1
|
Valencia-Montoya WA, Pierce NE, Bellono NW. Evolution of Sensory Receptors. Annu Rev Cell Dev Biol 2024; 40:353-379. [PMID: 38985841 PMCID: PMC11526382 DOI: 10.1146/annurev-cellbio-120123-112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Sensory receptors are at the interface between an organism and its environment and thus represent key sites for biological innovation. Here, we survey major sensory receptor families to uncover emerging evolutionary patterns. Receptors for touch, temperature, and light constitute part of the ancestral sensory toolkit of animals, often predating the evolution of multicellularity and the nervous system. In contrast, chemoreceptors exhibit a dynamic history of lineage-specific expansions and contractions correlated with the disparate complexity of chemical environments. A recurring theme includes independent transitions from neurotransmitter receptors to sensory receptors of diverse stimuli from the outside world. We then provide an overview of the evolutionary mechanisms underlying sensory receptor diversification and highlight examples where signatures of natural selection are used to identify novel sensory adaptations. Finally, we discuss sensory receptors as evolutionary hotspots driving reproductive isolation and speciation, thereby contributing to the stunning diversity of animals.
Collapse
Affiliation(s)
- Wendy A Valencia-Montoya
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; ,
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; ,
| |
Collapse
|
2
|
Takagi S, Sancer G, Abuin L, Stupski SD, Roman Arguello J, Prieto-Godino LL, Stern DL, Cruchet S, Álvarez-Ocaña R, Wienecke CFR, van Breugel F, Jeanne JM, Auer TO, Benton R. Olfactory sensory neuron population expansions influence projection neuron adaptation and enhance odour tracking. Nat Commun 2024; 15:7041. [PMID: 39147786 PMCID: PMC11327376 DOI: 10.1038/s41467-024-50808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous olfactory pathways of Drosophila melanogaster and its close relative Drosophila sechellia, an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN number increases contribute to stronger, more persistent, noni-odour tracking behaviour. These expansions result in increased synaptic connections of sensory neurons with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odour-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron population expansions to explain ecologically-relevant, species-specific behaviour.
Collapse
Affiliation(s)
- Suguru Takagi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Gizem Sancer
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Liliane Abuin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - S David Stupski
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| | - J Roman Arguello
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Lucia L Prieto-Godino
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- The Francis Crick Institute, London, UK
| | - David L Stern
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Raquel Álvarez-Ocaña
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Carl F R Wienecke
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Harvard Medical School, Cambridge, MA, USA
| | - Floris van Breugel
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| | - James M Jeanne
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Ali MZ, Anushree, Ahsan A, Ola MS, Haque R, Ahsan J. Ionotropic receptors mediate olfactory learning and memory in Drosophila. INSECT SCIENCE 2024; 31:1249-1269. [PMID: 38114448 DOI: 10.1111/1744-7917.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023]
Abstract
Phenylacetaldehyde (PAH), an aromatic compound, is present in a diverse range of fruits including overripe bananas and prickly pear cactus, the two major host fruits for Drosophila melanogaster. PAH acts as a potent ligand for the ionotropic receptor 84a (IR84a) in the adult fruit fly and it is detected by the IR84a/IR8a heterotetrameric complex. Its role in the male courtship behavior through IR84a as an environmental aphrodisiac is of additional importance. In D. melanogaster, two distinct kinds of olfactory receptors, that is, odorant receptors (ORs) and ionotropic receptors (IRs), perceive the odorant stimuli. They display unique structural, molecular, and functional characteristics in addition to having different evolutionary origins. Traditionally, olfactory cues detected by the ORs such as ethyl acetate, 1-butanol, isoamyl acetate, 1-octanol, 4-methylcyclohexanol, etc. classified as aliphatic esters and alcohols have been employed in olfactory classical conditioning using fruit flies. This underlines the participation of OR-activated olfactory pathways in learning and memory formation. Our study elucidates that likewise ethyl acetate (EA) (an OR-responsive odorant), PAH (an IR-responsive aromatic compound) too can form learning and memory when associated with an appetitive gustatory reinforcer. The association of PAH with sucrose (PAH/SUC) led to learning and formation of the long-term memory (LTM). Additionally, the Orco1, Ir84aMI00501, and Ir8a1 mutant flies were used to confirm the exclusive participation of the IR84a/IR8a complex in PAH/SUC olfactory associative conditioning. These results highlight the involvement of IRs via an IR-activated pathway in facilitating robust olfactory behavior.
Collapse
Affiliation(s)
- Md Zeeshan Ali
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Anushree
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Aarif Ahsan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Jawaid Ahsan
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| |
Collapse
|
4
|
Xu L, Jiang HB, Yu JL, Lei Q, Pan D, Chen Y, Dong B, Liu Z, Wang JJ. An Odorant Receptor Expressed in Both Antennae and Ovipositors Regulates Benzothiazole-Induced Oviposition Behavior in Bactrocera dorsalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6954-6963. [PMID: 38512330 DOI: 10.1021/acs.jafc.3c09557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The oriental fruit fly,Bactrocera dorsalis (Hendel), is a notorious pest of fruit crops, causing severe damage to fleshy fruits during oviposition and larval feeding. Gravid females locate suitable oviposition sites by detecting the host volatiles. Here, the oviposition preference of antenna-removed females and the electrophysiological response of ovipositors to benzothiazole indicated that both antennae and ovipositors are involved in perceiving benzothiazole. Subsequently, odorant receptors (ORs) expressed in both antennae and ovipositors were screened, and BdorOR43a-1 was further identified to respond to benzothiazole using voltage-clamp recording. Furthermore, BdorOR43a-1-/- mutants were obtained using the CRISPR/Cas9 system and their oviposition preference to benzothiazole was found to be significantly altered compared to WT females, suggesting that BdorOR43a-1 is one of the important ORs for benzothiazole perception. Our results not only demonstrate the important role of antennae and ovipositors in benzothiazole-induced oviposition but also elucidate on the OR responsible for benzothiazole perception in B. dorsalis.
Collapse
Affiliation(s)
- Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jie-Ling Yu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Quan Lei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Deng Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yang Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Bao Dong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhao Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Takagi S, Sancer G, Abuin L, Stupski SD, Arguello JR, Prieto-Godino LL, Stern DL, Cruchet S, Alvarez-Ocana R, Wienecke CFR, van Breugel F, Jeanne JM, Auer TO, Benton R. Sensory neuron population expansion enhances odor tracking without sensitizing projection neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.15.556782. [PMID: 37745467 PMCID: PMC10515935 DOI: 10.1101/2023.09.15.556782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous neural pathways of Drosophila melanogaster and its close relative Drosophila sechellia , an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN population increases contribute to stronger, more persistent, noni-odor tracking behavior. These sensory neuron expansions result in increased synaptic connections with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odor-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron expansions to explain ecologically-relevant, species-specific behavior.
Collapse
|
6
|
Baleba SBS, Mahadevan VP, Knaden M, Hansson BS. Temperature-dependent modulation of odor-dependent behavior in three drosophilid fly species of differing thermal preference. Commun Biol 2023; 6:905. [PMID: 37666902 PMCID: PMC10477191 DOI: 10.1038/s42003-023-05280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Rapid and ongoing climate change increases global temperature, impacts feeding, and reproduction in insects. The olfaction plays an important underlying role in these behaviors in most insect species. Here, we investigated how changing temperatures affect odor detection and ensuing behavior in three drosophilid flies: Drosophila novamexicana, D. virilis and D. ezoana, species adapted to life in desert, global, and subarctic climates, respectively. Using a series of thermal preference assays, we confirmed that the three species indeed exhibit distinct temperature preferences. Next, using single sensillum recording technique, we classified olfactory sensory neurons (OSNs) present in basiconic sensilla on the antenna of the three species and thereby identified ligands for each OSN type. In a series of trap assays we proceeded to establish the behavioral valence of the best ligands and chose guaiacol, methyl salicylate and isopropyl benzoate as representatives of a repellent, attractant and neutral odor. Next, we assessed the behavioral valence of these three odors in all three species across a thermal range (10-35 °C), with flies reared at 18 °C and 25 °C. We found that both developmental and experimental temperatures affected the behavioral performance of the flies. Our study thus reveals temperature-dependent changes in odor-guided behavior in drosophilid flies.
Collapse
Affiliation(s)
- Steve B S Baleba
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Venkatesh Pal Mahadevan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| |
Collapse
|
7
|
Álvarez-Ocaña R, Shahandeh MP, Ray V, Auer TO, Gompel N, Benton R. Odor-regulated oviposition behavior in an ecological specialist. Nat Commun 2023; 14:3041. [PMID: 37236992 DOI: 10.1038/s41467-023-38722-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Colonization of a novel ecological niche can require, or be driven by, evolution of an animal's behaviors promoting their reproductive success. We investigated the evolution and sensory basis of oviposition in Drosophila sechellia, a close relative of Drosophila melanogaster that exhibits extreme specialism for Morinda citrifolia noni fruit. D. sechellia produces fewer eggs than other drosophilids and lays these almost exclusively on noni substrates. We show that visual, textural and social cues do not explain this species-specific preference. By contrast, we find that loss of olfactory input in D. sechellia, but not D. melanogaster, essentially abolishes egg-laying, suggesting that olfaction gates gustatory-driven noni preference. Noni odors are detected by redundant olfactory pathways, but we discover a role for hexanoic acid and the cognate Ionotropic receptor 75b (Ir75b) in odor-evoked oviposition. Through receptor exchange in D. melanogaster, we provide evidence for a causal contribution of odor-tuning changes in Ir75b to the evolution of D. sechellia's oviposition behavior.
Collapse
Affiliation(s)
- Raquel Álvarez-Ocaña
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Michael P Shahandeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Vijayaditya Ray
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Nicolas Gompel
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
8
|
Walker WB, Mori BA, Cattaneo AM, Gonzalez F, Witzgall P, Becher PG. Comparative transcriptomic assessment of the chemosensory receptor repertoire of Drosophila suzukii adult and larval olfactory organs. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101049. [PMID: 36528931 DOI: 10.1016/j.cbd.2022.101049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The spotted wing Drosophila, Drosophila suzukii, has emerged within the past decade as an invasive species on a global scale, and is one of the most economically important pests in fruit and berry production in Europe and North America. Insect ecology, to a strong degree, depends on the chemosensory modalities of smell and taste. Extensive research on the sensory receptors of the olfactory and gustatory systems in Drosophila melanogaster provide an excellent frame of reference to better understand the fundamentals of the chemosensory systems of D. suzukii. This knowledge may enhance the development of semiochemicals for sustainable management of D. suzukii, which is urgently needed. Here, using a transcriptomic approach we report the chemosensory receptor expression profiles in D. suzukii female and male antennae, and for the first time, in larval heads including the dorsal organ that houses larval olfactory sensory neurons. In D. suzukii adults, we generally observed a lack of sexually dimorphic expression levels in male and female antennae. While there was generally conservation of antennal expression of odorant and ionotropic receptor orthologues for D. melanogaster and D. suzukii, gustatory receptors showed more distinct species-specific profiles. In larval head tissues, for all three receptor gene families, there was also a greater degree of species-specific gene expression patterns. Analysis of chemosensory receptor repertoires in the pest species, D. suzukii relative to those of the genetic model D. melanogaster enables comparative studies of the chemosensory, physiology, and ecology of D. suzukii.
Collapse
Affiliation(s)
- William B Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden; USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA.
| | - Boyd A Mori
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden; Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Alberto M Cattaneo
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Francisco Gonzalez
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden; Department of Research and Development, ChemTica Internacional S.A., Apdo. 640-3100, Santo Domingo, Heredia, Costa Rica.
| | - Peter Witzgall
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Paul G Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
9
|
Copy number changes in co-expressed odorant receptor genes enable selection for sensory differences in drosophilid species. Nat Ecol Evol 2022; 6:1343-1353. [PMID: 35864227 DOI: 10.1038/s41559-022-01830-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022]
Abstract
Despite numerous examples of chemoreceptor gene family expansions and contractions, how these relate to modifications in the sensory neuron populations in which they are expressed remains unclear. Drosophila melanogaster's odorant receptor (Or) family is ideal for addressing this question because most Ors are expressed in distinct olfactory sensory neuron (OSN) types. Between-species changes in Or copy number may therefore indicate increases or reductions in the number of OSN populations. Here we investigated the Or67a subfamily, which exhibits copy number variation in D. melanogaster and its closest relatives: D. simulans, D. sechellia and D. mauritiana. These species' common ancestor had three Or67a paralogues that had already diverged adaptively. Following speciation, two Or67a paralogues were lost independently in D. melanogaster and D. sechellia, with ongoing positive selection shaping the intact genes. Unexpectedly, the functionally diverged Or67a paralogues in D. simulans are co-expressed in a single neuron population, which projects to a glomerulus homologous to that innervated by Or67a neurons in D. melanogaster. Thus, while sensory pathway neuroanatomy is conserved, independent selection on co-expressed receptors has contributed to species-specific peripheral coding. This work reveals a type of adaptive change largely overlooked for olfactory evolution, raising the possibility that similar processes influence other cases of insect Or co-expression.
Collapse
|
10
|
Keesey IW, Zhang J, Depetris-Chauvin A, Obiero GF, Gupta A, Gupta N, Vogel H, Knaden M, Hansson BS. Functional olfactory evolution in Drosophila suzukii and the subgenus Sophophora. iScience 2022; 25:104212. [PMID: 35573203 PMCID: PMC9093017 DOI: 10.1016/j.isci.2022.104212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 10/25/2022] Open
|
11
|
Shaw KH, Dent CI, Johnson TK, Anderson A, de Bruyne M, Warr CG. Natural variation at the Drosophila melanogaster Or22 odorant receptor locus is associated with changes in olfactory behaviour. Open Biol 2021; 11:210158. [PMID: 34582710 PMCID: PMC8478520 DOI: 10.1098/rsob.210158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In insects, many critical olfactory behaviours are mediated by the large odorant receptor (Or) gene family, which determines the response properties of different classes of olfactory receptor neurons (ORNs). While ORN responses are generally conserved within and between Drosophila species, variant alleles of the D. melanogaster Or22 locus have previously been shown to alter the response profile of an ORN class called ab3A. These alleles show potential clinal variation, suggesting that selection is acting at this locus. Here, we investigated if the changes seen in ab3A responses lead to changes in olfactory-related behaviours. We show that variation at the Or22 locus and in the ab3A neurons are not fully compensated for by other ORNs and lead to overall changes in antennal odorant detection. We further show that this correlates with differences in odorant preference behaviour and with differences in oviposition site preference, with flies that have the chimaeric short allele strongly preferring to oviposit on banana. These findings indicate that variation at the Or22 locus leads to changes in olfactory-driven behaviours, and add support to the idea that the ab3A neurons are of especial importance to the ecology of Drosophila flies.
Collapse
Affiliation(s)
- Katherine H. Shaw
- Tasmanian School of Medicine, University of Tasmania, Hobart 7000, Tasmania, Australia
| | - Craig I. Dent
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| | - Travis K. Johnson
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| | - Alisha Anderson
- Ecosystems Sciences, CSIRO, Black Mountain, Australian Capital Territory 2601, Australia
| | - Marien de Bruyne
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| | - Coral G. Warr
- Tasmanian School of Medicine, University of Tasmania, Hobart 7000, Tasmania, Australia,School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia,School of Molecular Sciences, La Trobe University, Bundoora 3083, Victoria, Australia
| |
Collapse
|
12
|
Crowley-Gall A, Shaw M, Rollmann SM. Host Preference and Olfaction in Drosophila mojavensis. J Hered 2020; 110:68-79. [PMID: 30299456 DOI: 10.1093/jhered/esy052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/24/2018] [Indexed: 11/12/2022] Open
Abstract
Many organisms live in complex environments that vary geographically in resource availability. This environmental heterogeneity can lead to changes within species in their phenotypic traits. For example, in many herbivorous insects, variation in host plant availability has been shown to influence insect host preference behavior. This behavior can be mediated in part through the insect olfactory system and the odor-evoked responses of olfactory sensory neurons (OSNs), which are in turn mediated by their corresponding odorant receptor genes. The desert dwelling fly Drosophila mojavensis is a model species for understanding the mechanisms underlying host preference in a heterogeneous environment. Depending on geographic region, one to multiple host plant species are available. Here, we conducted electrophysiological studies and found variation in responses of ORNs to host plant volatiles both within and between 2 populations-particularly to the odorant 4-methylphenol. Flies from select localities within each population were found to lack a response to 4-methylphenol. Experiments then assessed the extent to which these electrophysiological differences were associated with differences in several odor-mediated behavioral responses. No association between the presence/absence of these odor-evoked responses and short range olfactory behavior or oviposition behavior was observed. However, differences in odor-induced feeding behavior in response to 4-methylphenol were found. Localities that exhibit an odor-evoked response to the odorant had increased feeding behavior in the presence of the odorant. This study sets the stage for future work examining the functional genetics underlying variation in odor perception.
Collapse
Affiliation(s)
- Amber Crowley-Gall
- Department of Biological Sciences, University of Cincinnati, Clifton Court, Cincinnati, OH
| | - Mary Shaw
- Department of Biological Sciences, University of Cincinnati, Clifton Court, Cincinnati, OH
| | - Stephanie M Rollmann
- Department of Biological Sciences, University of Cincinnati, Clifton Court, Cincinnati, OH
| |
Collapse
|
13
|
Chepurwar S, Gupta A, Haddad R, Gupta N. Sequence-Based Prediction of Olfactory Receptor Responses. Chem Senses 2019; 44:693-703. [PMID: 31665762 DOI: 10.1093/chemse/bjz059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Computational prediction of how strongly an olfactory receptor (OR) responds to various odors can help in bridging the widening gap between the large number of receptors that have been sequenced and the small number of experiments measuring their responses. Previous efforts in this area have predicted the responses of a receptor to some odors, using the known responses of the same receptor to other odors. Here, we present a method to predict the responses of a receptor without any known responses by using available data about the responses of other conspecific receptors and their sequences. We applied this method to ORs in insects Drosophila melanogaster (both adult and larva) and Anopheles gambiae and to mouse and human ORs. We found the predictions to be in significant agreement with the experimental measurements. The method also provides clues about the response-determining positions within the receptor sequences.
Collapse
Affiliation(s)
- Shashank Chepurwar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Abhishek Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Rafi Haddad
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Nitin Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
14
|
Shaw KH, Johnson TK, Anderson A, de Bruyne M, Warr CG. Molecular and Functional Evolution at the Odorant Receptor Or22 Locus in Drosophila melanogaster. Mol Biol Evol 2019; 36:919-929. [PMID: 30768139 PMCID: PMC6502086 DOI: 10.1093/molbev/msz018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Insect odorant receptor (Or) genes determine the responses of sensory neurons that mediate critical behaviors. The Drosophila melanogaster Or22 locus represents an interesting example of molecular evolution, with high levels of sequence divergence and copy number variation between D. melanogaster and other Drosophila species, and a corresponding high level of variability in the responses of the neuron it controls, ab3A. However, the link between Or22 molecular and functional diversity has not been established. Here, we show that several naturally occurring Or22 variants generate major shifts in neuronal response properties. We determine the molecular changes that underpin these response shifts, one of which represents a chimeric gene variant previously suggested to be under natural selection. In addition, we show that several alternative molecular genetic mechanisms have evolved for ensuring that where there is more than one gene copy at this locus, only one functional receptor is generated. Our data thus provide a causal link between the striking levels of phenotypic neuronal response variation found in natural populations of D. melanogaster and genetic variation at the Or22 locus. Since neuronal responses govern animal behavior, we predict that Or22 may be a key player in underlying one or more olfactory-driven behaviors of significant adaptive importance.
Collapse
Affiliation(s)
- Katherine H Shaw
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | | | - Marien de Bruyne
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Coral G Warr
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.,School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
15
|
Biasazin TD, Larsson Herrera S, Kimbokota F, Dekker T. Translating olfactomes into attractants: shared volatiles provide attractive bridges for polyphagy in fruit flies. Ecol Lett 2018; 22:108-118. [PMID: 30370646 DOI: 10.1111/ele.13172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/08/2018] [Accepted: 09/20/2018] [Indexed: 12/01/2022]
Abstract
Tephritid flies are serious fruit pests. Despite clear niche differences, many species show considerable overlap in fruit preferences, of which we here analysed the olfactory correlate. Using the volatiles of four unrelated fruit species, antennal responses were quantified to construct a fruit-odour response database for four tephritid species. Although responses were distinct with a significant niche-correlated bias, the analyses show that the probability of detection of a volatile strongly increased with its sharedness across fruits. This also held for the unrelated fruit fly Drosophila melanogaster (DoOR repository-based analyses). We conjectured that shared volatiles signify 'host' to the fly 'nose' and induce attraction. Indeed, blends of volatiles shared by fruit and detected by all four species were very attractive for tephritid species, more than fruits. Quantitative whole antennal recordings en lieu of, or complementing bottom-up molecular neurogenetic approaches, enables comparative olfactomics in non-model species, and facilitate interpretation of olfaction in evolutionary, ecological, and applied contexts.
Collapse
Affiliation(s)
- Tibebe Dejene Biasazin
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, SE-230 53, Alnarp, Sweden.,Department of Zoological Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Sebastian Larsson Herrera
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, SE-230 53, Alnarp, Sweden
| | - Fikira Kimbokota
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, SE-230 53, Alnarp, Sweden.,Mkwawa University College of Education (MUCE), P.O. Box 2513, Iringa, Tanzania
| | - Teun Dekker
- Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, SE-230 53, Alnarp, Sweden
| |
Collapse
|
16
|
Detection of Volatile Constituents from Food Lures by Tephritid Fruit Flies. INSECTS 2018; 9:insects9030119. [PMID: 30223498 PMCID: PMC6163689 DOI: 10.3390/insects9030119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 11/26/2022]
Abstract
Tephritid fruit flies require protein for sexual and gonotrophic development. Food-based lures are therefore widely used in strategies to detect and control fruit flies in the Tephritidae family. However, these baits are attractive to a broad range of insect species. We therefore sought to identify volatiles detected by the fly antennae, with the goal to compose lures that more specifically target tephritids. Using gas chromatography-coupled electroantennographic detection (GC-EAD) we screened for antennal responses of four important tephritid species to volatile compounds from five commercially available protein-based baits. Antennal active compounds were reconstituted in synthetic blends for each species and used in behavioral assays. These species-based blends were attractive in olfactometer experiments, as was a blend composed of all antennally active compounds from all the four species we observed (tested only in Bactrocera dorsalis, Hendel). Pilot field tests indicate that the blends need to be further evaluated and optimized under field conditions.
Collapse
|
17
|
Yohe LR, Brand P. Evolutionary ecology of chemosensation and its role in sensory drive. Curr Zool 2018; 64:525-533. [PMID: 30108633 PMCID: PMC6084603 DOI: 10.1093/cz/zoy048] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/20/2018] [Indexed: 11/14/2022] Open
Abstract
All behaviors of an organism are rooted in sensory processing of signals from its environment, and natural selection shapes sensory adaptations to ensure successful detection of cues that maximize fitness. Sensory drive, or divergent selection for efficient signal transmission among heterogeneous environments, has been a useful hypothesis for describing sensory adaptations, but its current scope has primarily focused on visual and acoustic sensory modalities. Chemosensation, the most widespread sensory modality in animals that includes the senses of smell and taste, is characterized by rapid evolution and has been linked to sensory adaptations to new environments in numerous lineages. Yet, olfaction and gustation have been largely underappreciated in light of the sensory drive hypothesis. Here, we examine why chemosensory systems have been overlooked and discuss the potential of chemosensation to shed new insight on the sensory drive hypothesis and vice versa. We provide suggestions for developing a framework to better incorporate studies of chemosensory adaptation that have the potential to shape a more complete, coherent, and holistic interpretation of the sensory drive.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Department of Geology & Geophysics, Yale University, New Haven, CT, USA
| | - Philipp Brand
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, CA, USA
| | | |
Collapse
|
18
|
Crowley-Gall A, Date P, Han C, Rhodes N, Andolfatto P, Layne JE, Rollmann SM. Population differences in olfaction accompany host shift in Drosophila mojavensis. Proc Biol Sci 2017; 283:rspb.2016.1562. [PMID: 27581882 DOI: 10.1098/rspb.2016.1562] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 11/12/2022] Open
Abstract
Evolutionary shifts in plant-herbivore interactions provide a model for understanding the link among the evolution of behaviour, ecological specialization and incipient speciation. Drosophila mojavensis uses different host cacti across its range, and volatile chemicals emitted by the host are the primary cue for host plant identification. In this study, we show that changes in host plant use between distinct D. mojavensis populations are accompanied by changes in the olfactory system. Specifically, we observe differences in olfactory receptor neuron specificity and sensitivity, as well as changes in sensillar subtype abundance, between populations. Additionally, RNA-seq analyses reveal differential gene expression between populations for members of the odorant receptor gene family. Hence, alterations in host preference are associated with changes in development, regulation and function at the olfactory periphery.
Collapse
Affiliation(s)
- Amber Crowley-Gall
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Priya Date
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clair Han
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Nicole Rhodes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Peter Andolfatto
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - John E Layne
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Stephanie M Rollmann
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
19
|
Pan JW, Li Q, Barish S, Okuwa S, Zhao S, Soeder C, Kanke M, Jones CD, Volkan PC. Patterns of transcriptional parallelism and variation in the developing olfactory system of Drosophila species. Sci Rep 2017; 7:8804. [PMID: 28821769 PMCID: PMC5562767 DOI: 10.1038/s41598-017-08563-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/13/2017] [Indexed: 11/09/2022] Open
Abstract
Organisms have evolved strikingly parallel phenotypes in response to similar selection pressures suggesting that there may be shared constraints limiting the possible evolutionary trajectories. For example, the behavioral adaptation of specialist Drosophila species to specific host plants can exhibit parallel changes in their adult olfactory neuroanatomy. We investigated the genetic basis of these parallel changes by comparing gene expression during the development of the olfactory system of two specialist Drosophila species to that of four other generalist species. Our results suggest that the parallelism observed in the adult olfactory neuroanatomy of ecological specialists extends more broadly to their developmental antennal expression profiles, and to the transcription factor combinations specifying olfactory receptor neuron (ORN) fates. Additionally, comparing general patterns of variation for the antennal transcriptional profiles in the adult and developing olfactory system of the six species suggest the possibility that specific, non-random components of the developmental programs underlying the Drosophila olfactory system harbor a disproportionate amount of interspecies variation. Further examination of these developmental components may be able to inform a deeper understanding of how traits evolve.
Collapse
Affiliation(s)
- Jia Wern Pan
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Qingyun Li
- Department of Biology, Stanford University, Stanford, California, USA
| | - Scott Barish
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Sumie Okuwa
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Songhui Zhao
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Charles Soeder
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew Kanke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Corbin D Jones
- Department of Biology and Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
20
|
Kollmann M, Schmidt R, Heuer CM, Schachtner J. Variations on a Theme: Antennal Lobe Architecture across Coleoptera. PLoS One 2016; 11:e0166253. [PMID: 27973569 PMCID: PMC5156346 DOI: 10.1371/journal.pone.0166253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/25/2016] [Indexed: 12/02/2022] Open
Abstract
Beetles comprise about 400,000 described species, nearly one third of all known animal species. The enormous success of the order Coleoptera is reflected by a rich diversity of lifestyles, behaviors, morphological, and physiological adaptions. All these evolutionary adaptions that have been driven by a variety of parameters over the last about 300 million years, make the Coleoptera an ideal field to study the evolution of the brain on the interface between the basic bauplan of the insect brain and the adaptions that occurred. In the current study we concentrated on the paired antennal lobes (AL), the part of the brain that is typically responsible for the first processing of olfactory information collected from olfactory sensilla on antenna and mouthparts. We analyzed 63 beetle species from 22 different families and thus provide an extensive comparison of principal neuroarchitecture of the AL. On the examined anatomical level, we found a broad diversity including AL containing a wide range of glomeruli numbers reaching from 50 to 150 glomeruli and several species with numerous small glomeruli, resembling the microglomerular design described in acridid grasshoppers and diving beetles, and substructures within the glomeruli that have to date only been described for the small hive beetle, Aethina tumida. A first comparison of the various anatomical features of the AL with available descriptions of lifestyle and behaviors did so far not reveal useful correlations. In summary, the current study provides a solid basis for further studies to unravel mechanisms that are basic to evolutionary adaptions of the insect olfactory system.
Collapse
Affiliation(s)
- Martin Kollmann
- Department of Biology—Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Rovenna Schmidt
- Department of Biology—Animal Physiology, Philipps-University Marburg, Marburg, Germany
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Gießen, Gießen, Germany
| | - Carsten M. Heuer
- Department of Biology—Animal Physiology, Philipps-University Marburg, Marburg, Germany
- Fraunhofer-Institut für Naturwissenschaftlich-Technische Trendanalysen INT, Euskirchen, Germany
| | - Joachim Schachtner
- Department of Biology—Animal Physiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
21
|
Morphological and Transcriptomic Analysis of a Beetle Chemosensory System Reveals a Gnathal Olfactory Center. BMC Biol 2016; 14:90. [PMID: 27751175 PMCID: PMC5067906 DOI: 10.1186/s12915-016-0304-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The red flour beetle Tribolium castaneum is an emerging insect model organism representing the largest insect order, Coleoptera, which encompasses several serious agricultural and forest pests. Despite the ecological and economic importance of beetles, most insect olfaction studies have so far focused on dipteran, lepidopteran, or hymenopteran systems. RESULTS Here, we present the first detailed morphological description of a coleopteran olfactory pathway in combination with genome-wide expression analysis of the relevant gene families involved in chemoreception. Our study revealed that besides the antennae, also the mouthparts are highly involved in olfaction and that their respective contribution is processed separately. In this beetle, olfactory sensory neurons from the mouthparts project to the lobus glomerulatus, a structure so far only characterized in hemimetabolous insects, as well as to a so far non-described unpaired glomerularly organized olfactory neuropil in the gnathal ganglion, which we term the gnathal olfactory center. The high number of functional odorant receptor genes expressed in the mouthparts also supports the importance of the maxillary and labial palps in olfaction of this beetle. Moreover, gustatory perception seems equally distributed between antenna and mouthparts, since the number of expressed gustatory receptors is similar for both organs. CONCLUSIONS Our analysis of the T. castaneum chemosensory system confirms that olfactory and gustatory perception are not organotopically separated to the antennae and mouthparts, respectively. The identification of additional olfactory processing centers, the lobus glomerulatus and the gnathal olfactory center, is in contrast to the current picture that in holometabolous insects all olfactory inputs allegedly converge in the antennal lobe. These findings indicate that Holometabola have evolved a wider variety of solutions to chemoreception than previously assumed.
Collapse
|
22
|
Ramasamy S, Ometto L, Crava CM, Revadi S, Kaur R, Horner DS, Pisani D, Dekker T, Anfora G, Rota-Stabelli O. The Evolution of Olfactory Gene Families in Drosophila and the Genomic Basis of chemical-Ecological Adaptation in Drosophila suzukii. Genome Biol Evol 2016; 8:2297-311. [PMID: 27435796 PMCID: PMC5010897 DOI: 10.1093/gbe/evw160] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
How the evolution of olfactory genes correlates with adaption to new ecological niches is still a debated topic. We explored this issue in Drosophila suzukii, an emerging model that reproduces on fresh fruit rather than in fermenting substrates like most other Drosophila We first annotated the repertoire of odorant receptors (ORs), odorant binding proteins (OBPs), and antennal ionotropic receptors (aIRs) in the genomes of two strains of D. suzukii and of its close relative Drosophila biarmipes We then analyzed these genes on the phylogeny of 14 Drosophila species: whereas ORs and OBPs are characterized by higher turnover rates in some lineages including D. suzukii, aIRs are conserved throughout the genus. Drosophila suzukii is further characterized by a non-random distribution of OR turnover on the gene phylogeny, consistent with a change in selective pressures. In D. suzukii, we found duplications and signs of positive selection in ORs with affinity for short-chain esters, and loss of function of ORs with affinity for volatiles produced during fermentation. These receptors-Or85a and Or22a-are characterized by divergent alleles in the European and American genomes, and we hypothesize that they may have been replaced by some of the duplicated ORs in corresponding neurons, a hypothesis reciprocally confirmed by electrophysiological recordings. Our study quantifies the evolution of olfactory genes in Drosophila and reveals an array of genomic events that can be associated with the ecological adaptations of D. suzukii.
Collapse
Affiliation(s)
- Sukanya Ramasamy
- Agricultural Entomology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy Diparimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Lino Ometto
- Agricultural Entomology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Cristina M Crava
- Agricultural Entomology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Santosh Revadi
- Agricultural Entomology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy Chemical Ecology Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Rupinder Kaur
- Agricultural Entomology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - David S Horner
- Diparimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Davide Pisani
- School of Biological Sciences and School of Earth Sciences, University of Bristol, Bristol, UK
| | - Teun Dekker
- Chemical Ecology Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Gianfranco Anfora
- Agricultural Entomology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Omar Rota-Stabelli
- Agricultural Entomology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|
23
|
Differential Electrophysiological Responses to Odorant Isotopologues in Drosophilid Antennae. eNeuro 2016; 3:eN-NWR-0152-15. [PMID: 27351023 PMCID: PMC4913217 DOI: 10.1523/eneuro.0152-15.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/08/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022] Open
Abstract
Olfaction presents the ultimate challenge to molecular recognition as thousands of molecules have to be recognized by far fewer olfactory receptors. We have presented evidence that Drosophila readily distinguish odorants based on their molecular vibrations using a battery of behavioral assays suggesting engagement of a molecular vibration-sensing component. Here we interrogate electrophysiologically the antennae of four Drosophilids and demonstrate conserved differential response amplitudes to aldehydes, alcohols, ketones, nitriles, and their deuterated isotopologues. Certain deuterated odorants evoked larger electroantennogram (EAG) amplitudes, while the response to the normal odorant was elevated in others. Significantly, benzonitrile isotopologues were not distinguishable as predicted. This suggests that isotopologue-specific EAG amplitudes result from differential activation of specific olfactory receptors. In support of this, odorants with as few as two deuteria evoke distinct EAG amplitudes from their normal isotopologues, and this is independent of the size of the deuterated molecule. Importantly, we find no evidence that these isotopologue-specific amplitudes depend on perireceptor mechanisms or other pertinent physical property of the deuterated odorants. Rather, our results strongly suggest that Drosophilid olfactory receptors are activated by molecular vibrations differentiating similarly sized and shaped odorants in vivo, yielding sufficient differential information to drive behavioral choices.
Collapse
|
24
|
Dweck HK, Ebrahim SA, Khallaf MA, Koenig C, Farhan A, Stieber R, Weißflog J, Svatoš A, Grosse-Wilde E, Knaden M, Hansson BS. Olfactory channels associated with the Drosophila maxillary palp mediate short- and long-range attraction. eLife 2016; 5. [PMID: 27213519 PMCID: PMC4927298 DOI: 10.7554/elife.14925] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/21/2016] [Indexed: 01/07/2023] Open
Abstract
The vinegar fly Drosophila melanogaster is equipped with two peripheral olfactory organs, antenna and maxillary palp. The antenna is involved in finding food, oviposition sites and mates. However, the functional significance of the maxillary palp remained unknown. Here, we screened the olfactory sensory neurons of the maxillary palp (MP-OSNs) using a large number of natural odor extracts to identify novel ligands for each MP-OSN type. We found that each type is the sole or the primary detector for a specific compound, and detects these compounds with high sensitivity. We next dissected the contribution of MP-OSNs to behaviors evoked by their key ligands and found that MP-OSNs mediate short- and long-range attraction. Furthermore, the organization, detection and olfactory receptor (Or) genes of MP-OSNs are conserved in the agricultural pest D. suzukii. The novel short and long-range attractants could potentially be used in integrated pest management (IPM) programs of this pest species. DOI:http://dx.doi.org/10.7554/eLife.14925.001
Collapse
Affiliation(s)
- Hany Km Dweck
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Shimaa Am Ebrahim
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Mohammed A Khallaf
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Christopher Koenig
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Abu Farhan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Regina Stieber
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jerrit Weißflog
- Mass Spectrometry Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Aleš Svatoš
- Mass Spectrometry Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
25
|
Odorant receptors of Drosophila are sensitive to the molecular volume of odorants. Sci Rep 2016; 6:25103. [PMID: 27112241 PMCID: PMC4844992 DOI: 10.1038/srep25103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/08/2016] [Indexed: 01/08/2023] Open
Abstract
Which properties of a molecule define its odor? This is a basic yet unanswered question regarding the olfactory system. The olfactory system of Drosophila has a repertoire of approximately 60 odorant receptors. Molecules bind to odorant receptors with different affinities and activate them with different efficacies, thus providing a combinatorial code that identifies odorants. We hypothesized that the binding affinity of an odorant-receptor pair is affected by their relative sizes. The maximum affinity can be attained when the molecular volume of an odorant matches the volume of the binding pocket. The affinity drops to zero when the sizes are too different, thus obscuring the effects of other molecular properties. We developed a mathematical formulation of this hypothesis and verified it using Drosophila data. We also predicted the volume and structural flexibility of the binding site of each odorant receptor; these features significantly differ between odorant receptors. The differences in the volumes and structural flexibilities of different odorant receptor binding sites may explain the difference in the scents of similar molecules with different sizes.
Collapse
|
26
|
The chemical ecology of the fly. Curr Opin Neurobiol 2015; 34:95-102. [DOI: 10.1016/j.conb.2015.02.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 02/01/2023]
|
27
|
Scheidler NH, Liu C, Hamby KA, Zalom FG, Syed Z. Volatile codes: Correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci Rep 2015; 5:14059. [PMID: 26391997 PMCID: PMC4585764 DOI: 10.1038/srep14059] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/17/2015] [Indexed: 12/03/2022] Open
Abstract
Drosophila have evolved strong mutualistic associations with yeast communities that best support their growth and survival, resulting in the development of novel niches. It has been suggested that flies recognize their cognate yeasts primarily based on the rich repertoire of volatile organic compounds (VOCs) derived from the yeasts. Thus, it remained an exciting avenue to study whether fly spp. detect and discriminate yeast strains based on odor alone, and if so, how such resolution is achieved by the olfactory system in flies. We used two fly species known to exploit different niches and harboring different yeasts, D. suzukii (a pest of fresh fruit) and D. melanogaster (a saprophytic fly and a neurogenetic model organism). We initially established the behavioral preference of both fly species to six Drosophila-associated yeasts; then chemically analyzed the VOC profile of each yeast which revealed quantitative and qualitative differences; and finally isolated and identified the physiologically active constituents from yeast VOCs for each drosophilid that potentially define attraction. By employing chemical, behavioral, and electrophysiological analyses, we provide a comprehensive portrait of the olfactory neuroethological correlates underlying fly-yeast coadaptation in two drosophilids with distinct habitats.
Collapse
Affiliation(s)
- Nicole H Scheidler
- Department of Biological Sciences &Eck Institute for Global Health University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cheng Liu
- Center for Research Computing, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kelly A Hamby
- Entomology Department, University of Maryland, College Park, MD 20742, USA
| | - Frank G Zalom
- Entomology and Nematology Department, University of California, Davis, CA 95616, USA
| | - Zainulabeuddin Syed
- Department of Biological Sciences &Eck Institute for Global Health University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
28
|
Conservation of Olfactory Avoidance in Drosophila Species and Identification of Repellents for Drosophila suzukii. Sci Rep 2015; 5:11527. [PMID: 26098542 PMCID: PMC4476414 DOI: 10.1038/srep11527] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/21/2015] [Indexed: 12/17/2022] Open
Abstract
Flying insects use olfaction to navigate towards fruits in complex odor environments with remarkable accuracy. Some fruits change odor profiles substantially during ripening and related species can prefer different stages. In Drosophila species attractive odorants have been studied extensively, but little is understood about the role of avoidance pathways. In order to examine the role of the avoidance cue CO2 emitted from fruit on behavior of two species with different ripening stage preferences, we investigated the CO2-detection pathway in Drosophila melanogaster and Drosophila suzukii, a harmful pest of fruits. Avoidance to CO2 is not conserved in D. suzukii suggesting a behavioral adaptation that could facilitate attraction to younger fruit with higher CO2 emission levels. We investigated known innate avoidance pathways from five species at different evolutionary distances: D. melanogaster, D. yakuba, D. suzukii, D. pseudoobscura and D. virilis. Surprisingly, only DEET shows strong repellency across all species, whereas CO2, citronellal and ethyl 3-hydroxybutyrate show only limited conservation. These findings guide us to test recently discovered safe DEET substitutes, and we identify one that protects fruits from D. suzukii thus providing a new behavioral strategy for controlling agricultural pests.
Collapse
|
29
|
Evolution of herbivory in Drosophilidae linked to loss of behaviors, antennal responses, odorant receptors, and ancestral diet. Proc Natl Acad Sci U S A 2015; 112:3026-31. [PMID: 25624509 DOI: 10.1073/pnas.1424656112] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Herbivory is a key innovation in insects, yet has only evolved in one-third of living orders. The evolution of herbivory likely involves major behavioral changes mediated by remodeling of canonical chemosensory modules. Herbivorous flies in the genus Scaptomyza (Drosophilidae) are compelling species in which to study the genomic architecture linked to the transition to herbivory because they recently evolved from microbe-feeding ancestors and are closely related to Drosophila melanogaster. We found that Scaptomyza flava, a leaf-mining specialist on plants in the family (Brassicaceae), was not attracted to yeast volatiles in a four-field olfactometer assay, whereas D. melanogaster was strongly attracted to these volatiles. Yeast-associated volatiles, especially short-chain aliphatic esters, elicited strong antennal responses in D. melanogaster, but weak antennal responses in electroantennographic recordings from S. flava. We sequenced the genome of S. flava and characterized this species' odorant receptor repertoire. Orthologs of odorant receptors, which detect yeast volatiles in D. melanogaster and mediate critical host-choice behavior, were deleted or pseudogenized in the genome of S. flava. These genes were lost step-wise during the evolution of Scaptomyza. Additionally, Scaptomyza has experienced gene duplication and likely positive selection in paralogs of Or67b in D. melanogaster. Olfactory sensory neurons expressing Or67b are sensitive to green-leaf volatiles. Major trophic shifts in insects are associated with chemoreceptor gene loss as recently evolved ecologies shape sensory repertoires.
Collapse
|
30
|
Nowotny T, de Bruyne M, Berna AZ, Warr CG, Trowell SC. Drosophila olfactory receptors as classifiers for volatiles from disparate real world applications. BIOINSPIRATION & BIOMIMETICS 2014; 9:046007. [PMID: 25313522 DOI: 10.1088/1748-3182/9/4/046007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Olfactory receptors evolved to provide animals with ecologically and behaviourally relevant information. The resulting extreme sensitivity and discrimination has proven useful to humans, who have therefore co-opted some animals' sense of smell. One aim of machine olfaction research is to replace the use of animal noses and one avenue of such research aims to incorporate olfactory receptors into artificial noses. Here, we investigate how well the olfactory receptors of the fruit fly, Drosophila melanogaster, perform in classifying volatile odourants that they would not normally encounter. We collected a large number of in vivo recordings from individual Drosophila olfactory receptor neurons in response to an ecologically relevant set of 36 chemicals related to wine ('wine set') and an ecologically irrelevant set of 35 chemicals related to chemical hazards ('industrial set'), each chemical at a single concentration. Resampled response sets were used to classify the chemicals against all others within each set, using a standard linear support vector machine classifier and a wrapper approach. Drosophila receptors appear highly capable of distinguishing chemicals that they have not evolved to process. In contrast to previous work with metal oxide sensors, Drosophila receptors achieved the best recognition accuracy if the outputs of all 20 receptor types were used.
Collapse
Affiliation(s)
- Thomas Nowotny
- Centre for Computational Neuroscience and Robotics, School of Engineering and Informatics, University of Sussex, Brighton, UK
| | | | | | | | | |
Collapse
|
31
|
Identification of differentially expressed genes in female Drosophila antonietae and Drosophila meridionalis in response to host cactus odor. BMC Evol Biol 2014; 14:191. [PMID: 25178654 PMCID: PMC4161902 DOI: 10.1186/s12862-014-0191-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 08/14/2014] [Indexed: 11/10/2022] Open
Abstract
Background Studies of insect-plant interactions have provided critical insights into the ecology and evolution of adaptive processes within and among species. Cactophilic Drosophila species have received much attention because larval development occurs in the necrotic tissues of cacti, and both larvae and adults feed on these tissues. Such Drosophila-cactus interactions include effects of the host plant on the physiology and behavior of the flies, especially so their nutritional status, mating condition and reproduction. The aim of this work was to compare the transcriptional responses of two species, Drosophila antonietae and Drosophila meridionalis, and identify genes potentially related to responses to odors released by their host cactus, Cereus hildmannianus. The two fly species are sympatric in most of their populations and use this same host cactus in nature. Results We obtained 47 unique sequences (USs) for D. antonietae in a suppression subtractive hybridization screen, 30 of these USs had matches with genes predicted for other Drosophila species. For D. meridionalis we obtained 81 USs, 46 of which were orthologous with genes from other Drosophila species. Functional information (Gene Ontology) revealed that these differentially expressed genes are related to metabolic processes, detoxification mechanisms, signaling, response to stimuli, and reproduction. The expression of 13 genes from D. meridionalis and 12 from D. antonietae were further analyzed by quantitative real time-PCR, showing that four genes were significantly overexpressed in D. antonietae and six in D. meridionalis. Conclusions Our results revealed the differential expression of genes related to responses to odor stimuli by a cactus, in two associated fly species. Although the majority of activated genes were similar between the two species, we also observed that certain metabolic pathways were specifically activated, especially those related to signaling pathways and detoxification mechanisms. The activation of these genes may reflect different metabolic pathways used by these flies in their interaction with this host cactus. Our findings provide insight into how the use of C. hildmannianus may have arisen independently in the two fly species, through genetic differentiation in metabolic pathways to effectively explore this cactus as a host. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0191-2) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Vásquez GM, Syed Z, Estes PA, Leal WS, Gould F. Specificity of the receptor for the major sex pheromone component in Heliothis virescens. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:160. [PMID: 24773407 PMCID: PMC4015405 DOI: 10.1673/031.013.16001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/29/2012] [Indexed: 06/03/2023]
Abstract
In a previous study, the Drosophila melanogaster OR67d(GAL4);UAS system was used to functionally characterize the receptor for the major component of the sex pheromone in the tobacco budworm, Heliothis virescens Fabricius (Lepidoptera: Noctuidae), HvOR13. Electrophysiological and behavioral assays showed that transgenic flies expressing HvOR13 responded to (Z)-11-hexadecenal (Z11-16:Ald). However, tests were not performed to determine whether these flies would also respond to secondary components of the H. virescens sex pheromone. Thus, in this study the response spectrum of HvOR13 expressed in this system was examined by performing single cell recordings from odor receptor neuron in trichoid T1 sensilla on antennae of two Or67d(GAL4 [1]); UAS-HvOR13 lines stimulated with Z11-16:Ald and six H. virescens secondary pheromone components. Fly courtship assays were also performed to examine the behavioral response of the Or67d(GAL4[1]); UAS-HvOR13 flies to Z11-16:Ald and the secondary component Z9-14:Ald. Our combined electrophysiological and behavioral studies indicated high specificity and sensitivity of HvOR13 to Z11-16:Ald. Interestingly, a mutation leading to truncation in the HvOR13 C-terminal region affected but did not abolish pheromone receptor response to Z11-16:Ald. The findings are assessed in relationship to other HvOR13 heterologous expression studies, and the role of the C-terminal domain in receptor function is discussed. A third line expressing HvOR15 was also tested but did not respond to any of the seven pheromone components.
Collapse
Affiliation(s)
- Gissella M. Vásquez
- Department of Entomology and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Zainulabeuddin Syed
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Patricia A. Estes
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Walter S. Leal
- Department of Entomology, Honorary Maeda-Duffey Laboratory, University of California, Davis, CA 95616, USA
| | - Fred Gould
- Department of Entomology and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
33
|
Carraher C, Authier A, Steinwender B, Newcomb RD. Sequence comparisons of odorant receptors among tortricid moths reveal different rates of molecular evolution among family members. PLoS One 2012; 7:e38391. [PMID: 22701634 PMCID: PMC3372514 DOI: 10.1371/journal.pone.0038391] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/04/2012] [Indexed: 11/20/2022] Open
Abstract
In insects, odorant receptors detect volatile cues involved in behaviours such as mate recognition, food location and oviposition. We have investigated the evolution of three odorant receptors from five species within the moth genera Ctenopseustis and Planotrotrix, family Tortricidae, which fall into distinct clades within the odorant receptor multigene family. One receptor is the orthologue of the co-receptor Or83b, now known as Orco (OR2), and encodes the obligate ion channel subunit of the receptor complex. In comparison, the other two receptors, OR1 and OR3, are ligand-binding receptor subunits, activated by volatile compounds produced by plants - methyl salicylate and citral, respectively. Rates of sequence evolution at non-synonymous sites were significantly higher in OR1 compared with OR2 and OR3. Within the dataset OR1 contains 109 variable amino acid positions that are distributed evenly across the entire protein including transmembrane helices, loop regions and termini, while OR2 and OR3 contain 18 and 16 variable sites, respectively. OR2 shows a high level of amino acid conservation as expected due to its essential role in odour detection; however we found unexpected differences in the rate of evolution between two ligand-binding odorant receptors, OR1 and OR3. OR3 shows high sequence conservation suggestive of a conserved role in odour reception, whereas the higher rate of evolution observed in OR1, particularly at non-synonymous sites, may be suggestive of relaxed constraint, perhaps associated with the loss of an ancestral role in sex pheromone reception.
Collapse
Affiliation(s)
- Colm Carraher
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Astrid Authier
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Bernd Steinwender
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- The Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
| | - Richard D. Newcomb
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- The Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
34
|
Bisch-Knaden S, Carlsson MA, Sugimoto Y, Schubert M, Mißbach C, Sachse S, Hansson BS. Olfactory coding in five moth species from two families. J Exp Biol 2012; 215:1542-51. [DOI: 10.1242/jeb.068064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The aim of the present study was to determine what impact phylogeny and life history might have on the coding of odours in the brain. Using three species of hawk moths (Sphingidae) and two species of owlet moths (Noctuidae), we visualized neural activity patterns in the antennal lobe, the first olfactory neuropil in insects, evoked by a set of ecologically relevant plant volatiles. Our results suggest that even between the two phylogenetically distant moth families, basic olfactory coding features are similar. But we also found different coding strategies in the moths’ antennal lobe; namely, more specific patterns for chemically similar odorants in the two noctuid species than in the three sphingid species tested. This difference demonstrates the impact of the phylogenetic distance between species from different families despite some parallel life history traits found in both families. Furthermore, pronounced differences in larval and adult diet among the sphingids did not translate into differences in the olfactory code; instead, the three species had almost identical coding patterns.
Collapse
Affiliation(s)
- Sonja Bisch-Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Mikael A. Carlsson
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Yuki Sugimoto
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Marco Schubert
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Christine Mißbach
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| |
Collapse
|
35
|
Abstract
Neuroethology utilizes a wide range of multidisciplinary approaches to decipher neural correlates of natural behaviors associated with an animal's ecological niche. By placing emphasis on comparative analyses of adaptive and evolutionary trends across species, a neuroethological perspective is uniquely suited to uncovering general organizational and biological principles that shape the function and anatomy of the nervous system. In this review, we focus on the application of neuroethological principles in the study of insect olfaction and discuss how ecological environment and other selective pressures influence the development of insect olfactory neurobiology, not only informing our understanding of olfactory evolution but also providing broader insights into sensory processing.
Collapse
Affiliation(s)
- Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07749 Jena, Germany.
| | | |
Collapse
|
36
|
Richgels PK, Rollmann SM. Genetic variation in odorant receptors contributes to variation in olfactory behavior in a natural population of Drosophila melanogaster. Chem Senses 2011; 37:229-40. [PMID: 22038943 DOI: 10.1093/chemse/bjr097] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chemoreception is a principle modality by which organisms gain information from their environment, and extensive variation in odor-mediated behavior has been documented within and among species. To examine the mechanisms by which sensory systems mediate these responses, we ask to what extent variation in Drosophila melanogaster odorant receptor genes contributes to variation in odor-mediated behavior. Significant differences in behavioral responses to structurally similar odorants, methyl hexanoate and ethyl hexanoate, were found in a natural population. Polymorphisms in 3 genomic regions (Or22a/Or22b, Or35a, and Or47a) were identified and associated with variation in behavior to these esters. Overall similarity in association profiles for both odorants was observed, except for Or47a in which polymorphisms were associated solely with variation in responses to ethyl hexanoate. Our analyses were then extended to examine polymorphisms in 3 odorant receptors previously reported to contribute to variation in olfactory behavior for the chemically distinct odorants benzaldehyde and acetophenone. Two Or10a polymorphisms were associated with variation in response to ethyl hexanoate. Finally, differences in Or35a and Or47a expression were associated with variation in responses to ethyl hexanoate. These results demonstrate that the genetic variation at the peripheral sensory stage plays a role in mediating differences in odor-mediated behavior.
Collapse
Affiliation(s)
- P K Richgels
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| | | |
Collapse
|
37
|
Macroglomeruli for fruit odors change blend preference in Drosophila. Naturwissenschaften 2010; 97:1059-66. [PMID: 20972770 DOI: 10.1007/s00114-010-0727-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 01/18/2023]
Abstract
The olfactory circuitry of Drosophila melanogaster is becoming increasingly clear. However, how olfactory processing translates into appropriate behavioral responses is still poorly understood. Using a sibling species approach, we tested how a perturbation in the olfactory circuitry affects odor preference. In a previous study, we found that the sibling species of D. melanogaster, the specialist D. sechellia, overrepresents a sensillum, ab3, the A neuron of which is sensitive to hexanoate esters, characteristic of the species' sole host, the Morinda citrifolia fruit. Concordantly, the corresponding glomerulus, DM2, is enlarged. In this study, we found that the ab3B neuron, the expansion of which was previously assumed to be pleiotropic and of no ecological significance, is in fact tuned to another morinda fruit volatile, 2-heptanone (HP). Axons of this neuron type arborize in a second enlarged glomerulus. In behavioral experiments we tested how this has affected the fly's odor preference. We demonstrate that D. sechellia has a reversed preference for the key ligands of these macroglomeruli, especially at high concentrations. Whereas D. melanogaster was repelled by high concentrations of these odors, D. sechellia was highly attracted. This was the case for odors presented singly, but more notably for blends thereof. Our study indicates that relatively simple changes, such as a shift in sensillar abundance, and concordant shifts in glomerular size, can distort the resulting olfactory code, and can lead to saltatory shifts in odor preference. D. sechellia has exploited this to align its olfactory preference with its ecological niche.
Collapse
|
38
|
Bohbot JD, Jones PL, Wang G, Pitts RJ, Pask GM, Zwiebel LJ. Conservation of indole responsive odorant receptors in mosquitoes reveals an ancient olfactory trait. Chem Senses 2010; 36:149-60. [PMID: 20956733 DOI: 10.1093/chemse/bjq105] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aedes aegypti and Anopheles gambiae are among the best-characterized mosquito species within the Culicinae and Anophelinae mosquito clades which diverged ∼150 million years ago. Despite this evolutionary distance, the olfactory systems of these mosquitoes exhibit similar morphological and physiological adaptations. Paradoxically, mosquito odorant receptors, which lie at the heart of chemosensory signal transduction pathways, belong to a large and highly divergent gene family. We have used 2 heterologous expression systems to investigate the functional characteristics of a highly conserved subset of Ors between Ae. aegypti and An. gambiae to investigate whether protein homology correlates with odorant-induced activation. We find that these receptors share similar odorant response profiles and that indole, a common and ecologically relevant olfactory cue, elicits strong responses from these homologous receptors. The identification of other highly conserved members of this Or clade from mosquito species of varying phylogenetic relatedness supports a model in which high sensitivity to indole represents an ancient ecological adaptation that has been preserved as a result of its life cycle importance. These results provide an understanding of how similarities and disparities among homologous OR proteins relate to olfactory function, which can lead to greater insights into the design of successful strategies for the control of mosquito-borne diseases.
Collapse
Affiliation(s)
- Jonathan D Bohbot
- Department of Biological Sciences and Pharmacology, Center for Molecular Neuroscience, Programs in Developmental Biology & Genetics, Institutes for Chemical Biology & Global Health, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | | | |
Collapse
|
39
|
Stökl J, Strutz A, Dafni A, Svatos A, Doubsky J, Knaden M, Sachse S, Hansson BS, Stensmyr MC. A deceptive pollination system targeting drosophilids through olfactory mimicry of yeast. Curr Biol 2010; 20:1846-52. [PMID: 20933425 DOI: 10.1016/j.cub.2010.09.033] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/18/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
Abstract
In deceptive pollination, insects are bamboozled into performing nonrewarded pollination. A prerequisite for the evolutionary stability in such systems is that the plants manage to generate a perfect sensory impression of a desirable object in the insect nervous system [1]. The study of these plants can provide important insights into sensory preference of their visiting insects. Here, we present the first description of a deceptive pollination system that specifically targets drosophilid flies. We show that the examined plant (Arum palaestinum) accomplishes its deception through olfactory mimicry of fermentation, a strategy that represents a novel pollination syndrome. The lily odor is composed of volatiles characteristic of yeast, and produces in Drosophila melanogaster an antennal detection pattern similar to that elicited by a range of fermentation products. By functional imaging, we show that the lily odors target a specific subset of odorant receptors (ORs), which include the most conserved OR genes in the drosophilid olfactome. Furthermore, seven of eight visiting drosophilid species show a congruent olfactory response pattern to the lily, in spite of comprising species pairs separated by ∼40 million years [2], showing that the lily targets a basal function of the fly nose, shared by species with similar ecological preference.
Collapse
Affiliation(s)
- Johannes Stökl
- Max Planck Institute for Chemical Ecology, Hans Knöll-Straße 8, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Evolving olfactory systems on the fly. Trends Genet 2010; 26:307-16. [PMID: 20537755 DOI: 10.1016/j.tig.2010.04.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 04/20/2010] [Accepted: 04/22/2010] [Indexed: 12/20/2022]
|