dependence and associated withdrawal episodes are thought to constitute a motivational force perpetuating continued alcohol use/abuse. Although no animal model duplicates alcoholism, models for specific factors, like the withdrawal syndrome, are useful to identify potential determinants of liability in humans. We previously detected quantitative trait loci (QTLs) with large effects on predisposition to physical dependence and associated withdrawal following chronic or acute alcohol exposure to a large region of chromosome 1 in mice (Alcdp1 and Alcw1, respectively). Here, we provide the first confirmation of Alcw1 in a congenic strain, and, using interval-specific congenic strains, narrow its position to a minimal 1.1 Mb (maximal 1.7 Mb) interval syntenic with human chromosome 1q23.2-23.3. We also report the development of a small donor segment congenic that confirms capture of a gene(s) affecting physical dependence after chronic alcohol exposure within this small interval. This congenic will be invaluable for determining whether this interval harbors a gene(s) involved in additional alcohol responses for which QTLs have been detected on distal chromosome 1, including alcohol consumption, alcohol-conditioned aversion and -induced ataxia. The possibility that this QTL plays an important role in such diverse responses to alcohol makes it an important target. Moreover, human studies have identified markers on chromosome 1q associated with alcoholism, although this association is still suggestive and mapped to a large region. Thus, the fine mapping of this QTL and analyses of the genes within the QTL interval can inform developing models for genetic determinants of alcohol dependence in humans.
Collapse
Affiliation(s)
- L Kozell
- Department of Veterans Affairs Medical Center, Portland, OR, USA
| | | | | | | | | |
Collapse
|
22
|
Mozhui K, Ciobanu DC, Schikorski T, Wang X, Lu L, Williams RW. Dissection of a QTL hotspot on mouse distal chromosome 1 that modulates neurobehavioral phenotypes and gene expression. PLoS Genet 2008; 4:e1000260. [PMID: 19008955 PMCID: PMC2577893 DOI: 10.1371/journal.pgen.1000260] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 10/14/2008] [Indexed: 11/18/2022] Open
Abstract
A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1) that corresponds to human Chr 1q21-q23. This region is highly enriched in quantitative trait loci (QTLs) that control neural and behavioral phenotypes, including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1), and responses to ethanol, caffeine, pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility). Here, we ask whether this QTL-rich region on Chr 1 (Qrr1) consists of a single master locus or a mixture of linked, but functionally unrelated, QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression, haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p) and a distal part (Qrr1d), each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and protein synthesis, including the expression of approximately 20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1, composed of multiple loci modulating the expression of functionally cognate sets of genes.
Collapse
Affiliation(s)
- Khyobeni Mozhui
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Daniel C. Ciobanu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Thomas Schikorski
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Xusheng Wang
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Lu Lu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Robert W. Williams
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
23
|
Dissociation of seizure traits in inbred strains of mice using the flurothyl kindling model of epileptogenesis. Exp Neurol 2008; 215:60-8. [PMID: 18950623 DOI: 10.1016/j.expneurol.2008.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/08/2008] [Accepted: 09/12/2008] [Indexed: 11/23/2022]
Abstract
Previous seizure models have demonstrated genetic differences in generalized seizure threshold (GST) in inbred mice, but the genetic control of epileptogenesis is relatively unexplored. The present study examined, through analysis of inbred strains of mice, whether the seizure characteristics observed in the flurothyl kindling model are under genetic control. Eight consecutive, daily generalized seizures were induced by flurothyl in mice from five inbred strains. Following a 28-day rest period, mice were retested with flurothyl. The five strains of mice demonstrated inter-strain differences in GST, decreases in GST across seizure trials, and differences in the behavioral seizure phenotypes expressed. Since many of the seizure characteristics that we examined in the flurothyl kindling model were dissociable between C57BL/6J and DBA/2J mice, we analyzed these strains in detail. Unlike C57BL/6J mice, DBA/2J mice had a lower GST on trial 1, did not demonstrate a decrease in GST across trials, nor did they show an alteration in seizure phenotype upon flurothyl retest. Surprisingly, [C57BL/6JxDBA/2J] F1-hybrids had initial GST on trial 1 and GST decreases across trials similar to what was found for C57BL/6J, but they did not undergo the alteration in behavioral seizure phenotype that had been observed for C57BL/6J mice. Our data establish the significance of the genetic background in flurothyl-induced epileptogenesis. The [C57BL/6JxDBA/2J] F1-hybrid data demonstrate that initial GST, the decrease in GST across trials, and the change in seizure phenotype differ from the characteristics of the parental strains, suggesting that these phenotypes are controlled by independent genetic loci.
Collapse
|
24
|
McLin JP, Thompson LM, Lusis AJ, Davis RC, Steward O. Genes on distal chromosome 18 determine vulnerability to excitotoxic neurodegeneration following status epilepticus, but not striatal neurodegeneration induced by quinolinic acid. Neurobiol Dis 2008; 29:391-9. [DOI: 10.1016/j.nbd.2007.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 09/24/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022] Open
|
25
|
5-HT2C and GABAB receptors influence handling-induced convulsion severity in chromosome 4 congenic and DBA/2J background strain mice. Brain Res 2008; 1198:124-31. [PMID: 18262506 DOI: 10.1016/j.brainres.2008.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 12/21/2007] [Accepted: 01/05/2008] [Indexed: 11/21/2022]
Abstract
Progress towards elucidating the underlying genetic variation for susceptibility to complex central nervous system (CNS) hyperexcitability states has just begun. Genetic mapping analyses suggest that a gene(s) on mid-chromosome 4 has pleiotropic effects on multiple CNS hyperexcitability states in mice, including alcohol and barbiturate withdrawal and convulsions elicited by chemical and audiogenic stimuli. We recently identified Mpdz within this chromosomal region as a gene that influences alcohol and barbiturate withdrawal convulsions. Mpdz encodes the multi-PDZ domain protein (MPDZ). Currently, there is limited information available about the mechanism by which MPDZ influences drug withdrawal and/or other CNS hyperexcitability states, but may involve its interaction with 5-HT2C and/or GABAB receptors. One of the most useful tools we have developed thus far is a congenic strain that possesses a segment of chromosome 4 from the C57BL/6J (donor) mouse strain superimposed on a genetic background that is >99% from the DBA/2J strain. The introduced segment spans the Mpdz gene. Here, we demonstrate that handling-induced convulsions are less severe in congenic vs. background strain mice in response to either a 5-HT2C receptor antagonist (SB242084) or a GABAB receptor agonist (baclofen), but not a GABAA receptor channel blocker (pentylenetetrazol). These data suggest that allelic variation in Mpdz, or a linked gene, influences SB242084- and baclofen-enhanced convulsions. Our results are consistent with the hypothesis that Mpdz's effects on CNS hyperexcitability, including alcohol and barbiturate withdrawal, involve MPDZ interaction with 5-HT2C and/or GABAB receptors. However, additional genes reside within the congenic interval and may also influence CNS hyperexcitability.
Collapse
|
26
|
Chaix Y, Ferraro TN, Lapouble E, Martin B. Chemoconvulsant-induced seizure susceptibility: toward a common genetic basis? Epilepsia 2007; 48 Suppl 5:48-52. [PMID: 17910581 DOI: 10.1111/j.1528-1167.2007.01289.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the efforts employed, understanding the genetic architecture underlying epilepsy remains difficult. To reach this aim, convulsive epilepsies are classically modeled in mice, where genetic studies are less constricting than in humans. Pharmacogenetic approaches are one major source of investigation where kainic acid, pentylenetetrazol, and the ss-carboline family represent compounds that are used extensively. Several quantitative trait loci (QTLs) influencing the convulsant effects of these drugs have been mapped using either recombinant inbred strains (RIS) or segregating F2 populations (or both). In our laboratory, we have recently mapped two QTLs for methyl 6, 7-dimethoxy-4-ethyl-ss-carboline-3-carboxylate (DMCM), and seizure response using an F2 method. One is located on the distal part of Chromosome 1, a region implicated in a number of other studies. Here, we address the general importance of this chromosomal fragment for influencing seizure susceptibility.
Collapse
Affiliation(s)
- Yohan Chaix
- Laboratoire de Neurobiologie, Equipe Génétique des Epilepsies, Université d'Orléans, France
| | | | | | | |
Collapse
|
27
|
WINAWER MR, MAKARENKO N, McCLOSKEY DP, HINTZ TM, NAIR N, PALMER AA, SCHARFMAN HE. Acute and chronic responses to the convulsant pilocarpine in DBA/2J and A/J mice. Neuroscience 2007; 149:465-75. [PMID: 17904758 PMCID: PMC2640947 DOI: 10.1016/j.neuroscience.2007.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 06/01/2007] [Accepted: 06/10/2007] [Indexed: 11/23/2022]
Abstract
Characterizing the responses of different mouse strains to experimentally-induced seizures can provide clues to the genes that are responsible for seizure susceptibility, and factors that contribute to epilepsy. This approach is optimal when sequenced mouse strains are available. Therefore, we compared two sequenced strains, DBA/2J (DBA) and A/J. These strains were compared using the chemoconvulsant pilocarpine, because pilocarpine induces status epilepticus, a state of severe, prolonged seizures. In addition, pilocarpine-induced status is followed by changes in the brain that are associated with the pathophysiology of temporal lobe epilepsy (TLE). Therefore, pilocarpine can be used to address susceptibility to severe seizures, as well as genes that could be relevant to TLE. A/J mice had a higher incidence of status, but a longer latency to status than DBA mice. DBA mice exhibited more hippocampal pyramidal cell damage. DBA mice developed more ectopic granule cells in the hilus, a result of aberrant migration of granule cells born after status. DBA mice experienced sudden death in the weeks following status, while A/J mice exhibited the most sudden death in the initial hour after pilocarpine administration. The results support previous studies of strain differences based on responses to convulsants. They suggest caution in studies of seizure susceptibility that are based only on incidence or latency. In addition, the results provide new insight into the strain-specific characteristics of DBA and A/J mice. A/J mice provide a potential resource to examine the progression to status. The DBA mouse may be valuable to clarify genes regulating other seizure-associated phenomena, such as seizure-induced neurogenesis and sudden death.
Collapse
Affiliation(s)
- M. R. WINAWER
- Department of Neurology and G.H. Sergievsky Center, Columbia University, New York, NY 10032, USA
| | - N. MAKARENKO
- CNRRR, Helen Hayes Hospital, Route 9W, West Haverstraw, NY 10993-1195, USA
| | - D. P. McCLOSKEY
- CNRRR, Helen Hayes Hospital, Route 9W, West Haverstraw, NY 10993-1195, USA
| | - T. M. HINTZ
- CNRRR, Helen Hayes Hospital, Route 9W, West Haverstraw, NY 10993-1195, USA
| | - N. NAIR
- CNRRR, Helen Hayes Hospital, Route 9W, West Haverstraw, NY 10993-1195, USA
| | - A. A. PALMER
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - H. E. SCHARFMAN
- CNRRR, Helen Hayes Hospital, Route 9W, West Haverstraw, NY 10993-1195, USA
- Departments of Pharmacology and Neurology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
28
|
Ferraro TN, Smith GG, Schwebel CL, Lohoff FW, Furlong P, Berrettini WH, Buono RJ. Quantitative trait locus for seizure susceptibility on mouse chromosome 5 confirmed with reciprocal congenic strains. Physiol Genomics 2007; 31:458-62. [PMID: 17698926 DOI: 10.1152/physiolgenomics.00123.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multiple quantitative trait locus (QTL) mapping studies designed to localize seizure susceptibility genes in C57BL/6 (B6, seizure resistant) and DBA/2 (D2, seizure susceptible) mice have detected a significant effect originating from midchromosome 5. To confirm the presence and refine the position of the chromosome 5 QTL for maximal electroshock seizure threshold (MEST), reciprocal congenic strains between B6 and D2 mice were created by a DNA marker-assisted backcross breeding strategy and studied with respect to changes in MEST. A genomic interval delimited by marker D5Mit75 (proximal to the acromere) and D5Mit403 (distal to the acromere) was introgressed for 10 generations. A set of chromosome 5 congenic strains produced by an independent laboratory was also studied. Comparison of MEST between congenic and control (parental genetic background) mice indicates that genes influencing this trait were captured in all strains. Thus, mice from strains having D2 alleles from chromosome 5 on a B6 genetic background exhibit significantly lower MEST compared with control littermates, whereas congenic mice harboring B6 chromosome 5 alleles on a D2 genetic background exhibit significantly higher MEST compared with control littermates. Combining data from all congenic strains, we conclude that the gene(s) underlying the chromosome 5 QTL for MEST resides in the interval between D5Mit108 (26 cM) and D5Mit278 (61 cM). Generation of interval-specific congenic strains from the primary congenic strains described here may be used to achieve high-resolution mapping of the chromosome 5 gene(s) that contributes to the large difference in seizure susceptibility between B6 and D2 mice.
Collapse
Affiliation(s)
- Thomas N Ferraro
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3404, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Ferraro TN, Golden GT, Dahl JP, Smith GG, Schwebel CL, MacDonald R, Lohoff FW, Berrettini WH, Buono RJ. Analysis of a quantitative trait locus for seizure susceptibility in mice using bacterial artificial chromosome-mediated gene transfer. Epilepsia 2007; 48:1667-1677. [PMID: 17521350 DOI: 10.1111/j.1528-1167.2007.01126.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Previous quantitative trait loci (QTL) mapping studies from our laboratory identified a 6.6 Mb segment of distal chromosome 1 that contains a gene (or genes) having a strong influence on the difference in seizure susceptibility between C57BL/6 (B6) and DBA/2 (D2) mice. A gene transfer strategy involving a bacterial artificial chromosome (BAC) DNA construct that contains several candidate genes from the critical interval was used to test the hypothesis that a strain-specific variation in one (or more) of the genes is responsible for the QTL effect. METHODS Fertilized oocytes from a seizure-sensitive congenic strain (B6.D2-Mtv7a/Ty-27d) were injected with BAC DNA and three independent founder lines of BAC-transgenic mice were generated. Seizure susceptibility was quantified by measuring maximal electroshock seizure threshold (MEST) in transgenic mice and nontransgenic littermates. RESULTS Seizure testing documented significant MEST elevation in all three transgenic lines compared to littermate controls. Allele-specific RT-PCR analysis confirmed gene transcription from genome-integrated BAC DNA and copy-number-dependent phenotypic effects were observed. CONCLUSIONS Results of this study suggest that the gene(s) responsible for the major chromosome 1 seizure QTL is found on BAC RPCI23-157J4 and demonstrate the utility of in vivo gene transfer for studying quantitative trait genes in mice. Further characterization of this transgenic model will provide new insight into mechanisms of seizure susceptibility.
Collapse
Affiliation(s)
- Thomas N Ferraro
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Gregory T Golden
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - John P Dahl
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - George G Smith
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Candice L Schwebel
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Ross MacDonald
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Falk W Lohoff
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Wade H Berrettini
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Russell J Buono
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| |
Collapse
|
30
|
Winawer MR, Kuperman R, Niethammer M, Sherman S, Rabinowitz D, Guell IP, Ponder CA, Palmer AA. Use of chromosome substitution strains to identify seizure susceptibility loci in mice. Mamm Genome 2007; 18:23-31. [PMID: 17242861 PMCID: PMC2640942 DOI: 10.1007/s00335-006-0087-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 09/27/2006] [Indexed: 10/23/2022]
Abstract
Seizure susceptibility varies among inbred mouse strains. Chromosome substitution strains (CSS), in which a single chromosome from one inbred strain (donor) has been transferred onto a second strain (host) by repeated backcrossing, may be used to identify quantitative trait loci (QTLs) that contribute to seizure susceptibility. QTLs for susceptibility to pilocarpine-induced seizures, a model of temporal lobe epilepsy, have not been reported, and CSS have not previously been used to localize seizure susceptibility genes. We report QTLs identified using a B6 (host) x A/J (donor) CSS panel to localize genes involved in susceptibility to pilocarpine-induced seizures. Three hundred fifty-five adult male CSS mice, 58 B6, and 39 A/J were tested for susceptibility to pilocarpine-induced seizures. Highest stage reached and latency to each stage were recorded for all mice. B6 mice were resistant to seizures and slower to reach stages compared to A/J mice. The CSS for Chromosomes 10 and 18 progressed to the most severe stages, diverging dramatically from the B6 phenotype. Latencies to stages were also significantly shorter for CSS10 and CSS18 mice. CSS mapping suggests seizure susceptibility loci on mouse Chromosomes 10 and 18. This approach provides a framework for identifying potentially novel homologous candidate genes for human temporal lobe epilepsy.
Collapse
Affiliation(s)
- Melodie R Winawer
- Department of Neurology, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Bergren SK, Chen S, Galecki A, Kearney JA. Genetic modifiers affecting severity of epilepsy caused by mutation of sodium channelScn2a. Mamm Genome 2005; 16:683-90. [PMID: 16245025 DOI: 10.1007/s00335-005-0049-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
Mutations in the voltage-gated sodium channels SCN 1 A and SCN 2 A are responsible for several types of human epilepsy. Variable expressivity among family members is a common feature of these inherited epilepsies, suggesting that genetic modifiers may influence the clinical manifestation of epilepsy. The transgenic mouse model Scn 2 a(Q 54) has an epilepsy phenotype as a result of a mutation in Scn 2 a that slows channel inactivation. The mice display progressive epilepsy that begins with short-duration partial seizures that appear to originate in the hippocampus. The partial seizures become more frequent and of longer duration with age and often induce secondary generalized seizures. Clinical severity of the Scn 2 a(Q 54) phenotype is influenced by genetic background. Congenic C57BL/6J.Q 54 mice exhibit decreased incidence of spontaneous seizures, delayed seizure onset, and longer survival in comparison with [C57BL/6J x SJL/J]F(1).Q 54 mice. This observation indicates that strain SJL/J carries dominant modifier alleles at one or more loci that determine the severity of the epilepsy phenotype. Genome-wide interval mapping in an N(2) backcross revealed two modifier loci on Chromosomes 11 and 19 that influence the clinical severity of of this sodium channel-induced epilepsy. Modifier genes affecting clinical severity in the Scn 2 a(Q 54) mouse model may contribute to the variable expressivity seen in epilepsy patients with sodium channel mutations.
Collapse
Affiliation(s)
- Sarah K Bergren
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
32
|
Wallace R. A potassium channel is associated with resistance to epilepsy. Epilepsy Curr 2005; 4:245-7. [PMID: 16059515 PMCID: PMC1176387 DOI: 10.1111/j.1535-7597.2004.46010.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Lohoff FW, Ferraro TN, Sander T, Zhao H, Dahl JP, Berrettini WH, Buono RJ. No association between common variations in the human alpha 2 subunit gene (ATP1A2) of the sodium–potassium-transporting ATPase and idiopathic generalized epilepsy. Neurosci Lett 2005; 382:33-8. [PMID: 15911117 DOI: 10.1016/j.neulet.2005.02.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 01/21/2005] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
Abstract
Quantitative trait loci studies in inbred mice have identified a locus on chromosome 1 (Szs1) of fundamental importance to seizure susceptibility. High-ranking candidate genes in this susceptibility region include KCNJ9, KCNJ10 and ATP1A2. We performed a systematic mutation scan of the coding region of the human ATP1A2 gene and performed a case-control association study with seven common markers. Genotypes were assessed in 152 idiopathic generalized epilepsy (IGE) patients of German ancestry and 111 healthy German controls for all seven polymorphisms. No significant differences were found in genotype or allele frequencies for any of the variations between the IGE patients and controls. No haplotypes were associated with IGE when compared to controls. Linkage disequilibrium was demonstrated throughout the gene. Results suggest that the polymorphisms we studied in the ATP1A2 gene do not represent major susceptibility factors for common forms of IGE.
Collapse
Affiliation(s)
- Falk W Lohoff
- Department of Psychiatry, University of Pennsylvania School of Medicine, Center for Neurobiology and Behavior, 3535 Market Street, 2nd Floor, R2070, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Lenzen KP, Heils A, Lorenz S, Hempelmann A, Höfels S, Lohoff FW, Schmitz B, Sander T. Supportive evidence for an allelic association of the human KCNJ10 potassium channel gene with idiopathic generalized epilepsy. Epilepsy Res 2005; 63:113-8. [PMID: 15725393 DOI: 10.1016/j.eplepsyres.2005.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 12/30/2004] [Accepted: 01/02/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE Quantitative trait loci (QTL) mapping in mice revealed a seizure-related QTL (Szs1), for which the inward-rectifying potassium channel Kcnj10 is the most compelling candidate gene. Association analysis of the human KCNJ10 gene identified a common KCNJ10 missense variation (Arg271Cys) that influences susceptibility to focal and generalized epilepsies. The present replication study tested the initial finding that the KCNJ10 Cys271 allele is associated with seizure resistance to common syndromes of idiopathic generalized epilepsy (IGE). METHODS The study sample comprised 563 German IGE patients and 660 healthy population controls. To search for seizure type-specific effects, two IGE subgroups were formed, comprising 258 IGE patients with typical absences (IAE group) and 218 patients with juvenile myoclonic epilepsy (JME group). A TaqMan nuclease assay was used to genotype the KCNJ10 single nucleotide polymorphism c.1037C > T (dbSNP: rs1130183) that alters amino acid at position 271 from arginine to cysteine. RESULTS Replication analysis revealed a significant decrease of the Cys271 allele frequency in 446 IGE patients compared to controls (chi2 = 3.52, d.f. = 1, P = 0.030, one-sided; OR(Cys271+) = 0.69; 95% CI: 0.50-0.95). Among the IGE subgroups, lack of the Cys271 allele was accentuated in the JME group (chi2 = 5.20, d.f. = 1, P = 0.011, one-sided). CONCLUSION Our results support previous evidence that the common KCNJ10 Arg271Cys missense variation influences seizure susceptibility of common IGE syndromes.
Collapse
Affiliation(s)
- K P Lenzen
- Gene Mapping Center, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Dlugos DJ, Scattergood TM, Ferraro TN, Berrettinni WH, Buono RJ. Recruitment rates and fear of phlebotomy in pediatric patients in a genetic study of epilepsy. Epilepsy Behav 2005; 6:444-6. [PMID: 15820358 DOI: 10.1016/j.yebeh.2005.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 01/26/2005] [Accepted: 01/27/2005] [Indexed: 10/25/2022]
Abstract
This study examined participation rates and reasons for refusal in a genetic study of human epilepsy. The study enrolled children with epilepsy and their parents, and required signing informed consent, verbalizing assent, and giving a peripheral blood sample. One hundred sixty-eight children met inclusion criteria; 137 agreed to enroll (82%), and 31 refused (18%). Sixteen of thirty-one patients (52%) who refused cited fear of phlebotomy as the reason for refusal. All patients refusing due to fear of phlebotomy did not require blood tests for clinical purposes. As fear of phlebotomy is the primary reason for study refusal, obtaining DNA samples from a buccal swab or mouthwash protocol may be an alternative for some studies, although there are limitations to these methods. Further analysis of the factors influencing decisions to decline study enrollment is warranted. These data will help in the design of future genetic studies and may increase future participation rates.
Collapse
Affiliation(s)
- Dennis J Dlugos
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
36
|
Benkovic SA, O'Callaghan JP, Miller DB. Sensitive indicators of injury reveal hippocampal damage in C57BL/6J mice treated with kainic acid in the absence of tonic-clonic seizures. Brain Res 2005; 1024:59-76. [PMID: 15451367 DOI: 10.1016/j.brainres.2004.07.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2004] [Indexed: 10/26/2022]
Abstract
Sensitive indices of neural injury were used to evaluate the time course of kainic acid (KA)-induced hippocampal damage in adult C57BL/6J mice (4 months), a strain previously reported to be resistant to kainate-induced neurotoxicity. Mice were injected systemically with saline or kainate, scored for seizure severity (Racine scale), and allowed to survive 12 h, one, three, or seven days following which they were evaluated for neuropathological changes using histological or biochemical endpoints. Most kainate-treated mice exhibited limited seizure activity (stage 1); however, cupric-silver and Fluoro-Jade B stains revealed significant damage by 12 h post-treatment. Immunohistochemistry and immunoassay of glial fibrillary acidic protein and lectin staining revealed a strong treatment-induced reactive gliosis and microglial activation. Immunostaining for immunoglobulin G revealed a kainate-induced breach in the blood-brain barrier. Nissl and hematoxylin stains provided little information regarding neuronal damage, but revealed the identity of non-resident cells which infiltrated the pyramidal layer. Our data suggest sensitive indicators of neural injury evaluated over a time course, both proximal and distal to treatment, are necessary to reveal the full extent of neuropathological changes which may be underestimated by traditional histological stains. The battery of neuropathological indices reported here reveals the C57BL/6J mouse is sensitive to excitotoxic neural damage caused by kainic acid, in the absence of tonic-clonic seizures.
Collapse
Affiliation(s)
- Stanley Anthony Benkovic
- Toxicology and Molecular Biology Branch, Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop 3014, Morgantown, WV 26505, USA
| | | | | |
Collapse
|
37
|
Eagleson KL, Bonnin A, Levitt P. Region- and age-specific deficits in γ-aminobutyric acidergic neuron development in the telencephalon of theuPAR-/- mouse. J Comp Neurol 2005; 489:449-66. [PMID: 16025458 DOI: 10.1002/cne.20647] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have previously shown that in adult mice with a null mutation in the urokinase-type plasminogen activator receptor (uPAR) gene, maintained on a C57BL/6J/129Sv background, there is a selective loss of GABAergic interneurons in anterior cingulate and parietal cortex, with the parvalbumin-expressing subpopulation preferentially affected. Here, we performed a more detailed anatomical analysis of uPAR(-/-) mutation on the congenic C57BL/6J background. With glutamic acid decarboxylase-67 and gamma-aminobutyric acid (GABA) immunostaining, there is a similar region-selective loss of cortical interneurons in the congenic uPAR(-/-) mice from the earliest age examined (P21). In contrast, the loss of parvalbumin-immunoreactive cells is observed only in adult cortex, and the extent of this loss is less than in the mixed background. Moreover, earlier in development, although there are normal numbers of parvalbumin cells in the uPAR(-/-) cortex, fewer cells coexpress GABA, suggesting that the parvalbumin subpopulation migrates appropriately to the cortex, but does not differentiate normally. Among the other forebrain regions examined, only the adult hippocampus shows a loss of GABAergic interneurons, although the somatostatin, rather than the parvalbumin, subpopulation contributes to this loss. The data suggest that uPAR function is necessary for the normal development of a subpopulation of GABAergic neurons in the telencephalon. It is likely that the late-onset parvalbumin phenotype is due to the effects of an altered local environment on selectively vulnerable neurons and that the extent of this loss is strain dependent. Thus, an interplay between complex genetic factors and the environment may influence the phenotypic impact of the uPAR mutation both pre- and postnatally.
Collapse
Affiliation(s)
- Kathie L Eagleson
- Vanderbilt Kennedy Center for Research on Human Development; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | |
Collapse
|
38
|
Ferraro TN, Golden GT, Smith GG, Martin JF, Lohoff FW, Gieringer TA, Zamboni D, Schwebel CL, Press DM, Kratzer SO, Zhao H, Berrettini WH, Buono RJ. Fine mapping of a seizure susceptibility locus on mouse Chromosome 1: nomination of Kcnj10 as a causative gene. Mamm Genome 2004; 15:239-51. [PMID: 15112102 DOI: 10.1007/s00335-003-2270-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Accepted: 11/09/2003] [Indexed: 01/08/2023]
Abstract
Previous quantitative trait loci (QTL) mapping studies document that the distal region of mouse Chromosome (Chr) 1 contains a gene(s) that is in large part responsible for the difference in seizure susceptibility between C57BL/6 (B6) (relatively seizure-resistant) and DBA/2 (D2) (relatively seizure-sensitive) mice. We now confirm this seizure-related QTL ( Szs1) using reciprocal, interval-specific congenic strains and map it to a 6.6-Mb segment between Pbx1 and D1Mit150. Haplotype conservation between strains within this segment suggests that Szs1 may be localized more precisely to a 4.1-Mb critical interval between Fcgr3 and D1Mit150. We compared the coding region sequences of candidate genes between B6 and D2 mice using RT-PCR, amplification from genomic DNA, and database searching and discovered 12 brain-expressed genes with SNPs that predict a protein amino acid variation. Of these, the most compelling seizure susceptibility candidate is Kcnj10. A survey of the Kcnj10 SNP among other inbred mouse strains revealed a significant effect on seizure sensitivity such that most strains possessing a haplotype containing the B6 variant of Kcnj10 have higher seizure thresholds than those strains possessing the D2 variant. The unique role of inward-rectifying potassium ion channels in membrane physiology coupled with previous strong association between ion channel gene mutations and seizure phenotypes puts even greater focus on Kcnj10 in the present model. In summary, we confirmed a seizure-related QTL of large effect on mouse Chr 1 and mapped it to a finely delimited region. The critical interval contains several candidate genes, one of which, Kcnj10, exhibits a potentially important polymorphism with regard to fundamental aspects of seizure susceptibility.
Collapse
Affiliation(s)
- Thomas N Ferraro
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fehr C, Shirley RL, Metten P, Kosobud AEK, Belknap JK, Crabbe JC, Buck KJ. Potential pleiotropic effects of Mpdz on vulnerability to seizures. GENES BRAIN AND BEHAVIOR 2004; 3:8-19. [PMID: 14960011 DOI: 10.1111/j.1601-183x.2004.00035.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We previously mapped quantitative trait loci (QTL) responsible for approximately 26% of the genetic variance in acute alcohol and barbiturate (i.e., pentobarbital) withdrawal convulsion liability to a < 1 cM (1.8 Mb) interval of mouse chromosome 4. To date, Mpdz, which encodes the multiple PSD95/DLG/ZO-1 (PDZ) domain protein (MPDZ), is the only gene within the interval shown to have allelic variants that differ in coding sequence and/or expression, making it a strong candidate gene for the QTL. Previous work indicates that Mpdz haplotypes in standard mouse strains encode distinct protein variants (MPDZ1-3), and that MPDZ status is genetically correlated with severity of withdrawal from alcohol and pentobarbital. Here, we report that MPDZ status cosegregates with withdrawal convulsion severity in lines of mice selectively bred for phenotypic differences in severity of acute withdrawal from alcohol [i.e., High Alcohol Withdrawal (HAW) and Low Alcohol Withdrawal (LAW) lines] or pentobarbital [High Pentobarbital Withdrawal (HPW) and Low Pentobarbital Withdrawal (LPW) lines]. These analyses confirm that MPDZ status is associated with severity of alcohol and pentobarbital withdrawal convulsions. Using a panel of standard inbred strains of mice, we assessed the association between MPDZ status with seizures induced by nine chemiconvulsants. Our results show that MPDZ status is genetically correlated with seizure sensitivity to pentylenetetrazol, kainate and other chemiconvulsants. Our results provide evidence that Mpdz may have pleiotropic effects on multiple seizure phenotypes, including seizures associated with withdrawal from two classes of central nervous system (CNS) depressants and sensitivity to specific chemiconvulsants that affect glutaminergic and GABAergic neurotransmission.
Collapse
Affiliation(s)
- C Fehr
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Buono RJ, Lohoff FW, Sander T, Sperling MR, O'Connor MJ, Dlugos DJ, Ryan SG, Golden GT, Zhao H, Scattergood TM, Berrettini WH, Ferraro TN. Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility. Epilepsy Res 2004; 58:175-83. [PMID: 15120748 DOI: 10.1016/j.eplepsyres.2004.02.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 12/15/2003] [Accepted: 02/18/2004] [Indexed: 11/28/2022]
Abstract
PURPOSE Our research program uses genetic linkage and association analysis to identify human seizure sensitivity and resistance alleles. Quantitative trait loci mapping in mice led to identification of genetic variation in the potassium ion channel gene Kcnj10, implicating it as a putative seizure susceptibility gene. The purpose of this work was to translate these animal model data to a human genetic association study. METHODS We used single stranded conformation polymorphism (SSCP) electrophoresis, DNA sequencing and database searching (NCBI) to identify variation in the human KCNJ10 gene. Restriction fragment length polymorphism (RFLP) analysis, SSCP and Pyrosequencing were used to genotype a single nucleotide polymorphism (SNP, dbSNP rs#1130183) in KCNJ10 in epilepsy patients (n = 407) and unrelated controls (n = 284). The epilepsy group was comprised of patients with refractory mesial temporal lobe epilepsy (n = 153), childhood absence (n = 84), juvenile myoclonic (n = 111) and idiopathic generalized epilepsy not otherwise specified (IGE-NOS, n = 59) and all were of European ancestry. RESULTS SNP rs#1130183 (C > T) alters amino acid 271 (of 379) from an arginine to a cysteine (R271C). The C allele (Arg) is common with conversion to the T allele (Cys) occurring twice as often in controls compared to epilepsy patients. Contingency analysis documented a statistically significant association between seizure resistance and allele frequency, Mantel-Haenszel chi square = 5.65, d.f. = 1, P = 0.017, odds ratio 0.52, 95% CI 0.33-0.82. CONCLUSION The T allele of SNP rs#1130183 is associated with seizure resistance when common forms of focal and generalized epilepsy are analyzed as a group. These data suggest that this missense variation in KCNJ10 (or a nearby variation) is related to general seizure susceptibility in humans.
Collapse
Affiliation(s)
- R J Buono
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, 415 Curie Boulevard, CRB-120, Philadelphia, PA 19104-6140, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schauwecker PE, Williams RW, Santos JB. Genetic control of sensitivity to hippocampal cell death induced by kainic acid: A quantitative trait loci analysis. J Comp Neurol 2004; 477:96-107. [PMID: 15281082 DOI: 10.1002/cne.20245] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Host genetic factors are likely to contribute to differences in individual susceptibility to seizure-induced excitotoxic neuronal damage. Similarly, inbred strains of mice differ in their susceptibility to the kainic acid (KA) model of seizure-induced cell death, but the genes responsible for the differences are not known. Here, we define the inheritance patterns of susceptibility to KA-induced neurodegeneration in the hippocampus by assessing 331 back-cross (N2) progeny of two inbred mouse strains, C57BL/6 and FVB/N, previously shown to display resistance and sensitivity to KA-induced cell death, respectively. Results of phenotypic analysis suggest that the difference in susceptibility between these two strains is conferred by a single dominant gene. Therefore, we used an N2 back-cross between the inbred C57BL/6 and FVB/N strains for a genome-wide search for quantitative trait loci (QTLs), which are chromosomal sites containing genes influencing the magnitude of susceptibility. Genome-wide interval mapping in N2 progeny identified a locus on distal chromosome (Chr) 18 with a peak LOD score of 4.9 localized between D18Mit186 and D18Mit4 as having the strongest and most significant effect in this model. QTLs of minor effect were detected on Chr 15 (D15Mit174-D15Mit156) and Chr 4 (D4Mit264-D4Mit91), with peak LOD scores of 3.02 and 2.46, respectively. The three significant QTLs (Chrs 4, 15, 18) together account for nearly 25% of the trait variance for both genders combined. Reduced KA-induced cell death susceptibility was observed in a congenic strain in which the highly susceptible FVB/N strain carried putative resistance alleles from the C57BL/6 strain on Chr 18.
Collapse
Affiliation(s)
- Paula Elyse Schauwecker
- Department of Cell and Neurobiology, University of Southern California, Keck School of Medicine, Los Angeles, California 90089-9112, USA.
| | | | | |
Collapse
|
42
|
Yang Y, Frankel WN. Genetic Approaches to Studying Mouse Models of Human Seizure Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 548:1-11. [PMID: 15250582 DOI: 10.1007/978-1-4757-6376-8_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In conclusion, we have discussed a reverse genetics approach to studying seizure disorders in mice (Fig. 1), employing a targeted mutagenesis method to exploit the genetic defects identified in human epilepsy families. After detailed characterization of the nature of the human mutation and the mouse counterpart gene, a targeting vector containing the human disease allele is created. The endogenous mouse gene is replaced by the human disease allele through homologous recombination in ES cells, leading to the generation of chimeric animals. Mice carrying one copy or both copies of the human mutation can be bred to study the phenotypic effect of heterozygous and homozygous mutations. At this stage, one may want to split the newly created mice into two groups. One group will go through seizure phenotyping tests, while the other group will be used to generate disease allele-carrying mice on a different genetic background. Phenotypic characterization of mice on different inbred strains includes behavioral monitoring and EEG analysis looking for the occurrence of spontaneous seizures, as well as routine cage examination looking for handling-provoked seizure and ECT- and PTZ- induced seizure paradigms looking for sensitivity to these stimuli. A complete evaluation of the seizure phenotype at the whole-animal level establishes the relevance of the mouse model to the human condition. Further investigation including imaging, electrophysiology and AED response in these mouse models will shed light on the mechanistic basis of the convulsive disorder. Current epilepsy research in mouse genetics offers promise for understanding the molecular mechanisms that underlie epileptogenesis in humans. A large-scale forward genetic effort to create novel mouse mutants with seizure phenotypes by in vivo chemical mutagenesis with ethyl-nitroso urea (ENU) is underway at the Jackson Laboratory (http://www.jax.org/nmf/). Genetic mapping and isolation of the affected genes in these seizure-prone models will provide additional molecular pathways involved in seizures. The mutant mice generated through both forward and reverse genetic approaches will be a valuable resource for the biomedical community to study epilepsy at the molecular level and to characterize the pathological consequences of seizures in the whole organism.
Collapse
Affiliation(s)
- Yan Yang
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | | |
Collapse
|
43
|
Chromosomal loci influencing the susceptibility to the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurosci 2003. [PMID: 12967986 DOI: 10.1523/jneurosci.23-23-08247.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the dysfunction of the nigrostriatal dopaminergic pathway. Although its etiology is not yet fully understood, an interaction of genetic predisposition and environmental factors is frequently discussed. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) can evoke PD-like symptoms and neuropathological changes in various species, including mice. It was found repeatedly that mouse strains differ in their susceptibility to MPTP, which might serve as a model for genetic predisposition to neurodegeneration of the nigrostriatal system. In the present study, F2 intercross mice, derived from parental strains with high (C57BL/6J) versus low (BALB/cJ) MPTP susceptibility, were treated with MPTP and phenotyped for dopamine (DA) loss in the neostriatum, a highly sensitive marker of nigrostriatal dysfunction. A subsequent quantitative trait loci analysis revealed a gender-dependent locus for DA loss on chromosome 15 and a putative locus on chromosome 13. A number of potential candidate genes, including the membrane dopamine transporter, are located in the respective areas. Several mechanisms that are possibly involved in the control of the action of MPTP on the nigrostriatal system are discussed.
Collapse
|
44
|
Schauwecker PE. Genetic basis of kainate-induced excitotoxicity in mice: phenotypic modulation of seizure-induced cell death. Epilepsy Res 2003; 55:201-10. [PMID: 12972174 DOI: 10.1016/s0920-1211(03)00115-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excitotoxicity, a process in which excessive excitation of glutamate receptors results in cell death, has been implicated in a number of neurological disorders. However, the genetic characteristics and molecular mechanisms that can modulate the extent of cell death are unclear. Previously, we had reported that the extent of excitotoxic cell death is conferred by differences in the genetic background of several mouse strains. As a first step in the identification of loci that can modulate the extent of excitotoxin-induced cell death, we tested C57BL/6 and FVB/N mice, their F1 hybrids and backcross progeny for differences in apparent excitotoxic cell death induced by kainic acid (KA). While no strain dependent differences in seizure duration were observed, phenotypic analysis of cell death indicated that C57BL/6 mice showed no seizure-induced cell death, while FVB/N mice exhibited extensive cell death. Studies of seizure-induced cell death in hybrid and backcross progeny revealed an association between seizure-induced cell death and genotype. Mice from the F1 cross exhibited little to no seizure-induced cell death, indicative that the extent of cell death is conferred as a dominant genetic trait. Phenotypic assessment of cell death in backcross progeny suggests that differences in apparent cell death are conferred by a single gene locus. These findings implicate genetic factors in individual differences in excitotoxin-induced cell death.
Collapse
Affiliation(s)
- Paula Elyse Schauwecker
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, 1333 San Pablo Street, BMT 401, Los Angeles, CA 90089-9112, USA.
| |
Collapse
|
45
|
McKhann GM, Wenzel HJ, Robbins CA, Sosunov AA, Schwartzkroin PA. Mouse strain differences in kainic acid sensitivity, seizure behavior, mortality, and hippocampal pathology. Neuroscience 2003; 122:551-61. [PMID: 14614919 DOI: 10.1016/s0306-4522(03)00562-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Genetic influences contribute to susceptibility to seizures and to excitotoxic injury, but it is unclear if/how these susceptibilities are linked. This study assessed the impact of genetic background on mouse strain seizure susceptibility, seizure phenotype, mortality, and hippocampal histopathology. A subcutaneous (s.c.) kainic acid multiple injection protocol was developed. Five mouse strains were tested: a and b) C57BL/6J and 129/SvJ, strains commonly used in gene targeting experiments; c) C3HeB/FeJ, a strain with reported sensitivity to the convulsant effects of kainic acid (KA); d) 129/SvEms, a strain reportedly susceptible to hippocampal excitotoxic cell death; and e) a mixed genetic background strain (129/SvJXC57BL/6J) from which targeted gene deletion experiments have been carried out. Histopathological features were examined at early (7-10 day), delayed (2-4 month), and late (6-13 month) time points.Mouse background strains can be genetically segregated based on excitotoxin sensitivity, seizure phenotype, mortality, and hippocampal histopathology. When injected with KA, C3HeB/FeJ and C57BL/6J strains were resistant to cell death and synaptic reorganization despite severe behavioral seizures, while 129/SvEms mice developed marked pyramidal cell loss and mossy fiber sprouting despite limited seizure activity. The mixed background 129/SvJXC57BL/6J group exhibited features of both parental strains. In the mouse strains tested, the duration or severity of seizure activity was not predictive of subsequent hippocampal pyramidal cell death and/or synaptic reorganization. Unlike rats, mice exhibiting prolonged high-grade KA-induced seizure activity did not develop subsequent spontaneous behavioral seizures.
Collapse
Affiliation(s)
- G M McKhann
- Department of Neurological Surgery, Columbia University, 710 West 168th Street, NI-42, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
46
|
Meldrum BS. Concept of activity-induced cell death in epilepsy: historical and contemporary perspectives. PROGRESS IN BRAIN RESEARCH 2002; 135:3-11. [PMID: 12143350 DOI: 10.1016/s0079-6123(02)35003-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selective neuronal loss following status epilepticus was first described just under 100 years ago. The acute pathology following status epilepticus was shown to be 'ischemic cell change' and was assumed to arise through hypoxia/ischemia. Less than 30 years ago it was proposed, from experiments in primates, that the selective neuronal loss in hippocampus and cortex resulted from the abnormal electrical discharges. Selectively vulnerable neurons show swollen, calcium-loaded mitochondria in the soma and focally in dendrites. Burst firing with a massive Ca2+ entry needs to be sustained for 30-120 min to produce necrotic cell death. Lesser stress may produce apoptosis or immediate early gene expression with enhanced expression of many enzymes and receptor subunits. Changes in enzyme, transporter, ion-channel or receptor function or in network properties may lead to altered vulnerability to the effects of seizures. This type of modification and the cumulative effect of oxidative damage to proteins and lipids may explain the long-term consequences of repetitive brief seizures.
Collapse
Affiliation(s)
- Brian S Meldrum
- GKT Department of Biomedical Sciences, Kings College, London, UK.
| |
Collapse
|
47
|
Schauwecker PE. Complications associated with genetic background effects in models of experimental epilepsy. PROGRESS IN BRAIN RESEARCH 2002; 135:139-48. [PMID: 12143336 DOI: 10.1016/s0079-6123(02)35014-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To elucidate the genetic influences contributing to susceptibility to seizure disorders, researchers have long used selected lines and inbred strains of rodents. In recent years, the use of genetically altered mice as models of complex human disease has revolutionized biomedical research into the genetics of disease pathogenesis and potential therapeutic interventions. In particular, the study of transgenic and gene-deleted (knockout) mice can provide important insights into the in vivo function and interaction of specific gene products. While a variety of inbred mouse mutations have been used to directly evaluate the genetic basis of seizure disorders, data obtained from such genetically altered mice must be interpreted carefully. An increasing number of scientific articles have reported that the phenotype of a given single gene mutation in mice can be modulated by the genetic background of the inbred strain in which the mutation is maintained. This effect is attributable to so-called modifier genes, which act in combination with the causative gene. In this review, the author points out the importance of considering the genetic background of the strain used to create these animal models, the potential problems with interpretation of phenotype, and solutions to selecting an appropriate mouse model of experimental epilepsy. Despite these potential limitations, knockout mice provide a powerful tool for understanding the genetic and neurobiological mechanisms contributing to experimental epilepsy.
Collapse
Affiliation(s)
- P Elyse Schauwecker
- Department of Cell and Neurobiology, University of Southern California, Keck School of Medicine, BMT 401, 1333 San Pablo Street, Los Angeles, CA 90089-9112, USA.
| |
Collapse
|
48
|
Ferraro TN, Golden GT, Smith GG, DeMuth D, Buono RJ, Berrettini WH. Mouse strain variation in maximal electroshock seizure threshold. Brain Res 2002; 936:82-6. [PMID: 11988233 DOI: 10.1016/s0006-8993(02)02565-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maximal electroshock seizure threshold (MEST) is a classical measure of seizure sensitivity with a wide range of experimental applications. We determined MEST in nine inbred mouse strains and one congenic strain using a procedure in which mice are given one shock per day with an incremental (1 mA) current increase in each successive trial until a maximal seizure (tonic hindlimb extension) is elicited. C57BL/6J and DBA/2J mice exhibited the highest and lowest MEST, respectively, with the values of other strains falling between these two extremes. The relative rank order of MEST values by inbred strain (highest to lowest) is as follows: C57BL/6J > CBA/J = C3H/HeJ > A/J > Balb/cJ = 129/SvIMJ = 129/SvJ > AKR/J > DBA/2J. Results of experiments involving a single electroconvulsive shock given to separate groups of mice at different current intensities suggest that determination of MEST by the method used is not affected by repeated sub-maximal seizures. Overall, results document a distinctive mouse strain distribution pattern for MEST. Additionally, low within strain variability suggests that environmental factors which affect quantification of MEST are readily controlled under the conditions of this study. We conclude that MEST represents a useful tool for dissecting the multifactorial nature of seizure sensitivity in mice.
Collapse
Affiliation(s)
- Thomas N Ferraro
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA 19104-6140, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Rinaldi D, Larrigaldie V, Chapouthier G, Martin B. Unexpected absence of correlation between the genetic mechanisms regulating beta-carboline-induced seizures and anxiety manifested in an elevated plus-maze test. Behav Brain Res 2001; 125:159-65. [PMID: 11682107 DOI: 10.1016/s0166-4328(01)00293-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Among the ligands of the benzodiazepine site, one can mention the benzodiazepines as agonists and some beta-carbolines (e.g. methyl-beta-carboline-3-carboxylate, abbreviated hereafter beta-CCM) as inverse agonists. Most benzodiazepines and beta-carbolines act on processes involved in memory, anxiety, and convulsions with opposite physiological effects. Since these molecules have influences on both anxiety and convulsions, we predicted that there would exist a genetic correlation between anxiety evaluated in an elevated plus-maze and susceptibility to beta-CCM-induced seizures. Using inbred strains of mice, the genetic correlation was estimated with the Hegmann and Possidente model. An absence of genetic correlation was found, showing that the mechanisms responsible for basal anxiety measured with the elevated plus-maze test and those leading to susceptibility to beta-CCM-induced seizures do not share the same genetic pathways.
Collapse
Affiliation(s)
- D Rinaldi
- CHR Orléans, 1 rue de la porte Madeleine, 45000 Orléans, France.
| | | | | | | |
Collapse
|
50
|
Abstract
Quantitative differences are observed for most complex behavioral and pharmacological traits within any population. Both environmental and genetic influences regulate such individual differences. The mouse has proven to be a superb model in which to investigate the genetic basis for quantitative differences in complex behaviors. Genetically defined populations of mice, including inbred strains, heterogeneous stocks, and selected lines, have been used effectively to document these genetic differences. Recently, quantitative trait loci methods have been applied to map the chromosomal regions that regulate variation with the goal of eventually identifying the gene polymorphisms that reside in these regions.
Collapse
Affiliation(s)
- J M Wehner
- Institute for Behavioral Genetics and Department of Psychology, University of Colorado, Boulder, Colorado 80309, USA.
| | | | | |
Collapse
|