1
|
Potier S, Roulin A, Martin GR, Portugal SJ, Bonhomme V, Bouchet T, de Romans R, Meyrier E, Kelber A. Binocular field configuration in owls: the role of foraging ecology. Proc Biol Sci 2023; 290:20230664. [PMID: 37848065 PMCID: PMC10581762 DOI: 10.1098/rspb.2023.0664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
The binocular field of vision differs widely in birds depending on ecological traits such as foraging. Owls (Strigiformes) have been considered to have a unique binocular field, but whether it is related to foraging has remained unknown. While taking into account allometry and phylogeny, we hypothesized that both daily activity cycle and diet determine the size and shape of the binocular field in owls. Here, we compared the binocular field configuration of 23 species of owls. While we found no effect of allometry and phylogeny, ecological traits strongly influence the binocular field shape and size. Binocular field shape of owls significantly differed from that of diurnal raptors. Among owls, binocular field shape was relatively conserved, but binocular field size differed among species depending on ecological traits, with larger binocular fields in species living in dense habitat and foraging on invertebrates. Our results suggest that (i) binocular field shape is associated with the time of foraging in the daily cycle (owls versus diurnal raptors) and (ii) that binocular field size differs between closely related owl species even though the general shape is conserved, possibly because the field of view is partially restricted by feathers, in a trade-off with auditory localization.
Collapse
Affiliation(s)
- Simon Potier
- Department of Biology, Lund University, Sölvegatan 35, Lund S-22362, Sweden
- Les Ailes de l'Urga, 72 rue de la vieille route, 27320 Marcilly la Campagne, France
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore 1015, Switzerland
| | - Graham R. Martin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Steven J. Portugal
- Department of Biological Science, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Vincent Bonhomme
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, 34095 Montpellier, France
- Équipe Dynamique de la biodiversité, anthropo-écologie, Place Eugène Bataillon - CC065, 34095 Montpellier Cedex 5, France
| | - Thierry Bouchet
- Académie de Fauconnerie, SAS Puy du Fou France, 85500 Les Epesses, France
| | - Romuald de Romans
- Espace Rambouillet, Office National des Forêts, route du coin du bois, 78120 Sonchamp, France
| | - Eva Meyrier
- Les Aigles du Léman, Domaine de Guidou, 74140 Sciez sur Léman, France
| | - Almut Kelber
- Department of Biology, Lund University, Sölvegatan 35, Lund S-22362, Sweden
| |
Collapse
|
2
|
Cunha F, Gutiérrez-Ibáñez C, Brinkman B, Wylie DR, Iwaniuk AN. The relative sizes of nuclei in the oculomotor complex vary by order and behaviour in birds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 209:341-360. [PMID: 36522507 DOI: 10.1007/s00359-022-01598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/26/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Eye movements are a critical component of visually guided behaviours, allowing organisms to scan the environment and bring stimuli of interest to regions of acuity in the retina. Although the control and modulation of eye movements by cranial nerve nuclei are highly conserved across vertebrates, species variation in visually guided behaviour and eye morphology could lead to variation in the size of oculomotor nuclei. Here, we test for differences in the size and neuron numbers of the oculomotor nuclei among birds that vary in behaviour and eye morphology. Using unbiased stereology, we measured the volumes and numbers of neurons of the oculomotor (nIII), trochlear (nIV), abducens (nVI), and Edinger-Westphal (EW) nuclei across 71 bird species and analysed these with phylogeny-informed statistics. Owls had relatively smaller nIII, nIV, nVI and EW nuclei than other birds, which reflects their limited degrees of eye movements. In contrast, nVI was relatively larger in falcons and hawks, likely reflecting how these predatory species must shift focus between the central and temporal foveae during foraging and prey capture. Unexpectedly, songbirds had an enlarged EW and relatively more nVI neurons, which might reflect accommodation and horizontal eye movements. Finally, the one merganser we measured also has an enlarged EW, which is associated with the high accommodative power needed for pursuit diving. Overall, these differences reflect species and clade level variation in behaviour, but more data are needed on eye movements in birds across species to better understand the relationships among behaviour, retinal anatomy, and brain anatomy.
Collapse
Affiliation(s)
- Felipe Cunha
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4, Canada
| | | | - Benjamin Brinkman
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4, Canada
| | - Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
3
|
The endocast of the insular and extinct Sylviornis neocaledoniae (Aves, Galliformes), reveals insights into its sensory specializations and its twilight ecology. Sci Rep 2022; 12:21185. [PMID: 36477415 PMCID: PMC9729198 DOI: 10.1038/s41598-022-14829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Sylviornis neocaledoniae (Galliformes, Sylviornithidae), a recently extinct bird of New-Caledonia (Galliformes, Sylviornithidae) is the largest galliform that ever lived and one of the most enigmatic birds in the world. Herein, for the first time, we analyze its neuroanatomy that sheds light on its lifestyle, its brain shape and patterns being correlated to neurological functions. Using morphometric methods, we quantified the endocranial morphology of S. neocaledoniae and compared it with extinct and extant birds in order to obtain ecological and behavioral information about fossil birds. Sylviornis neocaledoniae exhibited reduced optic lobes, a condition also observed in nocturnal taxa endemic to predator-depauperate islands, such as Elephant birds. Functional interpretations suggest that S. neocaledoniae possessed a well-developed somatosensorial system and a good sense of smell in addition to its specialized visual ability for low light conditions, presumably for locating its food. We interpret these results as evidence for a crepuscular lifestyle in S. neocaledoniae.
Collapse
|
4
|
Nakao T, Yamasaki T, Ogihara N, Shimada M. Relationship between flightlessness and brain morphology among Rallidae. J Anat 2022; 241:776-788. [PMID: 35608388 PMCID: PMC9358762 DOI: 10.1111/joa.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022] Open
Abstract
Studies have suggested that the brain morphology and flight ability of Aves are interrelated; however, such a relationship has not been thoroughly investigated. This study aimed to examine whether flight ability, volant or flightless, affects brain morphology (size and shape) in the Rallidae, which has independently evolved to adapt secondary flightlessness multiple times within a single taxonomic group. Brain endocasts were extracted from computed tomography images of the crania, measured by 3D geometric morphometrics, and were analyzed using principal component analysis. The results of phylogenetic ANCOVA showed that flightless rails have brain sizes and shapes that are significantly larger than and different from those of volant rails, even after considering the effects of body mass and brain size respectively. Flightless rails tended to have a wider telencephalon and more inferiorly positioned foramen magnum than volant rails. Although the brain is an organ that requires a large amount of metabolic energy, reduced selective pressure for a lower body weight may have allowed flightless rails to have larger brains. The evolution of flightlessness may have changed the position of the foramen magnum downward, which would have allowed the support of the heavier cranium. The larger brain may have facilitated the acquisition of cognitively advanced behavior, such as tool-using behavior, among rails.
Collapse
Affiliation(s)
- Tatsuro Nakao
- Graduate School of Science and EngineeringTeikyo University of ScienceUenoharaJapan
| | | | | | - Masaki Shimada
- Department of Animal SciencesTeikyo University of ScienceUenoharaJapan
| |
Collapse
|
5
|
Keirnan A, Worthy TH, Smaers JB, Mardon K, Iwaniuk AN, Weisbecker V. Not like night and day: the nocturnal letter-winged kite does not differ from diurnal congeners in orbit or endocast morphology. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220135. [PMID: 35620001 PMCID: PMC9128852 DOI: 10.1098/rsos.220135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/29/2022] [Indexed: 05/03/2023]
Abstract
Nocturnal birds display diverse adaptations of the visual system to low-light conditions. The skulls of birds reflect many of these and are used increasingly to infer nocturnality in extinct species. However, it is unclear how reliable such assessments are, particularly in cases of recent evolutionary transitions to nocturnality. Here, we investigate a case of recently evolved nocturnality in the world's only nocturnal hawk, the letter-winged kite Elanus scriptus. We employed phylogenetically informed analyses of orbit, optic foramen and endocast measurements from three-dimensional reconstructions of micro-computed tomography scanned skulls of the letter-winged kite, two congeners, and 13 other accipitrid and falconid raptors. Contrary to earlier suggestions, the letter-winged kite was not unique in any of our metrics. However, all species of Elanus have significantly higher ratios of orbit versus optic foramen diameter, suggesting high visual sensitivity at the expense of acuity. In addition, visual system morphology varies greatly across accipitrid species, likely reflecting hunting styles. Overall, our results suggest that the transition to nocturnality can occur rapidly and without changes to key hard-tissue indicators of vision, but also that hard-tissue anatomy of the visual system may provide a means of inferring a range of raptor behaviours, well beyond nocturnality.
Collapse
Affiliation(s)
- Aubrey Keirnan
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Trevor H. Worthy
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | | - Karine Mardon
- Centre of Advanced Imaging, The University of Queensland, St. Lucia, QLD, Australia
| | - Andrew N. Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Vera Weisbecker
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
6
|
New Remains of Scandiavis mikkelseni Inform Avian Phylogenetic Relationships and Brain Evolution. DIVERSITY 2021. [DOI: 10.3390/d13120651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although an increasing number of studies are combining skeletal and neural morphology data in a phylogenetic context, most studies do not include extinct taxa due to the rarity of preserved endocasts. The early Eocene avifauna of the Fur Formation of Denmark presents an excellent opportunity for further study of extinct osteological and endocranial morphology as fossils are often exceptionally preserved in three dimensions. Here, we use X-ray computed tomography to present additional material of the previously described taxon Scandiavis mikkelseni and reassess its phylogenetic placement using a previously published dataset. The new specimen provides novel insights into the osteological morphology and brain anatomy of Scandiavis. The virtual endocast exhibits a morphology comparable to that of modern avian species. Endocranial evaluation shows that it was remarkably similar to that of certain extant Charadriiformes, yet also possessed a novel combination of traits. This may mean that traits previously proposed to be the result of shifts in ecology later in the evolutionary history of Charadriiformes may instead show a more complex distribution in stem Charadriiformes and/or Gruiformes depending on the interrelationships of these important clades. Evaluation of skeletal and endocranial character state changes within a previously published phylogeny confirms both S. mikkelseni and a putative extinct charadriiform, Nahmavis grandei, as charadriiform. Results bolster the likelihood that both taxa are critical fossils for divergence dating and highlight a biogeographic pattern similar to that of Gruiformes.
Collapse
|
7
|
Demmel Ferreira MM, Degrange FJ, Tirao GA, Tambussi CP. Endocranial morphology of the piciformes (Aves, Coraciimorphae): Functional and ecological implications. J Anat 2021; 239:167-183. [PMID: 33655532 PMCID: PMC8197964 DOI: 10.1111/joa.13416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
We used three-dimensional digital models to investigate the brain and endosseous labyrinth morphology of selected Neotropical Piciformes (Picidae, Ramphastidae, Galbulidae and Bucconidae). Remarkably, the brain morphology of Galbulidae clearly separates from species of other families. The eminentiae sagittales of Galbulidae and Bucconidae (insectivorous with high aerial maneuverability abilities) are smaller than those of the toucans (scansorial frugivores). Galbula showed the proportionally largest cerebellum, and Ramphastidae showed the least foliated one. Optic lobes ratio relative to the telencephalic hemispheres showed a strong phylogenetic signal. Three hypotheses were tested: (a) insectivorous taxa that need precise and fast movements to catch their prey, have well developed eminentiae sagittales compared to fruit eaters, (b) species that require high beak control would show larger cerebellum compared to other brain regions and higher number of visible folia and (c) there are marked differences between the brain shape of the four families studied here that bring valuable information of this interesting bird group. Hypotheses H1 and H2 are rejected, meanwhile H3 is accepted.
Collapse
|
8
|
Endocranial Anatomy of the Giant Extinct Australian Mihirung Birds (Aves, Dromornithidae). DIVERSITY 2021. [DOI: 10.3390/d13030124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dromornithids are an extinct group of large flightless birds from the Cenozoic of Australia. Their record extends from the Eocene to the late Pleistocene. Four genera and eight species are currently recognised, with diversity highest in the Miocene. Dromornithids were once considered ratites, but since the discovery of cranial elements, phylogenetic analyses have placed them near the base of the anseriforms or, most recently, resolved them as stem galliforms. In this study, we use morphometric methods to comprehensively describe dromornithid endocranial morphology for the first time, comparing Ilbandornis woodburnei and three species of Dromornis to one another and to four species of extant basal galloanseres. We reveal that major endocranial reconfiguration was associated with cranial foreshortening in a temporal series along the Dromornis lineage. Five key differences are evident between the brain morphology of Ilbandornis and Dromornis, relating to the medial wulst, the ventral eminence of the caudoventral telencephalon, and morphology of the metencephalon (cerebellum + pons). Additionally, dromornithid brains display distinctive dorsal (rostral position of the wulst), and ventral morphology (form of the maxillomandibular [V2+V3], glossopharyngeal [IX], and vagus [X] cranial nerves), supporting hypotheses that dromornithids are more closely related to basal galliforms than anseriforms. Functional interpretations suggest that dromornithids were specialised herbivores that likely possessed well-developed stereoscopic depth perception, were diurnal and targeted a soft browse trophic niche.
Collapse
|
9
|
Early CM, Iwaniuk AN, Ridgely RC, Witmer LM. Endocast structures are reliable proxies for the sizes of corresponding regions of the brain in extant birds. J Anat 2020; 237:1162-1176. [PMID: 32892372 DOI: 10.1111/joa.13285] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Endocasts are increasingly relied upon to examine avian brain evolution because they can be used across extant and extinct species. The endocasts of birds appear to be relatively faithful representatives of the external morphology of their brains, but it is unclear how well the size of a surface feature visible on endocasts reflects the volume of the underlying brain region. The optic lobe and the Wulst are two endocast structures that are clearly visible on the external surface of avian endocasts. As they overlie two major visual regions of the brain, the optic tectum and hyperpallium, the surface areas of the optic lobe and Wulst, respectively, are often used to infer visual abilities. To determine whether the surface area of these features reflects the volume of the underlying brain regions, we compared the surface areas of the optic lobes and Wulsts from digital endocasts with the volumes of the optic tecta and hyperpallia from the literature or measured from histological series of brains of the same species. Regression analyses revealed strong, statistically significant correlations between the volumes of the brain regions and the surface areas of the overlying endocast structures. In other words, the size of the hyperpallium and optic tectum can be reliably inferred from the surface areas of the Wulst and optic lobe, respectively. This validation opens the possibility of estimating brain-region volumes for extinct species in order to gain better insights in their visual ecology. It also emphasizes the importance of adopting a quantitative approach to the analysis of endocasts in the study of brain evolution.
Collapse
Affiliation(s)
- Catherine M Early
- Biology Department, Science Museum of Minnesota, Saint Paul, MN, USA.,Department of Biological Sciences, Ohio University, Athens, OH, USA.,Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Ryan C Ridgely
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Lawrence M Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| |
Collapse
|
10
|
Duhamel A, Hume JP, Guenser P, Salaviale C, Louchart A. Cranial evolution in the extinct Rodrigues Island owl Otus murivorus (Strigidae), associated with unexpected ecological adaptations. Sci Rep 2020; 10:14019. [PMID: 32820225 PMCID: PMC7441405 DOI: 10.1038/s41598-020-69868-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022] Open
Abstract
Island birds that were victims of anthropic extinctions were often more specialist species, having evolved their most distinctive features in isolation, making the study of fossil insular birds most interesting. Here we studied a fossil cranium of the 'giant' extinct scops owl Otus murivorus from Rodrigues Island (Mascarene Islands, southwestern Indian Ocean), to determine any potential unique characters. The fossil and extant strigids were imaged through X-ray microtomography, providing 3D views of external and internal (endocast, inner ear) cranial structures. Geometric morphometrics and analyses of traditional measurements yielded new information about the Rodrigues owl's evolution and ecology. Otus murivorus exhibits a 2-tier "lag behind" phenomenon for cranium and brain evolution, both being proportionately small relative to increased body size. It also had a much more developed olfactory bulb than congeners, indicating an unexpectedly developed olfactory sense, suggesting a partial food scavenging habit. In addition, O. murivorus had the eyes placed more laterally than O. sunia, the species from which it was derived, probably a side effect of a small brain; rather terrestrial habits; probably relatively fearless behavior; and a less vertical posture (head less upright) than other owls (this in part an allometric effect of size increase). These evolutionary features, added to gigantism and wing reduction, make the extinct Rodrigues owl's evolution remarkable, and with multiple causes.
Collapse
Affiliation(s)
- Anaïs Duhamel
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, 69622, Villeurbanne, France.
| | - Julian P Hume
- Bird Group, Department of Life Sciences, Natural History Museum, Tring, Herts, HP23 6AP, UK
| | - Pauline Guenser
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69622, Villeurbanne, France
| | - Céline Salaviale
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, 69622, Villeurbanne, France
| | - Antoine Louchart
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, 69622, Villeurbanne, France
| |
Collapse
|
11
|
Knoll F, Kawabe S. Avian palaeoneurology: Reflections on the eve of its 200th anniversary. J Anat 2020; 236:965-979. [PMID: 31999834 PMCID: PMC7219626 DOI: 10.1111/joa.13160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/28/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
In birds, the brain (especially the telencephalon) is remarkably developed, both in relative volume and complexity. Unlike in most early-branching sauropsids, the adults of birds and other archosaurs have a well-ossified neurocranium. In contrast to the situation in most of their reptilian relatives but similar to what can be seen in mammals, the brains of birds fit closely to the endocranial cavity so that their major external features are reflected in the endocasts. This makes birds a highly suitable group for palaeoneurological investigations. The first observation about the brain in a long-extinct bird was made in the first quarter of the 19th century. However, it was not until the 2000s and the application of modern imaging technologies that avian palaeoneurology really took off. Understanding how the mode of life is reflected in the external morphology of the brains of birds is but one of several future directions in which avian palaeoneurological research may extend. Although the number of fossil specimens suitable for palaeoneurological explorations is considerably smaller in birds than in mammals and will very likely remain so, the coming years will certainly witness a momentous strengthening of this rapidly growing field of research at the overlap between ornithology, palaeontology, evolutionary biology and neurosciences.
Collapse
Affiliation(s)
- Fabien Knoll
- ARAID‐Fundación Conjunto Paleontológico de Teruel‐DinópolisTeruelSpain
- Departamento de PaleobiologíaMuseo Nacional de Ciencias Naturales‐CSICMadridSpain
| | - Soichiro Kawabe
- Institute of Dinosaur ResearchFukui Prefectural UniversityFukuiJapan
- Fukui Prefectural Dinosaur MuseumFukuiJapan
| |
Collapse
|
12
|
Iwaniuk AN, Wylie DR. Sensory systems in birds: What we have learned from studying sensory specialists. J Comp Neurol 2020; 528:2902-2918. [PMID: 32133638 DOI: 10.1002/cne.24896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 12/27/2022]
Abstract
"Diversity" is an apt descriptor of the research career of Jack Pettigrew as it ranged from the study of trees, to clinical conditions, to sensory neuroscience. Within sensory neuroscience, he was fascinated by the evolution of sensory systems across species. Here, we review some of his work on avian sensory specialists and research that he inspired in others. We begin with an overview of the importance of the Wulst in stereopsis and the need for further study of the Wulst in relation to binocularity across avian species. Next, we summarize recent anatomical, behavioral, and physiological studies on optic flow specializations in hummingbirds. Beyond vision, we discuss the first evidence of a tactile "fovea" in birds and how this led to detailed studies of tactile specializations in waterfowl and sensorimotor systems in parrots. We then describe preliminary studies by Pettigrew of two endemic Australian species, the plains-wanderer (Pedionomus torquatus) and letter-winged kite (Elanus scriptus), that suggest the evolution of some unique auditory and visual specializations in relation to their unique behavior and ecology. Finally, we conclude by emphasizing the importance of a comparative and integrative approach to understanding avian sensory systems and provide an example of one system that has yet to be properly examined: tactile facial bristles in birds. Through reviewing this research and offering future avenues for discovery, we hope that others also embrace the comparative approach to understanding sensory system evolution in birds and other vertebrates.
Collapse
Affiliation(s)
- Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Beyond Endocasts: Using Predicted Brain-Structure Volumes of Extinct Birds to Assess Neuroanatomical and Behavioral Inferences. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12010034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The shape of the brain influences skull morphology in birds, and both traits are driven by phylogenetic and functional constraints. Studies on avian cranial and neuroanatomical evolution are strengthened by data on extinct birds, but complete, 3D-preserved vertebrate brains are not known from the fossil record, so brain endocasts often serve as proxies. Recent work on extant birds shows that the Wulst and optic lobe faithfully represent the size of their underlying brain structures, both of which are involved in avian visual pathways. The endocasts of seven extinct birds were generated from microCT scans of their skulls to add to an existing sample of endocasts of extant birds, and the surface areas of their Wulsts and optic lobes were measured. A phylogenetic prediction method based on Bayesian inference was used to calculate the volumes of the brain structures of these extinct birds based on the surface areas of their overlying endocast structures. This analysis resulted in hyperpallium volumes of five of these extinct birds and optic tectum volumes of all seven extinct birds. Phylogenetic ANCOVA (phyANCOVA) were performed on regressions of the brain-structure volumes and endocast structure surface areas on various brain size metrics to determine if the relative sizes of these structures in any extinct birds were significantly different from those of the extant birds in the sample. Phylogenetic ANCOVA indicated that no extinct birds studied had relative hyperpallial volumes that were significantly different from the extant sample, nor were any of their optic tecta relatively hypertrophied. The optic tectum of Dinornis robustus was significantly smaller relative to brain size than any of the extant birds in our sample. This study provides an analytical framework for testing the hypotheses of potential functional behavioral capabilities of other extinct birds based on their endocasts.
Collapse
|
14
|
Salazar J, Severin D, Vega-Zuniga T, Fernández-Aburto P, Deichler A, Sallaberry A. M, Mpodozis J. Anatomical Specializations Related to Foraging in the Visual System of a Nocturnal Insectivorous Bird, the Band-Winged Nightjar (Aves: Caprimulgiformes). BRAIN, BEHAVIOR AND EVOLUTION 2019; 94:27-36. [DOI: 10.1159/000504162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 11/19/2022]
Abstract
Nocturnal animals that rely on their visual system for foraging, mating, and navigation usually exhibit specific traits associated with living in scotopic conditions. Most nocturnal birds have several visual specializations, such as enlarged eyes and an increased orbital convergence. However, the actual role of binocular vision in nocturnal foraging is still debated. Nightjars (Aves: Caprimulgidae) are predators that actively pursue and capture flying insects in crepuscular and nocturnal environments, mainly using a conspicuous “sit-and-wait” tactic on which pursuit begins with an insect flying over the bird that sits on the ground. In this study, we describe the visual system of the band-winged nightjar (Systellura longirostris), with emphasis on anatomical features previously described as relevant for nocturnal birds. Orbit convergence, determined by 3D scanning of the skull, was 73.28°. The visual field, determined by ophthalmoscopic reflex, exhibits an area of maximum binocular overlap of 42°, and it is dorsally oriented. The eyes showed a nocturnal-like normalized corneal aperture/axial length index. Retinal ganglion cells (RGCs) were relatively scant, and distributed in an unusual oblique-band pattern, with higher concentrations in the ventrotemporal quadrant. Together, these results indicate that the band-winged nightjar exhibits a retinal specialization associated with the binocular area of their dorsal visual field, a relevant area for pursuit triggering and prey attacks. The RGC distribution observed is unusual among birds, but similar to that of some visually dependent insectivorous bats, suggesting that those features might be convergent in relation to feeding strategies.
Collapse
|
15
|
Belekhova MG, Kenigfest NB, Vasilyev DS, Chudinova TV. Distribution of Calcium-Binding Proteins and Cytochrome Oxidase Activity in the Projective Zone (Wulst) of the Pigeon Thalamofugal Visual Pathway: A Discussion in the Light of Current Concepts on Homology between the Avian Wulst and the Mammalian Striate (Visual) Cortex. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s0022093019040070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Multiphase progenetic development shaped the brain of flying archosaurs. Sci Rep 2019; 9:10807. [PMID: 31346192 PMCID: PMC6658547 DOI: 10.1038/s41598-019-46959-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 07/05/2019] [Indexed: 11/10/2022] Open
Abstract
The growing availability of virtual cranial endocasts of extinct and extant vertebrates has fueled the quest for endocranial characters that discriminate between phylogenetic groups and resolve their neural significances. We used geometric morphometrics to compare a phylogenetically and ecologically comprehensive data set of archosaurian endocasts along the deep evolutionary history of modern birds and found that this lineage experienced progressive elevation of encephalisation through several chapters of increased endocranial doming that we demonstrate to result from progenetic developments. Elevated encephalisation associated with progressive size reduction within Maniraptoriformes was secondarily exapted for flight by stem avialans. Within Mesozoic Avialae, endocranial doming increased in at least some Ornithurae, yet remained relatively modest in early Neornithes. During the Paleogene, volant non-neoavian birds retained ancestral levels of endocast doming where a broad neoavian niche diversification experienced heterochronic brain shape radiation, as did non-volant Palaeognathae. We infer comparable developments underlying the establishment of pterosaurian brain shapes.
Collapse
|
17
|
Torres CR, Clarke JA. Nocturnal giants: evolution of the sensory ecology in elephant birds and other palaeognaths inferred from digital brain reconstructions. Proc Biol Sci 2018; 285:20181540. [PMID: 30381378 PMCID: PMC6235046 DOI: 10.1098/rspb.2018.1540] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/10/2018] [Indexed: 11/12/2022] Open
Abstract
The recently extinct Malagasy elephant birds (Palaeognathae, Aepyornithiformes) included the largest birds that ever lived. Elephant bird neuroanatomy is understudied but can shed light on the lifestyle of these enigmatic birds. Palaeoneurological studies can provide clues to the ecologies and behaviours of extinct birds because avian brain shape is correlated with neurological function. We digitally reconstruct endocasts of two elephant bird species, Aepyornis maximus and A. hildebrandti, and compare them with representatives of all major extant and recently extinct palaeognath lineages. Among palaeognaths, we find large olfactory bulbs in taxa generally occupying forested environments where visual cues used in foraging are likely to be limited. We detected variation in olfactory bulb size among elephant bird species, possibly indicating interspecific variation in habitat. Elephant birds exhibited extremely reduced optic lobes, a condition also observed in the nocturnal kiwi. Kiwi, the sister taxon of elephant birds, have effectively replaced their visual systems with hyperdeveloped olfactory, somatosensory and auditory systems useful for foraging. We interpret these results as evidence for nocturnality among elephant birds. Vision was likely deemphasized in the ancestor of elephant birds and kiwi. These results show a previously unreported trend towards decreased visual capacity apparently exclusive to flightless, nocturnal taxa endemic to predator-depauperate islands.
Collapse
Affiliation(s)
- Christopher R Torres
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, C0930, Austin, TX 78712, USA
| | - Julia A Clarke
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, C0930, Austin, TX 78712, USA
- Jackson School of Geosciences, University of Texas at Austin, 2305 Speedway, C1160, Austin, TX 78712, USA
| |
Collapse
|
18
|
Stańczyk EK, Velasco Gallego ML, Nowak M, Hatt JM, Kircher PR, Carrera I. 3.0 Tesla magnetic resonance imaging anatomy of the central nervous system, eye, and inner ear in birds of prey. Vet Radiol Ultrasound 2018; 59:705-714. [PMID: 29978528 DOI: 10.1111/vru.12657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/18/2018] [Accepted: 03/23/2018] [Indexed: 11/28/2022] Open
Abstract
Despite the increasing interest in the clinical neurology of birds, little is known about the magnetic resonance imaging (MRI) appearance of the avian central nervous system, eye, and inner ear. The objective of this cadaveric study was to document the MRI anatomic features of the aforementioned structures using a high-resolution 3.0 Tesla MRI system. The final study group consisted of 13 cadavers of the diurnal birds of prey belonging to six species. Images were acquired in sagittal, dorsal, and transverse planes using T1-weighted and T2-weighted turbo spin echo sequences. A necropsy with macroscopic analysis of the brain and spinal cord was performed on all cadavers. Microscopic examination of the brain was performed on one cadaver of each species; the spinal cord was examined in three subjects. Anatomic structures were identified on the magnetic resonance images based on histologic slices and available literature. Very good resolution of anatomic detail was obtained. The olfactory bulbs; cerebral hemispheres; diencephalon; optic lobe; cerebellum; pons; ventricular system; optic, trigeminal, and facial nerves; pineal and pituitary glands; as well as the semicircular canals of the inner ear were identified. Exquisite detail was achieved on the ocular structures. In the spinal cord, the gray and white matter differentiation and the glycogen body were identified. This study establishes normal MRI anatomy of the central nervous system, eye, and inner ear of the birds of prey; and may be used as a reference in the assessment of neurologic disorders or visual impairment in this group of birds.
Collapse
Affiliation(s)
- Ewa K Stańczyk
- Clinic for Diagnostic Imaging, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - María L Velasco Gallego
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Maricn Nowak
- Department of Pathology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jean-Michel Hatt
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Patrick R Kircher
- Clinic for Diagnostic Imaging, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Inés Carrera
- Southern Counties Veterinary Specialist, Hangersley, UK
| |
Collapse
|
19
|
Parrots have evolved a primate-like telencephalic-midbrain-cerebellar circuit. Sci Rep 2018; 8:9960. [PMID: 29967361 PMCID: PMC6028647 DOI: 10.1038/s41598-018-28301-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 06/20/2018] [Indexed: 01/13/2023] Open
Abstract
It is widely accepted that parrots show remarkable cognitive abilities. In mammals, the evolution of complex cognitive abilities is associated with increases in the size of the telencephalon and cerebellum as well as the pontine nuclei, which connect these two regions. Parrots have relatively large telencephalons that rival those of primates, but whether there are also evolutionary changes in their telencephalon-cerebellar relay nuclei is unknown. Like mammals, birds have two brainstem pontine nuclei that project to the cerebellum and receive projections from the telencephalon. Unlike mammals, birds also have a pretectal nucleus that connects the telencephalon with the cerebellum: the medial spiriform nucleus (SpM). We found that SpM, but not the pontine nuclei, is greatly enlarged in parrots and its relative size significantly correlated with the relative size of the telencephalon across all birds. This suggests that the telencephalon-SpM-cerebellar pathway of birds may play an analogous role to cortico-ponto-cerebellar pathways of mammals in controlling fine motor skills and complex cognitive processes. We conclude that SpM is key to understanding the role of telencephalon-cerebellar pathways in the evolution of complex cognitive abilities in birds.
Collapse
|
20
|
Vieira PG, de Sousa JPM, Baron J. Contrast response functions in the visual wulst of the alert burrowing owl: a single-unit study. J Neurophysiol 2016; 116:1765-1784. [PMID: 27466135 DOI: 10.1152/jn.00505.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/15/2016] [Indexed: 11/22/2022] Open
Abstract
The neuronal representation of luminance contrast has not been thoroughly studied in birds. Here we present a detailed quantitative analysis of the contrast response of 120 individual neurons recorded from the visual wulst of awake burrowing owls (Athene cunicularia). Stimuli were sine-wave gratings presented within the cell classical receptive field and optimized in terms of eye preference, direction of drift, and spatiotemporal frequency. As contrast intensity was increased from zero to near 100%, most cells exhibited a monotonic response profile with a compressive, at times saturating, nonlinearity at higher contrasts. However, contrast response functions were found to have a highly variable shape across cells. With the view to capture a systematic trend in the data, we assessed the performance of four plausible models (linear, power, logarithmic, and hyperbolic ratio) using classical goodness-of-fit measures and more rigorous statistical tools for multimodel inferences based on the Akaike information criterion. From this analysis, we conclude that a high degree of model uncertainty is present in our data, meaning that no single descriptor is able on its own to capture the heterogeneous nature of single-unit contrast responses in the wulst. We further show that the generalizability of the hyperbolic ratio model established, for example, in the primary visual cortex of cats and monkeys is not tenable in the owl wulst mainly because most neurons in this area have a much wider dynamic range that starts at low contrast. The challenge for future research will be to understand the functional implications of these findings.
Collapse
Affiliation(s)
- Pedro Gabrielle Vieira
- Graduate Program in Physiology and Pharmacology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João Paulo Machado de Sousa
- Graduate Program in Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; and
| | - Jerome Baron
- Graduate Program in Physiology and Pharmacology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Graduate Program in Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; and Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
21
|
Balanoff AM, Bever GS, Colbert MW, Clarke JA, Field DJ, Gignac PM, Ksepka DT, Ridgely RC, Smith NA, Torres CR, Walsh S, Witmer LM. Best practices for digitally constructing endocranial casts: examples from birds and their dinosaurian relatives. J Anat 2016; 229:173-90. [PMID: 26403623 PMCID: PMC4948053 DOI: 10.1111/joa.12378] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 11/28/2022] Open
Abstract
The rapidly expanding interest in, and availability of, digital tomography data to visualize casts of the vertebrate endocranial cavity housing the brain (endocasts) presents new opportunities and challenges to the field of comparative neuroanatomy. The opportunities are many, ranging from the relatively rapid acquisition of data to the unprecedented ability to integrate critically important fossil taxa. The challenges consist of navigating the logistical barriers that often separate a researcher from high-quality data and minimizing the amount of non-biological variation expressed in endocasts - variation that may confound meaningful and synthetic results. Our purpose here is to outline preferred approaches for acquiring digital tomographic data, converting those data to an endocast, and making those endocasts as meaningful as possible when considered in a comparative context. This review is intended to benefit those just getting started in the field but also serves to initiate further discussion between active endocast researchers regarding the best practices for advancing the discipline. Congruent with the theme of this volume, we draw our examples from birds and the highly encephalized non-avian dinosaurs that comprise closely related outgroups along their phylogenetic stem lineage.
Collapse
Affiliation(s)
- Amy M. Balanoff
- Department of Anatomical SciencesStony Brook UniversityStony BrookNYUSA
| | - G. S. Bever
- Department of AnatomyNew York Institute of TechnologyCollege of Osteopathic MedicineOld WestburyNYUSA
| | - Matthew W. Colbert
- Department of Geological SciencesThe University of Texas at AustinAustinTXUSA
| | - Julia A. Clarke
- Department of Geological SciencesThe University of Texas at AustinAustinTXUSA
| | - Daniel J. Field
- Department of Geology and GeophysicsYale UniversityNew HavenCTUSA
| | - Paul M. Gignac
- Department of Anatomy and Cell BiologyOklahoma State University Center for Health SciencesTulsaOKUSA
| | | | - Ryan C. Ridgely
- Department of Biomedical SciencesHeritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - N. Adam Smith
- Department of Earth SciencesThe Field Museum of Natural HistoryChicagoILUSA
| | | | - Stig Walsh
- Department of Natural SciencesNational Museums ScotlandEdinburghUK
| | - Lawrence M. Witmer
- Department of Biomedical SciencesHeritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| |
Collapse
|
22
|
Proffitt JV, Clarke JA, Scofield RP. Novel insights into early neuroanatomical evolution in penguins from the oldest described penguin brain endocast. J Anat 2016; 229:228-38. [PMID: 26916364 PMCID: PMC4948054 DOI: 10.1111/joa.12447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2016] [Indexed: 11/29/2022] Open
Abstract
Digital methodologies for rendering the gross morphology of the brain from X-ray computed tomography data have expanded our current understanding of the origin and evolution of avian neuroanatomy and provided new perspectives on the cognition and behavior of birds in deep time. However, fossil skulls germane to extracting digital endocasts from early stem members of extant avian lineages remain exceptionally rare. Data from early-diverging species of major avian subclades provide key information on ancestral morphologies in Aves and shifts in gross neuroanatomical structure that have occurred within those groups. Here we describe data on the gross morphology of the brain from a mid-to-late Paleocene penguin fossil from New Zealand. This most basal and geochronologically earliest-described endocast from the penguin clade indicates that described neuroanatomical features of early stem penguins, such as lower telencephalic lateral expansion, a relatively wider cerebellum, and lack of cerebellar folding, were present far earlier in penguin history than previously inferred. Limited dorsal expansion of the wulst in the new fossil is a feature seen in outgroup waterbird taxa such as Gaviidae (Loons) and diving Procellariiformes (Shearwaters, Diving Petrels, and allies), indicating that loss of flight may not drastically affect neuroanatomy in diving taxa. Wulst enlargement in the penguin lineage is first seen in the late Eocene, at least 25 million years after loss of flight and cooption of the flight stroke for aquatic diving. Similar to the origin of avian flight, major shifts in gross brain morphology follow, but do not appear to evolve quickly after, acquisition of a novel locomotor mode. Enlargement of the wulst shows a complex pattern across waterbirds, and may be linked to sensory modifications related to prey choice and foraging strategy.
Collapse
Affiliation(s)
- J. V. Proffitt
- Jackson School of GeosciencesThe University of Texas at AustinAustinTXUSA
| | - J. A. Clarke
- Jackson School of GeosciencesThe University of Texas at AustinAustinTXUSA
| | | |
Collapse
|
23
|
Sayol F, Lefebvre L, Sol D. Relative Brain Size and Its Relation with the Associative Pallium in Birds. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:69-77. [DOI: 10.1159/000444670] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/11/2016] [Indexed: 11/19/2022]
Abstract
Despite growing interest in the evolution of enlarged brains, the biological significance of brain size variation remains controversial. Much of the controversy is over the extent to which brain structures have evolved independently of each other (mosaic evolution) or in a coordinated way (concerted evolution). If larger brains have evolved by the increase of different brain regions in different species, it follows that comparisons of the whole brain might be biologically meaningless. Such an argument has been used to criticize comparative attempts to explain the existing variation in whole-brain size among species. Here, we show that pallium areas associated with domain-general cognition represent a large fraction of the entire brain, are disproportionally larger in large-brained birds and accurately predict variation in the whole brain when allometric effects are appropriately accounted for. While this does not question the importance of mosaic evolution, it suggests that examining specialized, small areas of the brain is not very helpful for understanding why some birds have evolved such large brains. Instead, the size of the whole brain reflects consistent variation in associative pallium areas and hence is functionally meaningful for comparative analyses.
Collapse
|
24
|
Walsh SA, Milner AC, Bourdon E. A reappraisal of Cerebavis cenomanica (Aves, Ornithurae), from Melovatka, Russia. J Anat 2015; 229:215-27. [PMID: 26553244 DOI: 10.1111/joa.12406] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2015] [Indexed: 11/30/2022] Open
Abstract
The evolution of the avian brain is of crucial importance to studies of the transition from non-avian dinosaurs to modern birds, but very few avian fossils provide information on brain morphological development during the Mesozoic. An isolated specimen from the Cenomanian of Melovatka in Russia was described by Kurochkin and others as a fossilized brain, designated the holotype of Cerebavis cenomanica Kurochkin and Saveliev and tentatively referred to Enantiornithes. We have previously highlighted that this specimen is an incomplete skull, rendering the diagnostic characters invalid and Cerebavis cenomanica a nomen dubium. We provide here a revised diagnosis of Cerebavis cenomanica based on osteological characters, and a reconstruction of the endocranial morphology (= brain shape) based on μCT investigation of the braincase. Absence of temporal fenestrae indicates an ornithurine affinity for Cerebavis. The brain of this taxon was clearly closer to that of modern birds than to Archaeopteryx and does not represent a divergent evolutionary pathway as originally concluded by Kurochkin and others. No telencephalic wulst is present, suggesting that this advanced avian neurological feature was not recognizably developed 93 million years ago.
Collapse
Affiliation(s)
- Stig A Walsh
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK.,School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Angela C Milner
- Department of Earth Sciences, The Natural History Museum, London, UK
| | - Estelle Bourdon
- Natural History Museum of Denmark, Section of Biosystematics, Copenhagen, Denmark
| |
Collapse
|
25
|
Wylie DR, Gutiérrez-Ibáñez C, Iwaniuk AN. Integrating brain, behavior, and phylogeny to understand the evolution of sensory systems in birds. Front Neurosci 2015; 9:281. [PMID: 26321905 PMCID: PMC4531248 DOI: 10.3389/fnins.2015.00281] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/28/2015] [Indexed: 12/29/2022] Open
Abstract
The comparative anatomy of sensory systems has played a major role in developing theories and principles central to evolutionary neuroscience. This includes the central tenet of many comparative studies, the principle of proper mass, which states that the size of a neural structure reflects its processing capacity. The size of structures within the sensory system is not, however, the only salient variable in sensory evolution. Further, the evolution of the brain and behavior are intimately tied to phylogenetic history, requiring studies to integrate neuroanatomy with behavior and phylogeny to gain a more holistic view of brain evolution. Birds have proven to be a useful group for these studies because of widespread interest in their phylogenetic relationships and a wealth of information on the functional organization of most of their sensory pathways. In this review, we examine the principle of proper mass in relation differences in the sensory capabilities among birds. We discuss how neuroanatomy, behavior, and phylogeny can be integrated to understand the evolution of sensory systems in birds providing evidence from visual, auditory, and somatosensory systems. We also consider the concept of a "trade-off," whereby one sensory system (or subpathway within a sensory system), may be expanded in size, at the expense of others, which are reduced in size.
Collapse
Affiliation(s)
- Douglas R. Wylie
- Neurosciences and Mental Health Institute, University of AlbertaEdmonton, AB, Canada
| | | | - Andrew N. Iwaniuk
- Department of Neuroscience, University of LethbridgeLethbridge, AB, Canada
| |
Collapse
|
26
|
Kawabe S, Matsuda S, Tsunekawa N, Endo H. Ontogenetic Shape Change in the Chicken Brain: Implications for Paleontology. PLoS One 2015; 10:e0129939. [PMID: 26053849 PMCID: PMC4460028 DOI: 10.1371/journal.pone.0129939] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/14/2015] [Indexed: 11/19/2022] Open
Abstract
Paleontologists have investigated brain morphology of extinct birds with little information on post-hatching changes in avian brain morphology. Without the knowledge of ontogenesis, assessing brain morphology in fossil taxa could lead to misinterpretation of the phylogeny or neurosensory development of extinct species. Hence, it is imperative to determine how avian brain morphology changes during post-hatching growth. In this study, chicken brain shape was compared at various developmental stages using three-dimensional (3D) geometric morphometric analysis and the growth rate of brain regions was evaluated to explore post-hatching morphological changes. Microscopic MRI (μMRI) was used to acquire in vivo data from living and post-mortem chicken brains. The telencephalon rotates caudoventrally during growth. This change in shape leads to a relative caudodorsal rotation of the cerebellum and myelencephalon. In addition, all brain regions elongate rostrocaudally and this leads to a more slender brain shape. The growth rates of each brain region were constant and the slopes from the growth formula were parallel. The dominant pattern of ontogenetic shape change corresponded with interspecific shape changes due to increasing brain size. That is, the interspecific and ontogenetic changes in brain shape due to increased size have similar patterns. Although the shape of the brain and each brain region changed considerably, the volume ratio of each brain region did not change. This suggests that the brain can change its shape after completing functional differentiation of the brain regions. Moreover, these results show that consideration of ontogenetic changes in brain shape is necessary for an accurate assessment of brain morphology in paleontological studies.
Collapse
Affiliation(s)
- Soichiro Kawabe
- Gifu Prefectural Museum, Gifu, Japan
- The University Museum, The University of Tokyo, Tokyo, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, School of Medicine, Ehime University, Ehime, Japan
| | - Naoki Tsunekawa
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | - Hideki Endo
- The University Museum, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Gutiérrez-Ibáñez C, Iwaniuk AN, Moore BA, Fernández-Juricic E, Corfield JR, Krilow JM, Kolominsky J, Wylie DR. Mosaic and concerted evolution in the visual system of birds. PLoS One 2014; 9:e90102. [PMID: 24621573 PMCID: PMC3951201 DOI: 10.1371/journal.pone.0090102] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/28/2014] [Indexed: 11/19/2022] Open
Abstract
Two main models have been proposed to explain how the relative size of neural structures varies through evolution. In the mosaic evolution model, individual brain structures vary in size independently of each other, whereas in the concerted evolution model developmental constraints result in different parts of the brain varying in size in a coordinated manner. Several studies have shown variation of the relative size of individual nuclei in the vertebrate brain, but it is currently not known if nuclei belonging to the same functional pathway vary independently of each other or in a concerted manner. The visual system of birds offers an ideal opportunity to specifically test which of the two models apply to an entire sensory pathway. Here, we examine the relative size of 9 different visual nuclei across 98 species of birds. This includes data on interspecific variation in the cytoarchitecture and relative size of the isthmal nuclei, which has not been previously reported. We also use a combination of statistical analyses, phylogenetically corrected principal component analysis and evolutionary rates of change on the absolute and relative size of the nine nuclei, to test if visual nuclei evolved in a concerted or mosaic manner. Our results strongly indicate a combination of mosaic and concerted evolution (in the relative size of nine nuclei) within the avian visual system. Specifically, the relative size of the isthmal nuclei and parts of the tectofugal pathway covary across species in a concerted fashion, whereas the relative volume of the other visual nuclei measured vary independently of one another, such as that predicted by the mosaic model. Our results suggest the covariation of different neural structures depends not only on the functional connectivity of each nucleus, but also on the diversity of afferents and efferents of each nucleus.
Collapse
Affiliation(s)
| | - Andrew N. Iwaniuk
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Bret A. Moore
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Esteban Fernández-Juricic
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Jeremy R. Corfield
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
- Department of Psychology, University of Alberta, Edmonton, Canada
| | - Justin M. Krilow
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | | | - Douglas R. Wylie
- Centre for Neuroscience, University of Alberta, Edmonton, Canada
- Department of Psychology, University of Alberta, Edmonton, Canada
| |
Collapse
|
28
|
Vega-Zuniga T, Medina FS, Fredes F, Zuniga C, Severín D, Palacios AG, Karten HJ, Mpodozis J. Does nocturnality drive binocular vision? Octodontine rodents as a case study. PLoS One 2013; 8:e84199. [PMID: 24391911 PMCID: PMC3877236 DOI: 10.1371/journal.pone.0084199] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/12/2013] [Indexed: 11/25/2022] Open
Abstract
Binocular vision is a visual property that allows fine discrimination of in-depth distance (stereopsis), as well as enhanced light and contrast sensitivity. In mammals enhanced binocular vision is structurally associated with a large degree of frontal binocular overlap, the presence of a corresponding retinal specialization containing a fovea or an area centralis, and well-developed ipsilateral retinal projections to the lateral thalamus (GLd). We compared these visual traits in two visually active species of the genus Octodon that exhibit contrasting visual habits: the diurnal Octodon degus, and the nocturnal Octodon lunatus. The O. lunatus visual field has a prominent 100° frontal binocular overlap, much larger than the 50° of overlap found in O. degus. Cells in the retinal ganglion cell layer were 40% fewer in O. lunatus (180,000) than in O. degus (300,000). O. lunatus has a poorly developed visual streak, but a well developed area centralis, located centrally near the optic disk (peak density of 4,352 cells/mm2). O. degus has a highly developed visual streak, and an area centralis located more temporally (peak density of 6,384 cells/mm2). The volumes of the contralateral GLd and superior colliculus (SC) are 15% larger in O. degus compared to O. lunatus. However, the ipsilateral projections to GLd and SC are 500% larger in O. lunatus than in O. degus. Other retinorecipient structures related to ocular movements and circadian activity showed no statistical differences between species. Our findings strongly suggest that nocturnal visual behavior leads to an enhancement of the structures associated with binocular vision, at least in the case of these rodents. Expansion of the binocular visual field in nocturnal species may have a beneficial effect in light and contrast sensitivity, but not necessarily in stereopsis. We discuss whether these conclusions can be extended to other mammalian and non-mammalian amniotes.
Collapse
Affiliation(s)
- Tomas Vega-Zuniga
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Felipe S. Medina
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Felipe Fredes
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Claudio Zuniga
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Daniel Severín
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Adrián G. Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Harvey J. Karten
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
29
|
Kawabe S, Shimokawa T, Miki H, Matsuda S, Endo H. Variation in avian brain shape: relationship with size and orbital shape. J Anat 2013; 223:495-508. [PMID: 24020351 DOI: 10.1111/joa.12109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2013] [Indexed: 11/29/2022] Open
Abstract
There is wide variation in brain shape among birds. Differences in brain dimensions reflect species-specific sensory capacities and behavioral repertoires that are shaped by environmental and biological factors during evolution. Most previous studies aimed at defining factors impacting brain shape have used volumetric or linear measurements. However, few have explored the quantitative indices of three-dimensional (3D) brain geometry that are absolutely imperative to understanding avian evolutionary history. This study aimed: (i) to explore the relationship between brain shape and overall brain size; and (ii) to assess the relationship between brain shape and orbital shape. Avian brain endocasts were reconstructed from computed tomography images and analyzed using 3D geometric morphometrics. Principal component analysis revealed dominant regional variations in avian brain shape and shape correlations between the telencephalon and cerebellum, between the cerebellum and myelencephalon, and between the diencephalon and optic tectum. Brain shape changes relative to total brain size were determined by multivariate regression analysis. Larger brain size was associated with a relatively slender telencephalon and differences in brain orientation. The correlation between brain shape and orbital shape was assessed by two-block partial least-squares analysis. Relatively round brains with a ventrally flexed brain base were associated with rounder orbits, while narrower brains with a flat brain base were associated with more elongated orbits. The shapes of functionally associated avian brain regions are correlated, and orbital size and shape are dominant factors influencing the overall shape of the avian brain.
Collapse
Affiliation(s)
- Soichiro Kawabe
- The University Museum, The University of Tokyo, Tokyo, Japan; Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan; Gifu Prefectural Museum, Gifu, Japan
| | | | | | | | | |
Collapse
|
30
|
Gutiérrez-Ibáñez C, Iwaniuk AN, Lisney TJ, Wylie DR. Comparative study of visual pathways in owls (Aves: Strigiformes). BRAIN, BEHAVIOR AND EVOLUTION 2012; 81:27-39. [PMID: 23296024 DOI: 10.1159/000343810] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/27/2012] [Indexed: 11/19/2022]
Abstract
Although they are usually regarded as nocturnal, owls exhibit a wide range of activity patterns, from strictly nocturnal, to crepuscular or cathemeral, to diurnal. Several studies have shown that these differences in the activity pattern are reflected in differences in eye morphology and retinal organization. Despite the evidence that differences in activity pattern among owl species are reflected in the peripheral visual system, there has been no attempt to correlate these differences with changes in the visual regions in the brain. In this study, we compare the relative size of nuclei in the main visual pathways in nine species of owl that exhibit a wide range of activity patterns. We found marked differences in the relative size of all visual structures among the species studied, both in the tectofugal and the thalamofugal pathway, as well in other retinorecipient nuclei, including the nucleus lentiformis mesencephali, the nucleus of the basal optic root and the nucleus geniculatus lateralis, pars ventralis. We show that the barn owl (Tyto alba), a species widely used in the study of the integration of visual and auditory processing, has reduced visual pathways compared to strigid owls. Our results also suggest there could be a trade-off between the relative size of visual pathways and auditory pathways, similar to that reported in mammals. Finally, our results show that although there is no relationship between activity pattern and the relative size of either the tectofugal or the thalamofugal pathway, there is a positive correlation between the relative size of both visual pathways and the relative number of cells in the retinal ganglion layer.
Collapse
|
31
|
Smith NA, Clarke JA. Endocranial anatomy of the charadriiformes: sensory system variation and the evolution of wing-propelled diving. PLoS One 2012; 7:e49584. [PMID: 23209585 PMCID: PMC3507831 DOI: 10.1371/journal.pone.0049584] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 10/15/2012] [Indexed: 11/24/2022] Open
Abstract
Just as skeletal characteristics provide clues regarding behavior of extinct vertebrates, phylogenetically-informed evaluation of endocranial morphology facilitates comparisons among extinct taxa and extant taxa with known behavioral characteristics. Previous research has established that endocranial morphology varies across Aves; however, variation of those systems among closely related species remains largely unexplored. The Charadriiformes (shorebirds and allies) are an ecologically diverse clade with a comparatively rich fossil record, and therefore, are well suited for investigating interspecies variation, and potential links between endocranial morphology, phylogeny, ecology and other life history attributes. Endocranial endocasts were rendered from high resolution X-ray computed tomography data for 17 charadriiforms (15 extant and two flightless extinct species). Evaluation of endocranial character state changes on a phylogeny for Charadriiformes resulted in identification of characters that vary in taxa with distinct feeding and locomotor ecologies. In comparison with all other charadriiforms, stem and crown clade wing-propelled diving Pan-Alcidae displayed compressed semicircular canals, and indistinct occipital sinuses and cerebellar fissures. Flightless wing-propelled divers have relatively smaller brains for their body mass and smaller optic lobes than volant pan-alcids. Observed differences between volant and flightless wing-propelled sister taxa are striking given that flightless pan-alcids continue to rely on the flight stroke for underwater propulsion. Additionally, the brain of the Black Skimmer Rynchops niger, a taxon with a unique feeding ecology that involves continuous forward aerial motion and touch-based prey detection used both at day and night, is discovered to be unlike that of any other sampled charadriiform in having an extremely large wulst as well as a small optic lobe and distinct occipital sinus. Notably, the differences between the Black Skimmer and other charadriiforms are more pronounced than between wing-propelled divers and other charadriiforms. Finally, aspects of endosseous labyrinth morphology are remarkably similar between divers and non-divers, and may deserve further evaluation.
Collapse
Affiliation(s)
- N Adam Smith
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA.
| | | |
Collapse
|
32
|
Corfield JR, Wild JM, Parsons S, Kubke MF. Morphometric analysis of telencephalic structure in a variety of neognath and paleognath bird species reveals regional differences associated with specific behavioral traits. BRAIN, BEHAVIOR AND EVOLUTION 2012; 80:181-95. [PMID: 22890218 DOI: 10.1159/000339828] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/19/2012] [Indexed: 11/19/2022]
Abstract
Birds exhibit a huge array of behavior, ecology and physiology, and occupy nearly every environment on earth, ranging from the desert outback of Australia to the tropical rain forests of Panama. Some birds have adopted a fully nocturnal lifestyle, such as the barn owl and kiwi, while others, such as the albatross, spend nearly their entire life flying over the ocean. Each species has evolved unique adaptations over millions of years to function in their respective niche. In order to increase processing power or network efficiency, many of these adaptations require enlargements and/or specializations of the brain as a whole or of specific brain regions. In this study, we examine the relative size and morphology of 9 telencephalic regions in a number of Paleognath and Neognath birds and relate the findings to differences in behavior and sensory ecology. We pay particular attention to those species that have undergone a relative enlargement of the telencephalon to determine whether this relative increase in telencephalic size is homogeneous across different brain regions or whether particular regions have become differentially enlarged. The analysis indicates that changes in the relative size of telencephalic regions are not homogeneous, with every species showing hypertrophy or hypotrophy of at least one of them. The three-dimensional structure of these regions in different species was also variable, in particular that of the mesopallium in kiwi. The findings from this study provide further evidence that the changes in relative brain size in birds reflect a process of mosaic evolution.
Collapse
Affiliation(s)
- Jeremy R Corfield
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand.
| | | | | | | |
Collapse
|
33
|
KSEPKA DANIELT, BALANOFF AMYM, WALSH STIG, REVAN ARIEL, HO AMY. Evolution of the brain and sensory organs in Sphenisciformes: new data from the stem penguin Paraptenodytes antarcticus. Zool J Linn Soc 2012. [DOI: 10.1111/j.1096-3642.2012.00835.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Serotonin 5-HT1A receptor binding sites in the brain of the pigeon (Columba livia). Neuroscience 2012; 200:1-12. [DOI: 10.1016/j.neuroscience.2011.10.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 01/18/2023]
|
35
|
Corfield J, Kubke MF, Parsons S, Wild JM, Köppl C. Evidence for an auditory fovea in the New Zealand kiwi (Apteryx mantelli). PLoS One 2011; 6:e23771. [PMID: 21887317 PMCID: PMC3161079 DOI: 10.1371/journal.pone.0023771] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 07/25/2011] [Indexed: 11/18/2022] Open
Abstract
Kiwi are rare and strictly protected birds of iconic status in New Zealand. Yet, perhaps due to their unusual, nocturnal lifestyle, surprisingly little is known about their behaviour or physiology. In the present study, we exploited known correlations between morphology and physiology in the avian inner ear and brainstem to predict the frequency range of best hearing in the North Island brown kiwi. The mechanosensitive hair bundles of the sensory hair cells in the basilar papilla showed the typical change from tall bundles with few stereovilli to short bundles with many stereovilli along the apical-to-basal tonotopic axis. In contrast to most birds, however, the change was considerably less in the basal half of the epithelium. Dendritic lengths in the brainstem nucleus laminaris also showed the typical change along the tonotopic axis. However, as in the basilar papilla, the change was much less pronounced in the presumed high-frequency regions. Together, these morphological data suggest a fovea-like overrepresentation of a narrow high-frequency band in kiwi. Based on known correlations of hair-cell microanatomy and physiological responses in other birds, a specific prediction for the frequency representation along the basilar papilla of the kiwi was derived. The predicted overrepresentation of approximately 4-6 kHz matches potentially salient frequency bands of kiwi vocalisations and may thus be an adaptation to a nocturnal lifestyle in which auditory communication plays a dominant role.
Collapse
Affiliation(s)
- Jeremy Corfield
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - M. Fabiana Kubke
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| | - Stuart Parsons
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - J. Martin Wild
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| | - Christine Köppl
- Institute for Biology and Environmental Sciences, and Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
36
|
Corfield JR, Gsell AC, Brunton D, Heesy CP, Hall MI, Acosta ML, Iwaniuk AN. Anatomical specializations for nocturnality in a critically endangered parrot, the Kakapo (Strigops habroptilus). PLoS One 2011; 6:e22945. [PMID: 21860663 PMCID: PMC3157909 DOI: 10.1371/journal.pone.0022945] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/05/2011] [Indexed: 11/19/2022] Open
Abstract
The shift from a diurnal to nocturnal lifestyle in vertebrates is generally associated with either enhanced visual sensitivity or a decreased reliance on vision. Within birds, most studies have focused on differences in the visual system across all birds with respect to nocturnality-diurnality. The critically endangered Kakapo (Strigops habroptilus), a parrot endemic to New Zealand, is an example of a species that has evolved a nocturnal lifestyle in an otherwise diurnal lineage, but nothing is known about its' visual system. Here, we provide a detailed morphological analysis of the orbits, brain, eye, and retina of the Kakapo and comparisons with other birds. Morphometric analyses revealed that the Kakapo's orbits are significantly more convergent than other parrots, suggesting an increased binocular overlap in the visual field. The Kakapo exhibits an eye shape that is consistent with other nocturnal birds, including owls and nightjars, but is also within the range of the diurnal parrots. With respect to the brain, the Kakapo has a significantly smaller optic nerve and tectofugal visual pathway. Specifically, the optic tectum, nucleus rotundus and entopallium were significantly reduced in relative size compared to other parrots. There was no apparent reduction to the thalamofugal visual pathway. Finally, the retinal morphology of the Kakapo is similar to that of both diurnal and nocturnal birds, suggesting a retina that is specialised for a crepuscular niche. Overall, this suggests that the Kakapo has enhanced light sensitivity, poor visual acuity and a larger binocular field than other parrots. We conclude that the Kakapo possesses a visual system unlike that of either strictly nocturnal or diurnal birds and therefore does not adhere to the traditional view of the evolution of nocturnality in birds.
Collapse
Affiliation(s)
- Jeremy R Corfield
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada.
| | | | | | | | | | | | | |
Collapse
|
37
|
A molecular phylogenetic survey of caprimulgiform nightbirds illustrates the utility of non-coding sequences. Mol Phylogenet Evol 2009; 53:948-60. [PMID: 19720151 DOI: 10.1016/j.ympev.2009.08.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 08/19/2009] [Accepted: 08/25/2009] [Indexed: 11/21/2022]
Abstract
The order Caprimulgiformes comprises five bird families adapted to nocturnal activity. The order has been regarded as monophyletic, but recent evidence suggests that swifts and hummingbirds (Apodiformes) belong within it. To explore the group's phylogeny, we obtained more than 2000 bp of DNA sequence from the cytochrome b and c-myc genes for 35 taxa, representing all major lineages and outgroups. Non-coding sequences of the c-myc gene were unsaturated, readily alignable and contained numerous informative insertions and deletions (indels), signalling broad utility for higher level phylogenetics. A 12 bp insertion in c-myc links Apodiformes with owlet-nightjars, confirming paraphyly of the traditional Caprimulgiformes. However, even this rare genomic change is homoplasious when all birds are considered. Monophyly of each of the five traditional families was strongly confirmed, but relationships among families were poorly resolved. The tree structure argues against family status for Eurostopodus and Batrachostomus, which should be retained in Caprimulgidae and Podargidae, respectively. The genus Caprimulgus and both subfamilies of Caprimulgidae appear to be polyphyletic. The phylogeny elucidates the evolution of adaptive traits such as nocturnality and hypothermia, but whether nocturnality evolved once or multiple times is an open question.
Collapse
|
38
|
Relative Wulst volume is correlated with orbit orientation and binocular visual field in birds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 194:267-82. [DOI: 10.1007/s00359-007-0304-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 11/20/2007] [Accepted: 11/24/2007] [Indexed: 10/22/2022]
|
39
|
Necker R. Head-bobbing of walking birds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:1177-83. [DOI: 10.1007/s00359-007-0281-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 09/13/2007] [Accepted: 10/17/2007] [Indexed: 11/29/2022]
|
40
|
Baron J, Pinto L, Dias MO, Lima B, Neuenschwander S. Directional responses of visual wulst neurones to grating and plaid patterns in the awake owl. Eur J Neurosci 2007; 26:1950-68. [PMID: 17897399 DOI: 10.1111/j.1460-9568.2007.05783.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The avian retinothalamofugal pathway reaches the telencephalon in an area known as visual wulst. A close functional analogy between this area and the early visual cortex of mammals has been established in owls. The goal of the present study was to assess quantitatively the directional selectivity and motion integration capability of visual wulst neurones, aspects that have not been previously investigated. We recorded extracellularly from a total of 101 cells in awake burrowing owls. From this sample, 88% of the units exhibited modulated directional responses to sinusoidal gratings, with a mean direction index of 0.74 +/- 0.03 and tuning bandwidth of 28 +/- 1.16 degrees . A direction index higher than 0.5 was observed in 66% of the cells, thereby qualifying them as direction selective. Motion integration was tested with moving plaids, made by adding two sinusoidal gratings of different orientations. We found that 80% of direction-selective cells responded optimally to the motion direction of the component gratings, whereas none responded to the global motion of plaids, whose direction was intermediate to that of the gratings. The remaining 20% were unclassifiable. The strength of component motion selectivity rapidly increased over a 200 ms period following stimulus onset, maintaining a relatively sustained profile thereafter. Overall, our data suggest that, as in the mammalian primary visual cortex, the visual wulst neurones of owls signal the local orientated features of a moving object. How and where these potentially ambiguous signals are integrated in the owl brain might be important for understanding the mechanisms underlying global motion perception.
Collapse
Affiliation(s)
- Jerome Baron
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | | | | | | | | |
Collapse
|
41
|
Martin GR, Wilson KJ, Martin Wild J, Parsons S, Fabiana Kubke M, Corfield J. Kiwi forego vision in the guidance of their nocturnal activities. PLoS One 2007; 2:e198. [PMID: 17332846 PMCID: PMC1805817 DOI: 10.1371/journal.pone.0000198] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 01/15/2007] [Indexed: 11/19/2022] Open
Abstract
Background In vision, there is a trade-off between sensitivity and resolution, and any eye which maximises information gain at low light levels needs to be large. This imposes exacting constraints upon vision in nocturnal flying birds. Eyes are essentially heavy, fluid-filled chambers, and in flying birds their increased size is countered by selection for both reduced body mass and the distribution of mass towards the body core. Freed from these mass constraints, it would be predicted that in flightless birds nocturnality should favour the evolution of large eyes and reliance upon visual cues for the guidance of activity. Methodology/Principal Findings We show that in Kiwi (Apterygidae), flightlessness and nocturnality have, in fact, resulted in the opposite outcome. Kiwi show minimal reliance upon vision indicated by eye structure, visual field topography, and brain structures, and increased reliance upon tactile and olfactory information. Conclusions/Significance This lack of reliance upon vision and increased reliance upon tactile and olfactory information in Kiwi is markedly similar to the situation in nocturnal mammals that exploit the forest floor. That Kiwi and mammals evolved to exploit these habitats quite independently provides evidence for convergent evolution in their sensory capacities that are tuned to a common set of perceptual challenges found in forest floor habitats at night and which cannot be met by the vertebrate visual system. We propose that the Kiwi visual system has undergone adaptive regressive evolution driven by the trade-off between the relatively low rate of gain of visual information that is possible at low light levels, and the metabolic costs of extracting that information.
Collapse
Affiliation(s)
- Graham R Martin
- Centre for Ornithology, School of Biosciences, University of Birmingham, Edgbaston, United Kingdom.
| | | | | | | | | | | |
Collapse
|