1
|
Gurung R, Masood M, Singh P, Jha P, Sinha A, Ajmeriya S, Sharma M, Dohare R, Haque MM. Uncovering the role of aquaporin and chromobox family members as potential biomarkers in head and neck squamous cell carcinoma via integrative multiomics and in silico approach. J Appl Genet 2024; 65:839-851. [PMID: 38358594 DOI: 10.1007/s13353-024-00843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Head and neck squamous cell carcinoma (HNSC) is a diverse group of tumors arising from oral cavity, oropharynx, larynx, and hypopharynx squamous epithelium, posing significant morbidity. Aquaporins (AQPs) are membrane proteins forming water channels, some associated with carcinomas. Chromobox (CBX) family is known to modulate physiological and oncological processes. In our study, we analyzed AQPs and CBXs having significant expression followed by their prognostic and mutational assessment. Next, we performed enrichment and tumor infiltration analysis followed by HPA validation. Lastly, we established a 3-node miRNA-TF-mRNA regulatory network and performed protein-protein docking of the highest-degree subnetwork motif between TF and mRNA. Significant upregulation of CBX3/2 and downregulation of AQP3/5/7 correlated with poor overall survival (OS) in HNSC patients. The most significant pathway, GO-BP, GO-MF, and GO-CC terms associated with AQP3 and CBX3 were passive transport by aquaporins, response to vitamin, glycerol channel activity, and condensed chromosome, centromeric region. AQP3 negatively correlated withCD 4 + T cells, positively withCD 8 + T cells and B cells, and negatively with tumor purity, whereas CBX3 positively correlated withCD 4 + T cells, negatively withCD 8 + T cells and B cells, and positively with tumor purity. Three-node miRNA-TF-mRNA regulatory network revealed a highest-degree subnetwork motif comprising one TF (SMAD3), one miRNA (miR-423-5p), and one mRNA (AQP3). Protein-protein interaction studies suggested a direct interaction between AQP3 and Smad3 proteins. We concluded that AQP3 and CBX3 hold potential as treatment strategies and individual prognostic biomarkers, while further protein-protein interaction studies of AQP3 could offer insights into its interactions with Smad3 proteins.
Collapse
Affiliation(s)
- Rishabh Gurung
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohammad Masood
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prakash Jha
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, 110007, India
| | - Anuradha Sinha
- Department of Preventive Oncology, Homi Bhabha Cancer Hospital and Research Centre, Muzaffarpur, 842004, India
| | - Swati Ajmeriya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Milin Sharma
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
2
|
Li J, Shi D, Gong Z, Liu W, Zhang Y, Luo B. Aquaporin-3 is down-regulated by LMP1 in nasopharyngeal carcinoma cells to regulate cell migration and affect EBV latent infection. Virus Genes 2024; 60:488-500. [PMID: 39103702 DOI: 10.1007/s11262-024-02096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Epstein-Barr virus (EBV) infection has a strong correlation with the development of nasopharyngeal carcinoma (NPC). Aquaporin 3 (AQP3), a member of the aquaporin family, plays an important role in tumor development, especially in epithelial-mesenchymal transition. In this study, the expression of AQP3 in EBV-positive NPC cells was significantly lower than that in EBV-negative NPC cells. Western blot and qRT-PCR analysis showed that LMP1 down-regulated the expression of AQP3 by activating the ERK pathway. Cell biology experiments have confirmed that AQP3 affects the development of tumor by promoting cell migration and proliferation in NPC cells. In addition, AQP3 can promote the lysis of EBV in EBV-positive NPC cells. The inhibition of AQP3 expression by EBV through LMP1 may be one of the mechanisms by which EBV maintains latent infection-induced tumor progression.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Duo Shi
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhiyuan Gong
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
3
|
Bhattacharjee A, Jana A, Bhattacharjee S, Mitra S, De S, Alghamdi BS, Alam MZ, Mahmoud AB, Al Shareef Z, Abdel-Rahman WM, Woon-Khiong C, Alexiou A, Papadakis M, Ashraf GM. The role of Aquaporins in tumorigenesis: implications for therapeutic development. Cell Commun Signal 2024; 22:106. [PMID: 38336645 PMCID: PMC10854195 DOI: 10.1186/s12964-023-01459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/12/2024] Open
Abstract
Aquaporins (AQPs) are ubiquitous channel proteins that play a critical role in the homeostasis of the cellular environment by allowing the transit of water, chemicals, and ions. They can be found in many different types of cells and organs, including the lungs, eyes, brain, glands, and blood vessels. By controlling the osmotic water flux in processes like cell growth, energy metabolism, migration, adhesion, and proliferation, AQPs are capable of exerting their regulatory influence over a wide range of cellular processes. Tumour cells of varying sources express AQPs significantly, especially in malignant tumours with a high propensity for metastasis. New insights into the roles of AQPs in cell migration and proliferation reinforce the notion that AQPs are crucial players in tumour biology. AQPs have recently been shown to be a powerful tool in the fight against pathogenic antibodies and metastatic cell migration, despite the fact that the molecular processes of aquaporins in pathology are not entirely established. In this review, we shall discuss the several ways in which AQPs are expressed in the body, the unique roles they play in tumorigenesis, and the novel therapeutic approaches that could be adopted to treat carcinoma.
Collapse
Affiliation(s)
- Arkadyuti Bhattacharjee
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, USA
| | - Ankit Jana
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Swagato Bhattacharjee
- KoshKey Sciences Pvt Ltd, Canara Bank Layout, Karnataka, Bengaluru, Rajiv Gandhi Nagar, Kodigehalli, 560065, India
| | - Sankalan Mitra
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Swagata De
- Department of English, DDE Unit, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Zubair Alam
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Almadinah, Almunwarah, 71491, Saudi Arabia
| | - Zainab Al Shareef
- College of Medicine, and Research Institute for Medical and Health Sciences, Department of Basic Medical Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Wael M Abdel-Rahman
- College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Chan Woon-Khiong
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Wien, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Ghulam Md Ashraf
- College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
4
|
Clinical value and molecular mechanism of AQGPs in different tumors. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:174. [PMID: 35972604 PMCID: PMC9381609 DOI: 10.1007/s12032-022-01766-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
Aquaglyceroporins (AQGPs), including AQP3, AQP7, AQP9, and AQP10, are transmembrane channels that allow small solutes across biological membranes, such as water, glycerol, H2O2, and so on. Increasing evidence suggests that they play critical roles in cancer. Overexpression or knockdown of AQGPs can promote or inhibit cancer cell proliferation, migration, invasion, apoptosis, epithelial-mesenchymal transition and metastasis, and the expression levels of AQGPs are closely linked to the prognosis of cancer patients. Here, we provide a comprehensive and detailed review to discuss the expression patterns of AQGPs in different cancers as well as the relationship between the expression patterns and prognosis. Then, we elaborate the relevance between AQGPs and malignant behaviors in cancer as well as the latent upstream regulators and downstream targets or signaling pathways of AQGPs. Finally, we summarize the potential clinical value in cancer treatment. This review will provide us with new ideas and thoughts for subsequent cancer therapy specifically targeting AQGPs.
Collapse
|
5
|
Pan JW, Zhang X, Jin XW, Wang XJ, Tu WC, Huang BX, Xu D, Shao Y. Hydropenia may accelerates the progression of orthotopic bladder cancer induced by N-methyl-N-nitrosourea by increasing the expression levels of AQP1, AQP3, and AQP4. Transl Androl Urol 2021; 10:2447-2453. [PMID: 34295731 PMCID: PMC8261423 DOI: 10.21037/tau-21-273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Background Increasing evidence has demonstrated aquaporins (AQPs) to be critical players in carcinogenesis. Here, we aimed to explore the role of hydropenia in the progression of bladder cancer (BCa), as well as to assess the expression of AQP1, AQP3, and AQP4 in bladder tissues from hydropenic and N-methyl-N-nitrosourea (MNU)-treated rats. Methods An orthotopic BCa model was induced by administering Sprague Dawley rats with MNU. A hydropenic rat model was established by administrating rats with 2/3 of the amount of water given to the control group. At week 8, the rats were sacrificed and their bladder tissues were collected. Then, pathological alterations in the rat bladders were assessed by hematoxylin and eosin staining. The RNA and protein expression levels of AQP1, AQP3, and AQP4 were determined by using qRT-PCR and western blot assays. Results All of the rats (100%) administrated with MNU developed tumors, of which 5 were large (diameter, 0.5–1.0 cm), 10 were medium (diameter, 0.2–0.5 cm), and 5 were small (diameter, <0.2 cm) in size. The tumors were nodular and cauliflower shaped, with multiple satellite focus, and were accompanied by bleeding, ulcers, stones, and residual urine. Hematoxylin and eosin staining revealed that the bladder mucosa was incomplete, with a large amount of necrotic tissue and obvious leukocytic infiltration. The tumor volume in the MNU + hydropenia group was significantly larger than that in the MNU group. Noticeably, hydropenia exacerbated pathological changes induced by MNU administration. QRT-PCR and western blot analysis revealed that the MNU group, hydropenia group, and MNU + hydropenia group had significantly increased levels of AQP1, AQP3, and AQP4 compared to the control group, with the most dramatic increase seen in the MNU + hydropenia group. Conclusions Hydropenia exacerbates pathological alterations induced by MNU in rats with orthotopic BCa by increasing the expression levels of AQP1, AQP3, and AQP4. This study reveals a possible mechanism of the occurrence of BCa.
Collapse
Affiliation(s)
- Jun-Wei Pan
- Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Department of Urology, Shanghai, China
| | - Xiang Zhang
- Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Department of Urology, Shanghai, China
| | - Xing-Wei Jin
- Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Department of Urology, Shanghai, China
| | - Xian-Jin Wang
- Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Department of Urology, Shanghai, China
| | - Wei-Chao Tu
- Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Department of Urology, Shanghai, China
| | - Bao-Xing Huang
- Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Department of Urology, Shanghai, China
| | - Da Xu
- Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Department of Urology, Shanghai, China
| | - Yuan Shao
- Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Department of Urology, Shanghai, China
| |
Collapse
|
6
|
Reiß J, Kälble S, Bründl J, Rosenhammer B, Gierth M, Weber F, Eckstein M, Wirtz RM, Denzinger S, Burger M, Otto W, Breyer J. Prognostic Role of mRNA-Expression of Aquaporins (AQP) 3, 4, 7 and 9 in Stage pT1 Non-Muscle-Invasive Bladder Cancer. Bladder Cancer 2021; 7:71-78. [PMID: 38993218 PMCID: PMC11181798 DOI: 10.3233/blc-200400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/25/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND AQP proteins show a variety of functions in human cell metabolism. The role of different AQP subtypes in tumor metabolism and prognosis are subject of ongoing research. OBJECTIVE To investigate the mRNA expression of Aquaporin (AQP) 3, 4, 7 and 9 in pT1 non-muscle-invasive bladder cancer (NMIBC) and its prognostic value in therapeutic decision making. METHODS Formalin-fixed-paraffin-embedded (FFPE) tissues from transurethral resection of the bladder (TURB) from 112 patients with initial diagnosis of stage pT1 NMIBC were analyzed retrospectively together with clinical data and therapeutic approaches. mRNA expression of AQP3, 4, 7 and 9 was measured and quantified using RT-qPCR. RESULTS Of the 112 patients (83.9%male, median age 72 years), 40 had a recurrence (35.7%), 16 a progression (14.3%) and 14 patients (12.5%) died tumor-related. mRNA expression for AQP3 was detected in 99.1%, AQP4 in 46.4%, AQP7 in 86.6%and AQP9 in 97.3%. Spearman analysis revealed statistically significant correlations between AQP3, AQP7 and AQP9 mRNA expression with adverse clinical and histopathological parameters (WHO1973 grade 3, concomitant Cis or multifocality). High AQP9 mRNA expression was associated with worse PFS in the total cohort (p = 0.034) and in Grade 3 tumors (p = 0.003) in Kaplan-Meier analysis. In patients with bladder sparing approach, high AQP3 mRNA expression was significantly associated with worse CSS in patients receiving BCG therapy (p = 0.029). CONCLUSIONS mRNA expression of AQP3, 7 and 9 correlates with adverse clinical and pathological parameters. AQP3 and 9 may help to identify a subgroup of highest risk patients who may be considered for early cystectomy.
Collapse
Affiliation(s)
- Julian Reiß
- Department of Urology, University of Regensburg, Caritas St. Josef Medical Center, Regensburg, Germany
| | - Sebastian Kälble
- Department of Urology, University of Regensburg, Caritas St. Josef Medical Center, Regensburg, Germany
| | - Johannes Bründl
- Department of Urology, University of Regensburg, Caritas St. Josef Medical Center, Regensburg, Germany
| | - Bernd Rosenhammer
- Department of Urology, University of Regensburg, Caritas St. Josef Medical Center, Regensburg, Germany
| | - Michael Gierth
- Department of Urology, University of Regensburg, Caritas St. Josef Medical Center, Regensburg, Germany
| | - Florian Weber
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Markus Eckstein
- Institute of Pathology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Stefan Denzinger
- Department of Urology, University of Regensburg, Caritas St. Josef Medical Center, Regensburg, Germany
| | - Maximilian Burger
- Department of Urology, University of Regensburg, Caritas St. Josef Medical Center, Regensburg, Germany
| | - Wolfgang Otto
- Department of Urology, University of Regensburg, Caritas St. Josef Medical Center, Regensburg, Germany
| | - Johannes Breyer
- Department of Urology, University of Regensburg, Caritas St. Josef Medical Center, Regensburg, Germany
| |
Collapse
|
7
|
Mirabella N, Pelagalli A, Liguori G, Rashedul MA, Squillacioti C. Differential abundances of AQP3 and AQP5 in reproductive tissues from dogs with and without cryptorchidism. Anim Reprod Sci 2021; 228:106735. [PMID: 33744817 DOI: 10.1016/j.anireprosci.2021.106735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/04/2023]
Abstract
Aquaporins (AQPs) are integral transmembrane proteins facilitating transport of water and small solutes, such as glycerol and urea, between cells. In male reproductive tracts, AQPs maintain a milieu conducive for sperm formation, maturation, and storage. The aim of this study was to clarify effects of testicular and epidydimal function on male fertility by investigating localisation and abundances of AQP3 and AQP5 in testes and epididymal segments from dogs with and without unilateral cryptorchidism. Immunohistochemistry results indicated AQP3 and AQP5 have different distribution patterns in reproductive tissues of dogs with and without unilateral cryptorchidism. The AQP3, an aquaglyceroprotein, is present in different germ and Sertoli cells in testis of dogs without cryptorchidism. The AQP5 protein was not detected in germ cells but was present in Sertoli and Leydig cells and in endothelia of blood vessels. In cryptorchid dogs, AQP3 was detected in early-developing germ and Sertoli cells, and AQP5 had a distribution pattern similar to testes of dogs without cryptorchidism. In the epididymis, AQP3 and AQP5 were localised in epithelial cells of dogs with and without cryptorchidism in a cell-specific manner. The AQP3 and AQP5 protein was in larger abundance in the gonads from dogs with and without cryptorchidism. In contrast, AQP3 and AQP5 abundance increased in each segment of the cryptorchid epididymis, likely as a compensatory mechanism associated with the pathologic condition. These results indicate involvement of AQP3 and AQP5 in spermatogenesis and sperm maturation. Results from the present study indicate dogs are a useful for comparative reproductive biology studies.
Collapse
Affiliation(s)
- Nicola Mirabella
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Via Delpino 1, 80137, Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy; Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, 80131, Naples, Italy
| | - Giovanna Liguori
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Via Delpino 1, 80137, Naples, Italy.
| | - Mohammad Alam Rashedul
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology Justus Liebig University Giessen, Aulweg 123, 35385, Giessen, Germany
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Via Delpino 1, 80137, Naples, Italy
| |
Collapse
|
8
|
Udompatanakorn C, Yada N, Matsuo K. Assessing the Expression of Aquaporin 3 Antigen-Recognition Sites in Oral Squamous Cell Carcinoma. Appl Immunohistochem Mol Morphol 2020; 28:611-620. [PMID: 31373900 PMCID: PMC7566301 DOI: 10.1097/pai.0000000000000802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/30/2019] [Indexed: 11/25/2022]
Abstract
Aquaporin 3 (AQP3) serves as a water and glycerol transporter facilitating epithelial cell hydration. Recently, the involvement of AQP3 in cancers has been reported. However, the immunohistochemical expression of AQP3 in carcinomas remains controversial. We hypothesized that differences in aquaporin 3 antigen recognition (AQP3 AR) may influence their expressions. Thus, our study aimed to assess the immunostaining patterns of 3 AQP3 AR sites in oral squamous cell carcinoma (OSCC) and to compare the adjacent areas of high-grade epithelial dysplasia (HG-ED) and normal oral mucosa (NOM). The study group included formalin-fixed OSCC samples (n=51) with adjacent regions of HG-ED (n=12) and NOM (n=51). The tissues were stained with anti-AQP3 antibodies (AR sites at amino acid (AA) 250-C terminus, AA180-228, and N terminus AA1-80) by immunohistochemistry. Our results showed that strong membranous immunostaining was observed for AQP3 AR sites at the AA250-C terminus and AA180-228 in all the samples for NOM and weak AQP3 immunostaining for both the AR sites in all the 12 samples for HG-ED. The invasive front of OSCC samples showed that AQP3 AR at the AA250-C terminus decreased in 42/51 samples (82.4%) and AA180-228 in 47/51 samples (92.2%). Conversely, in the AQP3 AR site at N terminus AA1-80, all samples of the NOM showed negative or slightly positive staining in the cytoplasm of the lower layers. AQP3 expression was increased in 12/12 cases (100%) and 46/51 cases (90.2%) in the HG-ED and invasive front of OSCC, respectively. AQP3 may be used as a biomarker for detecting malignant transformations. AQP3 AR site differences influence their immunohistochemical expression in OSCC.
Collapse
Affiliation(s)
- Chatchaphan Udompatanakorn
- Department of Health Promotion, Division of Oral Pathology, Kyushu Dental University, Kitakyushu, Japan
- Department of Oral Surgery and Oral Medicine, Division of Oral Diagnostic Science, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand
| | - Naomi Yada
- Department of Health Promotion, Division of Oral Pathology, Kyushu Dental University, Kitakyushu, Japan
| | - Kou Matsuo
- Department of Health Promotion, Division of Oral Pathology, Kyushu Dental University, Kitakyushu, Japan
| |
Collapse
|
9
|
Chow PH, Bowen J, Yool AJ. Combined Systematic Review and Transcriptomic Analyses of Mammalian Aquaporin Classes 1 to 10 as Biomarkers and Prognostic Indicators in Diverse Cancers. Cancers (Basel) 2020; 12:E1911. [PMID: 32679804 PMCID: PMC7409285 DOI: 10.3390/cancers12071911] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Aquaporin (AQP) channels enable regulated transport of water and solutes essential for fluid homeostasis, but they are gaining attention as targets for anticancer therapies. Patterns of AQP expression and survival rates for patients were evaluated by systematic review (PubMed and Embase) and transcriptomic analyses of RNAseq data (Human Protein Atlas database). Meta-analyses confirmed predominantly negative associations between AQP protein and RNA expression levels and patient survival times, most notably for AQP1 in lung, breast and prostate cancers; AQP3 in esophageal, liver and breast cancers; and AQP9 in liver cancer. Patterns of AQP expression were clustered for groups of cancers and associated with risk of death. A quantitative transcriptomic analysis of AQP1-10 in human cancer biopsies similarly showed that increased transcript levels of AQPs 1, 3, 5 and 9 were most frequently associated with poor survival. Unexpectedly, increased AQP7 and AQP8 levels were associated with better survival times in glioma, ovarian and endometrial cancers, and increased AQP11 with better survival in colorectal and breast cancers. Although molecular mechanisms of aquaporins in pathology or protection remain to be fully defined, results here support the hypothesis that overexpression of selected classes of AQPs differentially augments cancer progression. Beyond fluid homeostasis, potential roles for AQPs in cancers (suggested from an expanding appreciation of their functions in normal tissues) include cell motility, membrane process extension, transport of signaling molecules, control of proliferation and apoptosis, increased mechanical compliance, and gas exchange. AQP expression also has been linked to differences in sensitivity to chemotherapy treatments, suggesting possible roles as biomarkers for personalized treatments. Development of AQP pharmacological modulators, administered in cancer-specific combinations, might inspire new interventions for controlling malignant carcinomas.
Collapse
Affiliation(s)
| | | | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia; (P.H.C.); (J.B.)
| |
Collapse
|
10
|
Aquaporin 3 Expression in Endometrioid Carcinoma of the Uterine Body Correlated With Early Stage and Lower Grade. Pathol Oncol Res 2020; 26:2247-2253. [PMID: 32382899 DOI: 10.1007/s12253-020-00813-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/23/2020] [Indexed: 01/21/2023]
Abstract
Aquaporins (AQPs) are a family of transmembrane water channel proteins distributed in various human tissues. Recent studies revealed that AQPs play important roles in cancer biology. Few studies have documented the relationship between the prognosis, stage, and histological grade of uterine endometrioid carcinoma, with AQP expression. Hence, the present study aimed to investigate this relationship between uterine endometrioid carcinoma and AQP expression. We retrospectively reviewed records of the patients who underwent surgery for uterine body cancer between 1990 and 2010 at the National Defense Medical College Hospital, Saitama, Japan. In 241 cases of endometrioid carcinoma, we immunohistochemically examined the expression of AQP 1, 2, 3, 4, and 5, and their relationship with clinicopathological parameters and the patients' prognosis. We investigated the relationship between the clinicopathological parameters and AQP3 expression, and found that as the FIGO stage and histological grade progressed, the percentage of AQP3 expression tends to decrease. Furthermore, we analyzed progression-free survival/overall survival (PFS/OS) using the log-rank test, and found that the AQP3-positive group had a better prognosis than AQP3-negative group (PFS: P < 0.001, OS: P = 0.002, respectively). Using Cox's univariate proportional hazard model, we revealed that AQP3 had a low hazard ratio. However, according to Cox's multivariate proportional hazard model, AQP3 was not an independent prognostic factor. Among the endometrioid carcinoma patients, the AQP3-positive group was associated with early stage and lower grade compared to the AQP3-negative group. Therefore, AQP3 has the potential to serve as a predictor of prognosis, although further investigation is necessary to elucidate the biological mechanism of AQP3 in endometrioid carcinoma.
Collapse
|
11
|
Zhong C, Farrell A, Stewart GS. Localization of aquaporin-3 proteins in the bovine rumen. J Dairy Sci 2020; 103:2814-2820. [PMID: 31980228 DOI: 10.3168/jds.2019-17735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/29/2019] [Indexed: 11/19/2022]
Abstract
Urea nitrogen salvaging is a crucial mechanism that ruminants have evolved to conserve nitrogen. Facilitative urea transporter-B proteins are known to be involved in urea transport across the rumen epithelium and thus efficiently facilitate the urea nitrogen salvaging process. Recently, functional studies have suggested that aquaglyceroporin transporters might also play a significant role in ruminal urea transport and aquaporin-3 (AQP3) protein has previously been detected in rumen tissue. In this current study, we investigated the specific localization of AQP3 transporters in the bovine rumen. First, end-point reverse-transcription PCR experiments confirmed strong AQP3 expression in both bovine rumen and kidney. Immunoblotting analysis using 2 separate anti-AQP3 antibodies detected AQP3 protein signals at 25, 32, and 42-45 kDa. Further immunolocalization studies showed AQP3 protein located in all the layers of rumen epithelium, especially in the stratum basale, and in the basolateral membranes of kidney collecting duct cells. These data confirm that AQP3 transporters are highly abundant within the bovine rumen and appear to be located throughout the ruminal epithelial layers. The physiological significance of the multiple AQP3 proteins detected and their location is not yet clear, hence further investigation is required to determine their exact contribution to ruminal urea transport.
Collapse
Affiliation(s)
- Chongliang Zhong
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alan Farrell
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gavin S Stewart
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
12
|
Ciarimboli G, Theil G, Bialek J, Edemir B. Contribution and Expression of Organic Cation Transporters and Aquaporin Water Channels in Renal Cancer. Rev Physiol Biochem Pharmacol 2020; 181:81-104. [PMID: 32772272 DOI: 10.1007/112_2020_34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The body homeostasis is maintained mainly by the function of the kidneys, which regulate salt and water balance and excretion of metabolism waste products and xenobiotics. This important renal function is determined by the action of many transport systems, which are specifically expressed in the different parts of the nephron, the functional unit of the kidneys. These transport systems are involved, for example, in the reabsorption of sodium, glucose, and other important solutes and peptides from the primary urine. They are also important in the reabsorption of water and thereby production of a concentrated urine. However, several studies have shown the importance of transport systems for different tumor entities. Transport systems, for example, contributed to the proliferation and migration of cancer cells and thereby on tumor progression. They could also serve as drug transporters that could enable drug resistance by outward transport of, for example, chemotherapeutic agents and other drugs. Although many renal transporters have been characterized in detail with respect to the significance for proper kidney function, their role in renal cancer progression is less known. Here, we describe the types of renal cancer and review the studies that analyzed the role of organic cation transporters of the SLC22-family and of the aquaporin water channel family in kidney tumors.
Collapse
Affiliation(s)
- Giuliano Ciarimboli
- Medicine Clinic D, Experimental Nephrology, University Hospital of Münster, Münster, Germany
| | - Gerit Theil
- Clinic of Urology, University Hospital, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Joanna Bialek
- Clinic of Urology, University Hospital, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Bayram Edemir
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
13
|
Farrell A, Stewart G. Osmotic regulation of UT-B urea transporters in the RT4 human urothelial cell line. Physiol Rep 2019; 7:e14314. [PMID: 31872572 PMCID: PMC6928247 DOI: 10.14814/phy2.14314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 01/23/2023] Open
Abstract
Facilitative UT-B urea transporters play important physiological roles in numerous tissues, including the urino-genital tract. Previous studies have shown that urothelial UT-B transporters are crucial to bladder function in a variety of mammalian species. Using the RT4 bladder urothelial cell line, this study investigated the potential osmotic regulation of human UT-B transporters. Initial end-point PCR experiments confirmed expression of both UT-B1 and UT-B2 transcripts in RT4 cells. Western blotting analysis revealed glycosylated UT-B protein to be highly abundant and immunolocalization experiments showed it was predominantly located on the plasma membrane. Further PCR experiments suggested that a 48 hr, NaCl-induced raise in external osmolality increased expression of UT-B transcripts. Importantly, these NaCl-induced changes also significantly increased UT-B protein abundance (p < .01, n = 7, ANOVA), whereas mannitol-induced changes in external osmolality had no effect (NS, n = 4, ANOVA). Finally, similar increases in both UT-B RNA expression and protein abundance were observed with urea-induced changes to external osmolality (p < .05, n = 4, ANOVA). In conclusion, these findings strongly suggest that increases in external osmolality, via either NaCl or urea, can regulate human urothelial UT-B transporters.
Collapse
Affiliation(s)
- Alan Farrell
- School of Biology & Environmental ScienceScience Centre WestUniversity College DublinDublin 4Ireland
| | - Gavin Stewart
- School of Biology & Environmental ScienceScience Centre WestUniversity College DublinDublin 4Ireland
| |
Collapse
|
14
|
Snezhkina AV, Lukyanova EN, Fedorova MS, Kalinin DV, Melnikova NV, Stepanov OA, Kiseleva MV, Kaprin AD, Pudova EA, Kudryavtseva AV. Novel Genes Associated with the Development of Carotid Paragangliomas. Mol Biol 2019. [DOI: 10.1134/s0026893319040137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Magouliotis DE, Tasiopoulou VS, Dimas K, Sakellaridis N, Svokos KA, Svokos AA, Zacharoulis D. Transcriptomic analysis of the Aquaporin (AQP) gene family interactome identifies a molecular panel of four prognostic markers in patients with pancreatic ductal adenocarcinoma. Pancreatology 2019; 19:436-442. [PMID: 30826259 DOI: 10.1016/j.pan.2019.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/29/2019] [Accepted: 02/09/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study aimed to assess the differential gene expression of aquaporin (AQP) gene family interactome in pancreatic ductal adenocarcinoma (PDAC) using data mining techniques to identify novel candidate genes intervening in the pathogenicity of PDAC. METHOD Transcriptome data mining techniques were used in order to construct the interactome of the AQP gene family and to determine which genes members are differentially expressed in PDAC as compared to controls. The same techniques were used in order to evaluate the potential prognostic role of the differentially expressed genes. RESULTS Transcriptome microarray data of four GEO datasets were incorporated, including 142 primary tumor samples and 104 normal pancreatic tissue samples. Twenty differentially expressed genes were identified, of which nineteen were downregulated and one up-regulated. A molecular panel of four genes (Aquaporin 7 - AQP7; Archain 1 - ARCN1; Exocyst Complex Component 3 - EXOC3; Coatomer Protein Complex Subunit Epsilon - COPE) were identified as potential prognostic markers associated with overall survival. CONCLUSION These outcomes should be further assessed in vitro in order to fully understand the role of these genes in the pathophysiological mechanism of PDAC.
Collapse
Affiliation(s)
- Dimitrios E Magouliotis
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, UCL, London, UK; Department of Surgery, University of Thessaly, Biopolis, Larissa, Greece.
| | - Vasiliki S Tasiopoulou
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece.
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece.
| | - Nikos Sakellaridis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece.
| | | | | | | |
Collapse
|
16
|
Bründl J, Wallinger S, Breyer J, Weber F, Evert M, Georgopoulos NT, Rosenhammer B, Burger M, Otto W, Rubenwolf P. Expression, localisation and potential significance of aquaporins in benign and malignant human prostate tissue. BMC Urol 2018; 18:75. [PMID: 30176851 PMCID: PMC6122723 DOI: 10.1186/s12894-018-0391-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND To study the expression pattern, localisation and potential clinical significance of aquaporin water channels (AQP) both in prostate cancer (PC) cell lines and in benign and malignant human prostate tissue. METHODS The AQP transcript and protein expression of HPrEC, LNCaP, DU-145 and PC3 cell lines was investigated using reverse transcriptase polymerase chain reaction (RT-PCR) and immunofluorescence (IF) microscopy labelling. Immunohistochemistry (IHC) was performed to assess AQP protein expression in surgical specimens of benign prostatic hyperplasia as well as in PC. Tissue mRNA expression of AQPs was quantified by single-step reverse transcriptase quantitative polymerase chain reaction (qPCR). Relative gene expression was determined using the 40-ΔCT method and correlated to clinicopathological parameters. RESULTS Transcripts of AQP 1, 3, 4, 7, 8, 10 and 11 were expressed in all four cell lines, while AQP 9 transcripts were not detected in malignant cell lines. IF microscopy confirmed AQP 3, 4, 5, 7 and 9 protein expression. IHC revealed highly heterogeneous AQP 3 protein expression in PC specimens, with a marked decrease in expression in tumours of increasing malignancy. Loss of AQP 9 was shown in PC specimens. mRNA expression of AQP3 was found to be negatively correlated to PSA levels (ρ = - 0.354; p = 0.013), D'Amico risk stratification (ρ = - 0.336; p = 0.012), ISUP grade (ρ = - 0.321; p = 0.017) and Gleason score (ρ = - 0.342; p = 0.011). CONCLUSIONS This is the first study to systematically characterize human prostate cell lines, benign prostatic hyperplasia and PC in relation to all 13 members of the AQP family. Our results indicate the differential expression of several AQPs in benign and malignant prostate tissue. A significant correlation was observed between AQP 3 expression and tumour grade, with progressive loss in more malignant tumours. Taken together, AQPs may play a role in the progression of PC and AQP expression patterns may serve as a prognostic marker.
Collapse
Affiliation(s)
- Johannes Bründl
- Department of Urology, Caritas St Josef Medical Center, University of Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany.
| | - Sabine Wallinger
- Department of Urology, Caritas St Josef Medical Center, University of Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Johannes Breyer
- Department of Urology, Caritas St Josef Medical Center, University of Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Florian Weber
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | | | - Bernd Rosenhammer
- Department of Urology, Caritas St Josef Medical Center, University of Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Maximilian Burger
- Department of Urology, Caritas St Josef Medical Center, University of Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Wolfgang Otto
- Department of Urology, Caritas St Josef Medical Center, University of Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Peter Rubenwolf
- Department of Urology, Caritas St Josef Medical Center, University of Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany.,Department of Urology, Frankfurt University Medical Center, Frankfurt, Germany
| |
Collapse
|
17
|
Abstract
Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a pivotal role in cancer metastasis. AQP3 knockout mice were resistant to skin tumor formation and overexpression correlated with metastasis and poor prognosis in patients with breast or gastric cancer. In cultured cancer cells, increased AQP3 expression stimulated several intracellular signaling pathways and resulted in increased cell proliferation, migration, and invasion as well as aggravation of epithelial-to-mesenchymal transition. Besides AQP facilitated water transport at the leading edge of migrating cells, AQP3 signaling mechanisms are beginning to be unraveled. Here, we give a thorough review of current knowledge regarding AQP3 expression in cancer and how AQP3 contributes to cancer progression via signaling that modulates cellular mechanisms. This review article will expand our understanding of the known pathophysiological findings regarding AQP3 in cancer.
Collapse
|
18
|
Al-Kurdi B. Hierarchical transcriptional profile of urothelial cells development and differentiation. Differentiation 2017; 95:10-20. [PMID: 28135607 DOI: 10.1016/j.diff.2016.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/09/2016] [Accepted: 10/14/2016] [Indexed: 11/27/2022]
Abstract
The urothelial lining of the lower urinary tract is the most efficient permeability barrier in animals, exhibiting a highly differentiated phenotype and a remarkable regenerative capacity upon wounding. During development and possibly during repair, cells undergo a sequence of hierarchical transcriptional events that mark the transition of these cells from the least differentiated urothelial phenotype characteristic of the basal cell layer, to the most differentiated cellular phenotype characteristic of the superficial cell layer. Unraveling normal urothelial differentiation program is essential to uncover the underlying causes of many congenital abnormalities and for the development of an appropriate differentiation niche for stem cells, for future use in urinary tract tissue engineering and organ reconstruction. Kruppel like factor-5 appears to be at the top of the hierarchy activating several downstream transcription factors, the most prominent of which is peroxisome proliferator activator receptor-γ. Eventually those lead to the activation of transcription factors that directly regulate the expression of uroplakin proteins along with other proteins that mediate the permeability function of the urothelium. In this review, we discuss the most recent findings in the area of urothelial cellular differentiation and transcriptional regulation, aiming for a comprehensive overview that aids in a refined understanding of this process.
Collapse
Affiliation(s)
- Ban Al-Kurdi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.
| |
Collapse
|
19
|
Chen XF, Li CF, Lü L, Mei ZC. Expression and clinical significance of aquaglyceroporins in human hepatocellular carcinoma. Mol Med Rep 2016; 13:5283-9. [PMID: 27121567 DOI: 10.3892/mmr.2016.5184] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 04/13/2016] [Indexed: 11/06/2022] Open
Abstract
Aquaglyceroporins (AQPs) are a subset of the aquaporin family, and are permeable to water and glycerol. The aim of the present study was to determine the expression and clinical significance of three AQPs, AQP3, 7 and 9 in hepatocellular carcinoma (HCC). Fresh HCC and adjacent non‑tumorous liver tissues were collected from 68 patients diagnosed with HCC. The expression levels of AQP3, 7 and 9 were detected by reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemical analysis. The association between the expression of AQPs and clinicopathological parameters of HCC were investigated. Compared with non‑tumorous liver tissue, HCC tissues exhibited a significant (P<0.05) increase in the expression of AQP3 and a concomitant reduction in the expression levels of AQP7 and AQP9, at both the mRNA and protein levels. Immunohistochemistry revealed that AQP9 was dominantly localized on the plasma membrane of hepatocytes, while AQP3 and AQP7 exhibited a predominantly cytoplasmic and nuclear distribution. High expression of AQP3 was significantly (P<0.05) associated with low expression levels of AQP7 and AQP9. High expression of AQP3 was correlated with tumor grade (P=0.017), tumor stage (P=0.010) and lymphatic metastasis (P=0.031). Low expression of AQP7 was correlated with tumor grade (P=0.043). AQP3 was upregulated, and AQP7 and AQP9 were downregulated in HCC. A high expression of AQP3 and low expression of AQP7 was significantly associated with the aggressive features of HCC.
Collapse
Affiliation(s)
- Xiao-Feng Chen
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Chuan-Fei Li
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Lin Lü
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Zhe-Chuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
20
|
Wang L, Zhang Y, Wu X, Yu G. Aquaporins: New Targets for Cancer Therapy. Technol Cancer Res Treat 2015; 15:821-828. [PMID: 26438607 DOI: 10.1177/1533034615607693] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/17/2015] [Indexed: 12/12/2022] Open
Abstract
Aquaporins are a family of integral membrane proteins that are expressed in all living organisms and play vital roles in transcellular and transepithelial water movement. Cell viability and motility are critical for progression of cancer. Cell survival requires the suitable concentration of water and solutes. The balance is largely maintained by aquaporins whose major function is the transport of water and small solutes across the plasma membrane. The important role of aquaporins has received more and more attention in the recent years. A number of recent studies have revealed that aquaporins may be involved in cell migration and angiogenesis. This review will highlight the expression of aquaporins in different malignant neoplasms. Remarkably, we will summarize the influence of drugs on aquaporins, not only the traditional Chinese medicine but also the Western medicine. Therapeutic targeting of aquaporins may thus be advantageous for blocking the mechanism common for a number of key cancer phenotypes.
Collapse
Affiliation(s)
- Liping Wang
- Clinical Oncology Department, Weifang People's Hospital, Kuiwen, Weifang, China
| | - Yixiang Zhang
- Respiratory Medicine Department, Second People's Hospital of Weifang, Kuiwen, Weifang, China
| | - Xiongzhi Wu
- Patient Department, Tianjin Medical University Cancer Institute and Hospital, Hexi, Tianjin, China
| | - Guohua Yu
- Clinical Oncology Department, Weifang People's Hospital, Kuiwen, Weifang, China
| |
Collapse
|
21
|
Han G, Ma L, Guo Y, Li L, Li D, Liu H. Hyperbaric oxygen therapy palliates lipopolysaccharide-induced acute lung injury in rats by upregulating AQP1 and AQP5 expression. Exp Lung Res 2015; 41:444-9. [PMID: 26317897 DOI: 10.3109/01902148.2015.1064189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE Hyperbaric oxygen (HBO) therapy has been suggested to palliate acute lung injury (ALI), but the mechanisms involved are not well understood. This study is to elucidate the involvement of AQP1 and AQP5 in the HBO related ALI therapy. MATERIALS AND METHODS lipopolysaccharide (LPS) was administrated into SD rats to obtain ALI models. Pressure of oxygen (PaO2) and carbon dioxide (PaCO2) in arterial blood and oxygenation index in rats after LPS and HBO treatments were determined. Pathological changes of the lungs were examined by hematoxylin and eosin staining. Alteration of TNF-α level during LPS and HBO treatments was evaluated with ELISA analysis. Western blot was employed to assess the expression of AQP1 and AQP5. RESULTS Blood gas indexes were largely decreased by LPS administration, which responded to HBO. Pathological examination showed that the inflammation symptoms in lungs induced by LPS were also palliated after HBO preconditioning. LPS induced the expression of TNF-α at a high level which could be downregulated by HBO and TNF-α antagonist treatments. Results of AQP1 and AQP5 determination found that HBO and TNF-α antagonist would upregulate the expression of AQP1 and AQP5 which was inhibited in rats with ALI. CONCLUSIONS HBO therapy palliated LPS-induced ALI in rats by downregulating TNF-α expression. HBO also upregulated AQP1 and AQP5 expression. These results could serve as guidelines for the full understanding of ALI therapy by HBO, thus achieving maximized therapeutic efficiency.
Collapse
Affiliation(s)
- Guang Han
- a Department of Anesthesia , Shengjing Hospital of China Medical University , Shenyang , Liaoning , China
| | - Ling Ma
- a Department of Anesthesia , Shengjing Hospital of China Medical University , Shenyang , Liaoning , China
| | - Yao Guo
- a Department of Anesthesia , Shengjing Hospital of China Medical University , Shenyang , Liaoning , China
| | - Lu Li
- a Department of Anesthesia , Shengjing Hospital of China Medical University , Shenyang , Liaoning , China
| | - Dan Li
- a Department of Anesthesia , Shengjing Hospital of China Medical University , Shenyang , Liaoning , China
| | - Hongtao Liu
- a Department of Anesthesia , Shengjing Hospital of China Medical University , Shenyang , Liaoning , China
| |
Collapse
|
22
|
Identification of Estrogen Response Element in Aquaporin-3 Gene that Mediates Estrogen-induced Cell Migration and Invasion in Estrogen Receptor-positive Breast Cancer. Sci Rep 2015. [PMID: 26219409 PMCID: PMC4518221 DOI: 10.1038/srep12484] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence suggests that aquaporins (AQPs) may facilitate tumor development. The molecular pathways connecting the pathological functions of AQPs are unclear and need to be better defined. This study aimed to investigate whether AQP3, one of the AQPs expressed highly in breast cancer, had any clinical implication in estrogen-receptor (ER) positive breast cancer, and explore the regulatory mechanisms of AQP3 in estrogen-related breast cancer progression. Here we show that AQP3 is an important enforcer of migration and invasion in breast cancer. We, for the first time, reported that ER-positive breast cancer tissues obtained from premenopausal patients had higher AQP3 expression when compared to those obtained from postmenopausal patients. Estrogen directly upregulates AQP3 by activating ERE in the promoter of the AQP3 gene. The upregulation of AQP3 can influence the expression of molecules related to epithelial-mesenchymal transition and the reorganization of actin-cytoskeleton, resulting in enhancement of cell migration and invasion in ER-positive breast cancer cells.
Collapse
|
23
|
Loss of AQP3 protein expression is associated with worse progression-free and cancer-specific survival in patients with muscle-invasive bladder cancer. World J Urol 2015; 33:1959-64. [DOI: 10.1007/s00345-015-1574-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/24/2015] [Indexed: 11/25/2022] Open
|
24
|
Walpole C, Farrell A, McGrane A, Stewart GS. Expression and localization of a UT-B urea transporter in the human bladder. Am J Physiol Renal Physiol 2014; 307:F1088-94. [PMID: 25209859 DOI: 10.1152/ajprenal.00284.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Facilitative UT-B urea transporters have been shown to play an important role in the urinary concentrating mechanism. Recent studies have now suggested a link between UT-B allelic variation and human bladder cancer risk. UT-B1 protein has been previously identified in the bladder of various mammalian species, but not yet in humans. The aim of the present study was to investigate whether any UT-B protein was present in the human bladder. First, RT-PCR results confirmed that UT-B1 was strongly expressed at the RNA level in the human bladder, whereas UT-B2 was only weakly present. Initial Western blot analysis confirmed that a novel UT-B COOH-terminal antibody detected human UT-B proteins. Importantly, this antibody detected a specific 40- to 45-kDa UT-B signal in human bladder protein. Using a peptide-N-glycosidase F enzyme, this bladder UT-B signal was deglycosylated to a core 30-kDa protein, which is smaller than the predicted size for UT-B1 but similar to many proteins reported to be UT-B1. Finally, immunolocalization experiments confirmed that UT-B protein was strongly expressed throughout all urothelium layers except for the apical membrane of the outermost umbrella cells. In conclusion, these data confirm the presence of UT-B protein within the human bladder. Further studies are now required to determine the precise nature, regulation, and physiological role of this UT-B.
Collapse
Affiliation(s)
- C Walpole
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin, Ireland
| | - A Farrell
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin, Ireland
| | - A McGrane
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin, Ireland
| | - G S Stewart
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|