1
|
Mackey CA, Hauser S, Schoenhaut AM, Temghare N, Ramachandran R. Hierarchical differences in the encoding of amplitude modulation in the subcortical auditory system of awake nonhuman primates. J Neurophysiol 2024; 132:1098-1114. [PMID: 39140590 PMCID: PMC11427057 DOI: 10.1152/jn.00329.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024] Open
Abstract
Sinusoidal amplitude modulation (SAM) is a key feature of complex sounds. Although psychophysical studies have characterized SAM perception, and neurophysiological studies in anesthetized animals report a transformation from the cochlear nucleus' (CN; brainstem) temporal code to the inferior colliculus' (IC; midbrain's) rate code, none have used awake animals or nonhuman primates to compare CN and IC's coding strategies to modulation-frequency perception. To address this, we recorded single-unit responses and compared derived neurometric measures in the CN and IC to psychometric measures of modulation frequency (MF) discrimination in macaques. IC and CN neurons often exhibited tuned responses to SAM in rate and spike-timing measures of modulation coding. Neurometric thresholds spanned a large range (2-200 Hz ΔMF). The lowest 40% of IC thresholds were less than or equal to psychometric thresholds, regardless of which code was used, whereas CN thresholds were greater than psychometric thresholds. Discrimination at 10-20 Hz could be explained by indiscriminately pooling 30 units in either structure, whereas discrimination at higher MFs was best explained by more selective pooling. This suggests that pooled CN activity was sufficient for AM discrimination. Psychometric and neurometric thresholds decreased as stimulus duration increased, but IC and CN thresholds were higher and more variable than behavior at short durations. This slower subcortical temporal integration compared with behavior was consistent with a drift diffusion model that reproduced individual differences in performance and can constrain future neurophysiological studies of temporal integration. These measures provide an account of AM perception at the neurophysiological, computational, and behavioral levels.NEW & NOTEWORTHY In everyday environments, the brain is tasked with extracting information from sound envelopes, which involves both sensory encoding and perceptual decision-making. Different neural codes for envelope representation have been characterized in midbrain and cortex, but studies of brainstem nuclei such as the cochlear nucleus (CN) have usually been conducted under anesthesia in nonprimate species. Here, we found that subcortical activity in awake monkeys and a biologically plausible perceptual decision-making model accounted for sound envelope discrimination behavior.
Collapse
Affiliation(s)
- Chase A Mackey
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee, United States
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Samantha Hauser
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Adriana M Schoenhaut
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee, United States
| | - Namrata Temghare
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Ramnarayan Ramachandran
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
2
|
Chou TL, Krishna A, Fossesca M, Desai A, Goldberg J, Jones S, Stephens M, Basile BM, Gall MD. Interspecific differences in the effects of masking and distraction on anti-predator behavior in suburban anthropogenic noise. PLoS One 2023; 18:e0290330. [PMID: 37594981 PMCID: PMC10437853 DOI: 10.1371/journal.pone.0290330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Predation is a common threat to animal survival. The detection of predators or anti-predator communication signals can be disrupted by anthropogenic noise; however, the mechanism by which responses are affected is unclear. Masking and distraction are the two hypotheses that have emerged as likely explanations for changes in behavior in noise. Masking occurs when the signal and noise fall within the same sensory domain; noise overlapping the energy in the signal reduces signal detection. Distraction can occur when noise in any sensory domain contributes to a greater cognitive load, thereby reducing signal detection. Here, we used a repeated measures field experiment to determine the relative contributions of masking and distraction in mediating reduced anti-predator responses in noise. We recorded the approaches and vocalizations of black-capped chickadees (Poecile atricapillus), tufted titmice (Baeolophus bicolor), and white-breasted nuthatches (Sitta carolinensis) to both visual and acoustic cues of predator presence, either with or without simultaneous exposure to anthropogenic noise. Titmice increased their calling to both visual and acoustic cues of predator presence. However, there was no significant effect of noise on the calling responses of titmice regardless of stimulus modality. Noise appeared to produce a distraction effect in chickadees; however, this effect was small, suggesting that chickadees may be relatively unaffected by low levels of anthropogenic noise in suburban environments. White-breasted nuthatch calling behavior was affected by the interaction of the modality of the predator stimulus and the noise condition. Nuthatches had a delayed response to the predator presentations, with a greater calling rate following the presentation of the acoustic stimulus in quiet compared to the presentation of the acoustic stimulus in noise. However, there was no difference in calling rate between the quiet and noise conditions for the visual stimulus. Together this suggests that even moderate levels of noise have some masking effect for white-breasted nuthatches. We suggest that the mechanisms through which noise influences anti-predator behavior may depend on the social roles, foraging ecology and auditory capabilities of each species.
Collapse
Affiliation(s)
- Trina L. Chou
- Neuroscience and Behavior Program, Vassar College, Poughkeepsie, NY, United States of America
| | - Anjali Krishna
- Biology Department, Vassar College, Poughkeepsie, NY, United States of America
| | - Mark Fossesca
- Neuroscience and Behavior Program, Vassar College, Poughkeepsie, NY, United States of America
| | - Avani Desai
- Biology Department, Vassar College, Poughkeepsie, NY, United States of America
| | - Julia Goldberg
- Biology Department, Vassar College, Poughkeepsie, NY, United States of America
| | - Sophie Jones
- Biology Department, Vassar College, Poughkeepsie, NY, United States of America
| | - Morgan Stephens
- Biology Department, Vassar College, Poughkeepsie, NY, United States of America
| | - Benjamin M. Basile
- Department of Psychology, Dickinson College, Carlisle, PA, United States of America
| | - Megan D. Gall
- Neuroscience and Behavior Program, Vassar College, Poughkeepsie, NY, United States of America
- Biology Department, Vassar College, Poughkeepsie, NY, United States of America
| |
Collapse
|
3
|
Lee N, Vélez A, Bee M. Behind the mask(ing): how frogs cope with noise. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:47-66. [PMID: 36310303 DOI: 10.1007/s00359-022-01586-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 12/12/2022]
Abstract
Albert Feng was a pioneer in the field of auditory neuroethology who used frogs to investigate the neural basis of spectral and temporal processing and directional hearing. Among his many contributions was connecting neural mechanisms for sound pattern recognition and localization to the problems of auditory masking that frogs encounter when communicating in noisy, real-world environments. Feng's neurophysiological studies of auditory processing foreshadowed and inspired subsequent behavioral investigations of auditory masking in frogs. For frogs, vocal communication frequently occurs in breeding choruses, where males form dense aggregations and produce loud species-specific advertisement calls to attract potential mates and repel competitive rivals. In this review, we aim to highlight how Feng's research advanced our understanding of how frogs cope with noise. We structure our narrative around three themes woven throughout Feng's research-spectral, temporal, and directional processing-to illustrate how frogs can mitigate problems of auditory masking by exploiting frequency separation between signals and noise, temporal fluctuations in noise amplitude, and spatial separation between signals and noise. We conclude by proposing future research that would build on Feng's considerable legacy to advance our understanding of hearing and sound communication in frogs and other vertebrates.
Collapse
Affiliation(s)
- Norman Lee
- Department of Biology, St. Olaf College, 1520 St. Olaf Ave, Northfield, MN, 55057, USA.
| | - Alejandro Vélez
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
| | - Mark Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, 1479 Gortner Ave, St. Paul, MN, 55108, USA.,Graduate Program in Neuroscience, University of Minnesota, Twin Cities, 321 Church Street SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
4
|
Mackey CA, McCrate J, MacDonald KS, Feller J, Liberman L, Liberman MC, Hackett TA, Ramachandran R. Correlations between cochlear pathophysiology and behavioral measures of temporal and spatial processing in noise exposed macaques. Hear Res 2021; 401:108156. [PMID: 33373804 PMCID: PMC8487072 DOI: 10.1016/j.heares.2020.108156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022]
Abstract
Noise-induced hearing loss (NIHL) is known to have significant consequences for temporal, spectral, and spatial resolution. However, much remains to be discovered about their underlying pathophysiology. This report extends the recent development of a nonhuman primate model of NIHL to explore its consequences for hearing in noisy environments, and its correlations with the underlying cochlear pathology. Ten macaques (seven with normal-hearing, three with NIHL) were used in studies of masked tone detection in which the temporal or spatial properties of the masker were varied to assess metrics of temporal and spatial processing. Normal-hearing (NH) macaques showed lower tone detection thresholds for sinusoidally amplitude modulated (SAM) broadband noise maskers relative to unmodulated maskers (modulation masking release, MMR). Tone detection thresholds were lowest at low noise modulation frequencies, and increased as modulation frequency increased, until they matched threshold in unmodulated noise. NH macaques also showed lower tone detection thresholds for spatially separated tone and noise relative to co-localized tone and noise (spatial release from masking, SRM). Noise exposure caused permanent threshold shifts that were verified behaviorally and audiologically. In hearing-impaired (HI) macaques, MMR was reduced at tone frequencies above that of the noise exposure. HI macaques also showed degraded SRM, with no SRM observed across all tested tone frequencies. Deficits in MMR correlated with audiometric threshold changes, outer hair cell loss, and synapse loss, while the differences in SRM did not correlate with audiometric changes, or any measure of cochlear pathophysiology. This difference in anatomical-behavioral correlations suggests that while many behavioral deficits may arise from cochlear pathology, only some are predictable from the frequency place of damage in the cochlea.
Collapse
Affiliation(s)
- Chase A Mackey
- Vanderbilt Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37212, United States.
| | - Jennifer McCrate
- Interdisciplinary Program in Neuroscience for Undergraduates, Vanderbilt University, Nashville, TN 37240, United States.
| | - Kaitlyn S MacDonald
- Vanderbilt Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| | - Jessica Feller
- Vanderbilt Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37212, United States.
| | - Leslie Liberman
- Eaton Peabody Laboratories, Massachusetts Eye and Ear Infirmary & Harvard Medical Center, Boston, MA 02114, United States.
| | - M Charles Liberman
- Eaton Peabody Laboratories, Massachusetts Eye and Ear Infirmary & Harvard Medical Center, Boston, MA 02114, United States.
| | - Troy A Hackett
- Vanderbilt Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| | - Ramnarayan Ramachandran
- Vanderbilt Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| |
Collapse
|
5
|
Rodríguez RL. Back to the Basics of Mate Choice: The Evolutionary Importance of Darwin’s Sense of Beauty. THE QUARTERLY REVIEW OF BIOLOGY 2020. [DOI: 10.1086/711781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Taylor RC, Akre K, Wilczynski W, Ryan MJ. Behavioral and neural auditory thresholds in a frog. Curr Zool 2019; 65:333-341. [PMID: 31263492 PMCID: PMC6595421 DOI: 10.1093/cz/zoy089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/27/2018] [Indexed: 01/22/2023] Open
Abstract
Vocalizations play a critical role in mate recognition and mate choice in a number of taxa, especially, but not limited to, orthopterans, frogs, and birds. But receivers can only recognize and prefer sounds that they can hear. Thus a fundamental question linking neurobiology and sexual selection asks-what is the threshold for detecting acoustic sexual displays? In this study, we use 3 methods to assess such thresholds in túngara frogs: behavioral responses, auditory brainstem responses, and multiunit electrophysiological recordings from the midbrain. We show that thresholds are lowest for multiunit recordings (ca. 45 dB SPL), and then for behavioral responses (ca. 61 dB SPL), with auditory brainstem responses exhibiting the highest thresholds (ca. 71 dB SPL). We discuss why these estimates differ and why, as with other studies, it is unlikely that they should be the same. Although all of these studies estimate thresholds they are not measuring the same thresholds; behavioral thresholds are based on signal salience whereas the 2 neural assays estimate physiological thresholds. All 3 estimates, however, make it clear that to have an appreciation for detection and salience of acoustic signals we must listen to those signals through the ears of the receivers.
Collapse
Affiliation(s)
- Ryan C Taylor
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Department of Biological Sciences, Salisbury University, Salisbury, MD, USA
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Karin Akre
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Walter Wilczynski
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Michael J Ryan
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| |
Collapse
|
7
|
Christie KW, Schul J, Feng AS. Differential effects of sound level and temporal structure of calls on phonotaxis by female gray treefrogs, Hyla versicolor. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:223-238. [PMID: 30927060 DOI: 10.1007/s00359-019-01325-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 12/25/2018] [Accepted: 02/28/2019] [Indexed: 11/28/2022]
Abstract
We investigated how communication distance influenced the efficacy of communication by studying the effects of two attributes of male chorus sounds, namely, reduction in sound level and degradation of temporal sound structure, on attraction and accuracy of female phonotaxis in gray treefrogs, Hyla versicolor. For this, we conducted acoustic playback experiments, using synthetic calls and natural calls recorded at increasing distances from a focal male as stimuli. We found that the degradation of temporal structure had a greater effect on signal attractiveness than did the reduction in sound level, and that increasing sound level preferentially affected the attractiveness of proximally recorded calls, with less temporal degradation. Unlike signal attraction, accuracy of female localization increased systematically with the sound level. These results suggest that the degradation of temporal fine structure from both the chorus and signal-environmental effects imposes a limit for effective communication distances for female treefrogs in nature.
Collapse
Affiliation(s)
- Kevin W Christie
- Neuroscience Program and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Biology Department, University of Iowa, Iowa City, IA, 52242, USA.
| | - Johannes Schul
- Division of Biological Science, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Albert S Feng
- Neuroscience Program and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
8
|
Neelon DP, Rodríguez RL, Höbel G. On the architecture of mate choice decisions: preference functions and choosiness are distinct traits. Proc Biol Sci 2019; 286:20182830. [PMID: 30963823 PMCID: PMC6408907 DOI: 10.1098/rspb.2018.2830] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/31/2019] [Indexed: 11/12/2022] Open
Abstract
Mate choice is an important cause of sexual selection; it can drive the evolution of extravagant ornaments and displays, and promote speciation through the reproductive isolation generated by rapid divergence of sexual traits. Understanding mate choice requires knowledge of the traits involved in generating mate-choice decisions, and how those traits may interact with each other. It has been proposed that mate-choice decisions are the outcome of two components that vary independently: the preference function (the ranking of the attractiveness of prospective mates) and choosiness (the effort invested in mate assessment). Here we test this hypothesis by examining individual variation in female preference functions and choosiness in green treefrogs ( Hyla cinerea). We show that measures describing preference functions and choosiness are not correlated. We also show that both components are influenced differently by variation in female body size, and that preference function shape (closed and preferring intermediate values or open-ended and preferring extremes) has a strong influence on this relationship: function traits are positively correlated with body size only for individuals with closed functions, while choosiness is positively correlated with body size for individuals with open functions, but negatively for those with closed functions.
Collapse
Affiliation(s)
- Daniel P. Neelon
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin–Milwaukee, 3209 N Maryland Ave., Milwaukee, WI 53211, USA
| | | | | |
Collapse
|
9
|
Neelon DP, Höbel G. Social plasticity in choosiness in green tree frogs, Hyla cinerea. Behav Ecol 2017. [DOI: 10.1093/beheco/arx103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Vélez A, Gordon NM, Bee MA. The signal in noise: acoustic information for soundscape orientation in two North American tree frogs. Behav Ecol 2017. [DOI: 10.1093/beheco/arx044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
11
|
Laird KL, Clements P, Hunter KL, Taylor RC. Multimodal signaling improves mating success in the green tree frog (Hyla cinerea), but may not help small males. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2160-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Gall MD, Wilczynski W. The effects of call-like masking diminish after nightly exposure to conspecific choruses in green treefrogs (Hyla cinerea). ACTA ACUST UNITED AC 2016; 219:1295-302. [PMID: 26944493 DOI: 10.1242/jeb.135905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/17/2016] [Indexed: 01/10/2023]
Abstract
One of the major difficulties encountered by animals that select mates using acoustic signals is discriminating individual calls from the background noise generated by other conspecifics. Reducing the effects of conspecific masking could improve discrimination of individual calls from background noise. We used auditory evoked potentials to investigate the effects of forward masking on the responses to artificial calls in male and female treefrogs (Hyla cinerea), as well as whether hearing advertisement calls over several nights, as happens in natural frog choruses, could modify the effects of masking. We found that response amplitude decreased with decreasing interstimulus interval when the masker was equal in amplitude to the stimulus. We also found evidence of a priming effect, whereby response amplitude at lower masker amplitudes was greater than when the target stimulus was not preceded by a masker. Finally, we found that the effect of masking was diminished by 10 nights of chorus exposure (i.e. responses were stronger to target stimuli), whereas there was no change in response in the control group. Our results show that hearing dynamic social stimuli, such as frog choruses, can alter the responses of the auditory periphery in a way that could enhance the detection of and response to conspecific acoustic communication signals.
Collapse
Affiliation(s)
- Megan D Gall
- Biology Department, Vassar College, Poughkeepsie, NY 12604, USA
| | - Walter Wilczynski
- Neuroscience Institute, Georgia State University, Atlanta 30303, GA, USA Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
13
|
Mate Searching Animals as Model Systems for Understanding Perceptual Grouping. PSYCHOLOGICAL MECHANISMS IN ANIMAL COMMUNICATION 2016. [DOI: 10.1007/978-3-319-48690-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Dooling RJ, Blumenrath SH. Masking Experiments in Humans and Birds Using Anthropogenic Noises. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 875:239-43. [DOI: 10.1007/978-1-4939-2981-8_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
15
|
Höbel G. Female discrimination thresholds frequently exceed local male display variation: implications for mate choice dynamics and sexual selection. J Evol Biol 2015; 29:572-82. [PMID: 26663413 DOI: 10.1111/jeb.12806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/23/2015] [Indexed: 11/29/2022]
Abstract
Among the factors that can influence female mate choice decisions is the degree to which females differentiate among similar displays: as differences decrease, females are expected to eventually stop discriminating. This discrimination threshold, in conjunction with the magnitude of male trait variation females regularly encounter while making mate choice decisions, may have important consequences for sexual selection. If local display variation is above the discrimination threshold, female preferences should translate into higher mating success for the more attractive male. But if display variation is frequently below the threshold, the resulting increased pattern of random mating may obscure the existence of female mate choice. I investigated the interplay between female discrimination and male display variation in green treefrogs (Hyla cinerea) and found that call trait differences between nearest neighbour males were frequently smaller than what females are expected to discriminate. This finding has two important consequences for our understanding of sexual selection in the wild: first, low display variation should weaken the strength of selection on male display traits, but the direction of selection should mirror the one predicted from females choice trials. Second, caution is needed when interpreting data on realized mating success in the wild: a pattern of random mating with respect to male display traits does not always mean that female preferences are weak or that conditions are too challenging for females to express their preferences. Rather, insufficient display variation can generate the same pattern.
Collapse
Affiliation(s)
- G Höbel
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
16
|
Abstract
The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well.
Collapse
|
17
|
Schrode KM, Bee MA. Evolutionary adaptations for the temporal processing of natural sounds by the anuran peripheral auditory system. ACTA ACUST UNITED AC 2015; 218:837-48. [PMID: 25617467 DOI: 10.1242/jeb.115014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male-male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery.
Collapse
Affiliation(s)
- Katrina M Schrode
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark A Bee
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
18
|
Buerkle NP, Schrode KM, Bee MA. Assessing stimulus and subject influences on auditory evoked potentials and their relation to peripheral physiology in green treefrogs (Hyla cinerea). Comp Biochem Physiol A Mol Integr Physiol 2014; 178:68-81. [PMID: 25151643 PMCID: PMC4174320 DOI: 10.1016/j.cbpa.2014.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/31/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
Anurans (frogs and toads) are important models for comparative studies of communication, auditory physiology, and neuroethology, but to date, most of our knowledge comes from in-depth studies of a relatively small number of model species. Using the well-studied green treefrog (Hyla cinerea), this study sought to develop and evaluate the use of auditory evoked potentials (AEPs) as a minimally invasive tool for investigating auditory sensitivity in a larger diversity of anuran species. The goals of the study were to assess the effects of frequency, signal level, sex, and body size on auditory brainstem response (ABR) amplitudes and latencies, characterize gross ABR morphology, and generate an audiogram that could be compared to several previously published audiograms for green treefrogs. Increasing signal level resulted in larger ABR amplitudes and shorter latencies, and these effects were frequency dependent. There was little evidence for an effect of sex or size on ABRs. Analyses consistently distinguished between responses to stimuli in the frequency ranges of the three previously-described populations of afferents that innervate the two auditory end organs in anurans. The overall shape of the audiogram shared prominent features with previously published audiograms. This study highlights the utility of AEPs as a valuable tool for the study of anuran auditory sensitivity.
Collapse
Affiliation(s)
- Nathan P Buerkle
- College of Biological Sciences, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Katrina M Schrode
- Graduate Program in Neuroscience, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA.
| | - Mark A Bee
- Department of Ecology, Evolution and Behavior, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| |
Collapse
|
19
|
Starnberger I, Preininger D, Hödl W. From uni- to multimodality: towards an integrative view on anuran communication. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:777-87. [PMID: 24973893 PMCID: PMC4138437 DOI: 10.1007/s00359-014-0923-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 11/27/2022]
Abstract
Undeniably, acoustic signals are the predominant mode of communication in frogs and toads. Acoustically active species are found throughout the vast diversity of anuran families. However, additional or alternative signal modalities have gained increasing attention. In several anurans, seismic, visual and chemical communications have convergently evolved due to ecological constraints such as noisy environments. The production of a visual cue, like the inevitably moving vocal sac of acoustically advertising males, is emphasized by conspicuously coloured throats. Limb movements accompanied by dynamic displays of bright colours are additional examples of striking visual signals independent of vocalizations. In some multimodal anuran communication systems, the acoustic component acts as an alert signal, which alters the receiver attention to the following visual display. Recent findings of colourful glands on vocal sacs, producing volatile species-specific scent bouquets suggest the possibility of integration of acoustic, visual and chemical cues in species recognition and mate choice. The combination of signal components facilitates a broadened display repertoire in challenging environmental conditions. Thus, the complexity of the communication systems of frogs and toads may have been underestimated.
Collapse
Affiliation(s)
- Iris Starnberger
- Department of Integrative Zoology, University of Vienna, Althanstraße 14, 1090, Vienna, Austria,
| | | | | |
Collapse
|
20
|
Bee MA. Treefrogs as animal models for research on auditory scene analysis and the cocktail party problem. Int J Psychophysiol 2014; 95:216-37. [PMID: 24424243 DOI: 10.1016/j.ijpsycho.2014.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/10/2013] [Accepted: 01/01/2014] [Indexed: 01/18/2023]
Abstract
The perceptual analysis of acoustic scenes involves binding together sounds from the same source and separating them from other sounds in the environment. In large social groups, listeners experience increased difficulty performing these tasks due to high noise levels and interference from the concurrent signals of multiple individuals. While a substantial body of literature on these issues pertains to human hearing and speech communication, few studies have investigated how nonhuman animals may be evolutionarily adapted to solve biologically analogous communication problems. Here, I review recent and ongoing work aimed at testing hypotheses about perceptual mechanisms that enable treefrogs in the genus Hyla to communicate vocally in noisy, multi-source social environments. After briefly introducing the genus and the methods used to study hearing in frogs, I outline several functional constraints on communication posed by the acoustic environment of breeding "choruses". Then, I review studies of sound source perception aimed at uncovering how treefrog listeners may be adapted to cope with these constraints. Specifically, this review covers research on the acoustic cues used in sequential and simultaneous auditory grouping, spatial release from masking, and dip listening. Throughout the paper, I attempt to illustrate how broad-scale, comparative studies of carefully considered animal models may ultimately reveal an evolutionary diversity of underlying mechanisms for solving cocktail-party-like problems in communication.
Collapse
Affiliation(s)
- Mark A Bee
- Department of Ecology, Evolution and Behavior, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, St. Paul, MN 55108, USA.
| |
Collapse
|
21
|
|