1
|
Chen YW, Yang HH, Gu N, Li JQ, Zhu XY, Zhang YN. Identification of attractants for adult Spodoptera litura based on the interaction between odorant-binding protein 34 and host volatiles. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106005. [PMID: 39084800 DOI: 10.1016/j.pestbp.2024.106005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/15/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
Odorant-binding proteins (OBPs) play key roles in host plant location by insects, and can accordingly serve as important targets for the development of attractants. In this study, we detected the high expression of SlitOBP34 in male antennae of Spodoptera litura. Subsequently, the fluorescence competitive binding experiments displayed that the SlitOBP34 protein has binding affinity for different ligands. Then, protein-ligand interaction analyses found the presence of six amino acid residues may serve as key recognition sites. Further electroantennographic and biobehavioral assessments revealed that the electrophysiological responses of male antennae were evoked in response to stimulation with the six identified host volatiles, and that these volatiles attracted male moths to varying extents. Notably, low concentrations of benzaldehyde, 1-hexanol, and cis-3-hexenyl acetate were found to have significant attractant effects on male moths, thereby identifying these three host volatiles as potential candidates for the development of male attractants. These findings advance our current understanding of the olfactory-encoded mechanisms of host plants selection in S. litura and have enabled us to develop novel adult attractants for controlling the pest in the future.
Collapse
Affiliation(s)
- Yu-Wen Chen
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Hui-Hui Yang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Nan Gu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jian-Qiao Li
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xiu-Yun Zhu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Ya-Nan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
2
|
Petelski I, Günzel Y, Sayin S, Kraus S, Couzin-Fuchs E. Synergistic olfactory processing for social plasticity in desert locusts. Nat Commun 2024; 15:5476. [PMID: 38942759 PMCID: PMC11213921 DOI: 10.1038/s41467-024-49719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024] Open
Abstract
Desert locust plagues threaten the food security of millions. Central to their formation is crowding-induced plasticity, with social phenotypes changing from cryptic (solitarious) to swarming (gregarious). Here, we elucidate the implications of this transition on foraging decisions and corresponding neural circuits. We use behavioral experiments and Bayesian modeling to decompose the multi-modal facets of foraging, revealing olfactory social cues as critical. To this end, we investigate how corresponding odors are encoded in the locust olfactory system using in-vivo calcium imaging. We discover crowding-dependent synergistic interactions between food-related and social odors distributed across stable combinatorial response maps. The observed synergy was specific to the gregarious phase and manifested in distinct odor response motifs. Our results suggest a crowding-induced modulation of the locust olfactory system that enhances food detection in swarms. Overall, we demonstrate how linking sensory adaptations to behaviorally relevant tasks can improve our understanding of social modulation in non-model organisms.
Collapse
Affiliation(s)
- Inga Petelski
- International Max Planck Research School for Quantitative Behavior, Ecology and Evolution from lab to field, 78464, Konstanz, Germany
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464, Konstanz, Germany
| | - Yannick Günzel
- International Max Planck Research School for Quantitative Behavior, Ecology and Evolution from lab to field, 78464, Konstanz, Germany.
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany.
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Konstanz, Germany.
| | - Sercan Sayin
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Konstanz, Germany
| | - Susanne Kraus
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| | - Einat Couzin-Fuchs
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany.
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Konstanz, Germany.
| |
Collapse
|
3
|
Wang Q, Smid HM, Dicke M, Haverkamp A. The olfactory system of Pieris brassicae caterpillars: from receptors to glomeruli. INSECT SCIENCE 2024; 31:469-488. [PMID: 38105530 DOI: 10.1111/1744-7917.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023]
Abstract
The olfactory system of adult lepidopterans is among the best described neuronal circuits. However, comparatively little is known about the organization of the olfactory system in the larval stage of these insects. Here, we explore the expression of olfactory receptors and the organization of olfactory sensory neurons in caterpillars of Pieris brassicae, a significant pest species in Europe and a well-studied species for its chemical ecology. To describe the larval olfactory system in this species, we first analyzed the head transcriptome of third-instar larvae (L3) and identified 16 odorant receptors (ORs) including the OR coreceptor (Orco), 13 ionotropic receptors (IRs), and 8 gustatory receptors (GRs). We then quantified the expression of these 16 ORs in different life stages, using qPCR, and found that the majority of ORs had significantly higher expression in the L4 stage than in the L3 and L5 stages, indicating that the larval olfactory system is not static throughout caterpillar development. Using an Orco-specific antibody, we identified all olfactory receptor neurons (ORNs) expressing the Orco protein in L3, L4, and L5 caterpillars and found a total of 34 Orco-positive ORNs, distributed among three sensilla on the antenna. The number of Orco-positive ORNs did not differ among the three larval instars. Finally, we used retrograde axon tracing of the antennal nerve and identified a mean of 15 glomeruli in the larval antennal center (LAC), suggesting that the caterpillar olfactory system follows a similar design as the adult olfactory system, although with a lower numerical redundancy. Taken together, our results provide a detailed analysis of the larval olfactory neurons in P. brassicae, highlighting both the differences as well as the commonalities with the adult olfactory system. These findings contribute to a better understanding of the development of the olfactory system in insects and its life-stage-specific adaptations.
Collapse
Affiliation(s)
- Qi Wang
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Alexander Haverkamp
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
4
|
Yi C, Teng D, Xie J, Tang H, Zhao D, Liu X, Liu T, Ding W, Khashaveh A, Zhang Y. Volatiles from cotton aphid ( Aphis gossypii) infested plants attract the natural enemy Hippodamia variegata. FRONTIERS IN PLANT SCIENCE 2023; 14:1326630. [PMID: 38173929 PMCID: PMC10761428 DOI: 10.3389/fpls.2023.1326630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
The Aphis gossypii is a major threat of cotton worldwide due to its short life cycle and rapid reproduction. Chemical control is the primary method used to manage the cotton aphid, which has significant environmental impacts. Therefore, prioritizing eco-friendly alternatives is essential for managing the cotton aphid. The ladybird, Hippodamia variegata, is a predominant predator of the cotton aphid. Its performance in cotton plantation is directly linked to chemical communication, where volatile compounds emitted from aphid-infested plants play important roles in successful predation. Here, we comprehensively studied the chemical interaction between the pest, natural enemy and host plants by analyzing the volatile profiles of aphid-infested cotton plants using gas chromatography-mass spectrometry (GC-MS). We then utilized the identified volatile compounds in electrophysiological recording (EAG) and behavioral assays. Through behavioral tests, we initially demonstrated the clear preference of both larvae and adults of H. variegata for aphid-infested plants. Subsequently, 13 compounds, namely α-pinene, cis-3-hexenyl acetate, 4-ethyl-1-octyn-3-ol, β-ocimene, dodecane, E-β-farnesene, decanal, methyl salicylate, β-caryophyllene, α-humulene, farnesol, DMNT, and TMTT were identified from aphid-infested plants. All these compounds were electrophysiologically active and induced detectable EAG responses in larvae and adults. Y-tube olfactometer assays indicated that, with few exceptions for larvae, all identified chemicals were attractive to H. variegata, particularly at the highest tested concentration (100 mg/ml). The outcomes of this study establish a practical foundation for developing attractants for H. variegata and open avenues for potential advancements in aphid management strategies by understanding the details of chemical communication at a tritrophic level.
Collapse
Affiliation(s)
- Chaoqun Yi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Dong Teng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jiaoxin Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Haoyu Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Danyang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaoxu Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Tinghui Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Wei Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Chen J, Liu Q, Yuan L, Shen W, Shi Q, Qi G, Chen T, Zhang Z. Osa-miR162a Enhances the Resistance to the Brown Planthopper via α-Linolenic Acid Metabolism in Rice ( Oryza sativa). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11847-11859. [PMID: 37493591 DOI: 10.1021/acs.jafc.3c02637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The brown planthopper (BPH) is the most serious pest causing yield losses in rice. MicroRNAs (miRNAs) are emerging as key modulators of plant-pest interactions. In the study, we found that osa-miR162a is induced in response to BPH attack in the seedling stage and tunes rice resistance to the BPH via the α-linolenic acid metabolism pathway as indicated by gas chromatography/liquid chromatography-mass spectrometry analysis. Overexpression of osa-miR162a inhibited the development and growth of the BPH and simultaneously reduced the release of 3-hexenal and 3-hexen-1-ol to block host recognition in the BPH. Moreover, knockdown of OsDCL1, which is targeted by osa-miR162a, inhibited α-linolenic acid metabolism to enhance the resistance to the BPH, which was similar to that in miR162a-overexpressing plants. Our study revealed a novel defense mechanism mediated by plant miRNAs developed during the long-term evolution of plant-host interaction, provided new ideas for the identification of rice resistance resources, and promoted a better understanding of pest control.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Qin Liu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
| | - Longyu Yuan
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
| | - Wenzhong Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MARA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research Institute, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Qingxing Shi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
| | - Guojun Qi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
| | - Ting Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
| | - Zhenfei Zhang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
| |
Collapse
|
6
|
Mangiacotti M, Baeckens S, Fumagalli M, Martín J, Scali S, Sacchi R. Protein-lipid Association in Lizard Chemical Signals. Integr Org Biol 2023; 5:obad016. [PMID: 37228571 PMCID: PMC10205002 DOI: 10.1093/iob/obad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Chemical communication in terrestrial vertebrates is often built on complex blends, where semiochemical and structural compounds may form an integrated functional unit. In lizards, many species have specialized epidermal glands whose secretions are waxy, homogeneous blends of lipids and proteins, both active in communication. The intimate co-occurrence of such compounds allows us to hypothesize that they should undergo a certain degree of covariation, considering both their semiochemical role and the support-to-lipid function hypothesized for the protein fraction. In order to assess the occurrence and level of protein-lipid covariation, we compared the composition and complexity of the two fractions in the femoral gland secretions of 36 lizard species, combining phylogenetically-informed analysis with tandem mass spectrometry. We found the composition and complexity of the two fractions to be strongly correlated. The composition of the protein fraction was mostly influenced by the relative proportion of cholestanol, provitamin D3, stigmasterol, and tocopherol, while the complexity of the protein pattern increased with that of lipids. Additionally, two identified proteins (carbonic anhydrase and protein disulfide isomerase) increased their concentration as provitamin D3 became more abundant. Although our approach does not allow us to decrypt the functional relations between the proteinaceous and lipid components, nor under the semiochemical or structural hypothesis, the finding that the proteins involved in this association were enzymes opens up to new perspectives about protein role: They may confer dynamic properties to the blend, making it able to compensate predictable variation of the environmental conditions. This may expand the view about proteins in the support-to-lipid hypothesis, from being a passive and inert component of the secretions to become an active and dynamic one, thus providing cues for future research.
Collapse
Affiliation(s)
| | - S Baeckens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, 9000 Gent, Belgium
| | - M Fumagalli
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - J Martín
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | - S Scali
- Sezione Erpetologia, Museo di Storia Naturale di Milano, Corso Venezia 55, IT-20121 Milano, Italy
| | - R Sacchi
- Department of Earth and Environmental Sciences, University of Pavia, Via Taramelli 24, 27100 Pavia, Italy
| |
Collapse
|
7
|
Shen X, Li X, Jia C, Li J, Chen S, Gao B, Liang W, Zhang L. HPLC-MS-based untargeted metabolomic analysis of differential plasma metabolites and their associated metabolic pathways in reproductively anosmic black porgy, Acanthopagrus schlegelii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101071. [PMID: 36931130 DOI: 10.1016/j.cbd.2023.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Olfaction, a universal form of chemical communication, is a powerful channel for animals to obtain social and environmental cues. The mechanisms by which fish olfaction affects reproduction, breeding and disease control are not yet clear. To evaluate metabolites profiles, plasma from anosmic and control black porgy during reproduction was analyzed by non-targeted metabolomics using ultra high-performance liquid chromatography-mass spectrometry and multivariate statistical analysis techniques, including principal component analysis and orthogonal partial least squares discriminant analysis. The metabolite profiles of anosmia and control groups were found to be significantly separated. Ten different differential metabolites, mainly including amino acids, such as isoleucine and methionine, and lipids, such as phosphatidylserine, were screened based on the combined analysis of variable importance in the projection and p values. In addition, six key differential metabolic pathways were analyzed using the Kyoto Encyclopedia of Genes and Genomes and enriched for four metabolic pathways including the citrate acid (TCA) cycle, tyrosine metabolism, arginine and proline metabolism, and arginine synthesis. The TCA cycle enhances fertility through the reduction of pyruvate kinase, and intermediate derivatives (acetyl CoA, malonyl CoA) act as signaling factors that regulate immune cell function. The tyrosine cycle can indirectly participate and promote reproduction in black porgy through melanin-concentrating hormone. Arginine and proline metabolism can promote reproduction by promoting growth hormone and enhance immunity in anosmic black porgy by stimulating T lymphocytes. Our metabolomic study revealed that anosmia in black porgy played an active role in immunity and reproduction and provided theoretical support for breeding and disease control.
Collapse
Affiliation(s)
- Xing Shen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xian Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Chaofeng Jia
- Aquaculture and Genetic Breeding Laboratory, Marine Fisheries Research Institute of Jiangsu Province, Nantong, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shuyin Chen
- Aquaculture and Genetic Breeding Laboratory, Marine Fisheries Research Institute of Jiangsu Province, Nantong, China
| | - Bo Gao
- Aquaculture and Genetic Breeding Laboratory, Marine Fisheries Research Institute of Jiangsu Province, Nantong, China
| | - Wenke Liang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
8
|
Kandasamy D, Zaman R, Nakamura Y, Zhao T, Hartmann H, Andersson MN, Hammerbacher A, Gershenzon J. Conifer-killing bark beetles locate fungal symbionts by detecting volatile fungal metabolites of host tree resin monoterpenes. PLoS Biol 2023; 21:e3001887. [PMID: 36802386 PMCID: PMC9943021 DOI: 10.1371/journal.pbio.3001887] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/12/2023] [Indexed: 02/23/2023] Open
Abstract
Outbreaks of the Eurasian spruce bark beetle (Ips typographus) have decimated millions of hectares of conifer forests in Europe in recent years. The ability of these 4.0 to 5.5 mm long insects to kill mature trees over a short period has been sometimes ascribed to two main factors: (1) mass attacks on the host tree to overcome tree defenses and (2) the presence of fungal symbionts that support successful beetle development in the tree. While the role of pheromones in coordinating mass attacks has been well studied, the role of chemical communication in maintaining the fungal symbiosis is poorly understood. Previous evidence indicates that I. typographus can distinguish fungal symbionts of the genera Grosmannia, Endoconidiophora, and Ophiostoma by their de novo synthesized volatile compounds. Here, we hypothesize that the fungal symbionts of this bark beetle species metabolize spruce resin monoterpenes of the beetle's host tree, Norway spruce (Picea abies), and that the volatile products are used as cues by beetles for locating breeding sites with beneficial symbionts. We show that Grosmannia penicillata and other fungal symbionts alter the profile of spruce bark volatiles by converting the major monoterpenes into an attractive blend of oxygenated derivatives. Bornyl acetate was metabolized to camphor, and α- and β-pinene to trans-4-thujanol and other oxygenated products. Electrophysiological measurements showed that I. typographus possesses dedicated olfactory sensory neurons for oxygenated metabolites. Both camphor and trans-4-thujanol attracted beetles at specific doses in walking olfactometer experiments, and the presence of symbiotic fungi enhanced attraction of females to pheromones. Another co-occurring nonbeneficial fungus (Trichoderma sp.) also produced oxygenated monoterpenes, but these were not attractive to I. typographus. Finally, we show that colonization of fungal symbionts on spruce bark diet stimulated beetles to make tunnels into the diet. Collectively, our study suggests that the blends of oxygenated metabolites of conifer monoterpenes produced by fungal symbionts are used by walking bark beetles as attractive or repellent cues to locate breeding or feeding sites containing beneficial microbial symbionts. The oxygenated metabolites may aid beetles in assessing the presence of the fungus, the defense status of the host tree and the density of conspecifics at potential feeding and breeding sites.
Collapse
Affiliation(s)
- Dineshkumar Kandasamy
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany,Max Planck Center for next Generation Insect Chemical Ecology (nGICE), Department of Biology, Lund University, Lund, Sweden,* E-mail: (DK); (JG)
| | - Rashaduz Zaman
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany,Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Tao Zhao
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Henrik Hartmann
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Martin N. Andersson
- Max Planck Center for next Generation Insect Chemical Ecology (nGICE), Department of Biology, Lund University, Lund, Sweden,Department of Biology, Lund University, Lund, Sweden
| | - Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany,* E-mail: (DK); (JG)
| |
Collapse
|
9
|
Urrutia MA, Cortez V, Verdú JR. Links Between Feeding Preferences and Electroantennogram Response Profiles in Dung Beetles: The Importance of Dung Odor Bouquets. J Chem Ecol 2022; 48:690-703. [PMID: 36083414 PMCID: PMC9618527 DOI: 10.1007/s10886-022-01383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022]
Abstract
The detection of dung odors is a crucial step in the food-searching behavior of dung beetles (Coleoptera: Scarabaeoidea). Yet, whether certain compounds characteristic of a given dung type contribute to a ‘choosy generalism’ behavior proposed for this taxonomic group is unknown. To address this, we analyzed the chemical composition of three types of dung (cow, horse, and rabbit) and conducted behavioral and electroantennogram (EAG) bioassays on 15 species of dung beetles using 19 volatile organic compounds representing the three dung samples. Chemical analyses revealed substantial qualitative and quantitative differences among dung types. When offered these food options in an olfactometer, 14 species exhibited a feeding preference. Surprisingly, all 19 compounds used in the EAG assays elicited antennal responses, with species displaying different olfactory profiles. The relationship between behavioral preferences and electrophysiological profiles highlighted that species with different food preferences had differences in antennal responses. Moreover, a specific set of EAG-active compounds (nonanal, sabinene, acetophenone, ρ-cresol, 2-heptanone, 1H-indole, and 6-methyl-5-hepten-2-one) were the strongest drivers in the distinct sensory profiles of the trophic preference groups. Our results point to the importance of the whole bouquet of dung-emanating compounds in driving food-searching behavior, but specific volatiles could aid in determining highly marked trophic preferences in certain species.
Collapse
Affiliation(s)
- Miguel A Urrutia
- Research Institute CIBIO (Centro Iberoamericano de la Bioaffiliationersidad) Science Park, University of Alicante, E-03690, Alicante, Spain
| | - Vieyle Cortez
- Research Institute CIBIO (Centro Iberoamericano de la Bioaffiliationersidad) Science Park, University of Alicante, E-03690, Alicante, Spain
| | - José R Verdú
- Research Institute CIBIO (Centro Iberoamericano de la Bioaffiliationersidad) Science Park, University of Alicante, E-03690, Alicante, Spain.
| |
Collapse
|
10
|
David NF, Henry TJ, Sprayberry JDH. Odor-Pollution From Fungicides Disrupts Learning and Recognition of a Common Floral Scent in Bumblebees (Bombus impatiens). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.765388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background and AimsBumblebees provide vital pollination services to both natural and agricultural ecosystems. Consequently their declines in species-diversity and population size over the last five decades is alarming. Direct contributors to these declines include pesticides, habitat loss, and disease. However, given that colony fitness is linked to foraging success, successful conservation requires mitigation of any anthropogenic practices that negatively impact foraging. Previous work has shown that agrochemical odor-pollution, including that of fungicides, can modulate bumblebee foraging behavior. This study investigates how odor pollution from three common fungicides (Safer® Brand Garden Fungicide II, Scotts® Lawn Fungus Control, and Reliant® Systemic Fungicide) affects Bombus impatiens’ floral-odor learning and recognition using an associative learning paradigm.MethodsThe effects of fungicide-odor pollution were tested in three ways: (1) background pollution during floral-odor learning; (2) background pollution during floral-odor recognition; and (3) point (localized) pollution during floral-odor recognition. Electroantennogram (EAG) recordings from B. impatiens confirmed the salience of all odor-stimuli and examined impacts of background fungicide-odor on antennal responses to floral-odor. To better understand how fungicide-odor structure related to behavioral data, scents were sampled (Solid Phase Microextraction) and analyzed using gas chromatography–mass spectrometry. Odors were then characterized using the Compounds Without Borders (CWB) vectorization method.ConclusionAll fungicides tested disrupted floral-odor learning and recognition for at least one concentration tested, and Scotts® was universally disruptive at all tested concentrations. All fungicides induced EAG responses, indicating they provide perceivable odor stimuli. Interestingly, two of three tested fungicides (Scotts® and Reliant®) inhibit antennal responses to Monarda fistulosa odor. Odor characterization supports previous findings that sulfurous scents could be disruptive to odor-driven foraging behaviors. Inability for foraging bumblebees to associate to rewarding floral odors in the presence of fungicidal odor pollution could have negative large-scale implications for colony health and reproductive fitness.
Collapse
|
11
|
Coureaud G, Thomas-Danguin T, Sandoz JC, Wilson DA. Biological constraints on configural odour mixture perception. J Exp Biol 2022; 225:274695. [PMID: 35285471 PMCID: PMC8996812 DOI: 10.1242/jeb.242274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animals, including humans, detect odours and use this information to behave efficiently in the environment. Frequently, odours consist of complex mixtures of odorants rather than single odorants, and mixtures are often perceived as configural wholes, i.e. as odour objects (e.g. food, partners). The biological rules governing this 'configural perception' (as opposed to the elemental perception of mixtures through their components) remain weakly understood. Here, we first review examples of configural mixture processing in diverse species involving species-specific biological signals. Then, we present the original hypothesis that at least certain mixtures can be processed configurally across species. Indeed, experiments conducted in human adults, newborn rabbits and, more recently, in rodents and honeybees show that these species process some mixtures in a remarkably similar fashion. Strikingly, a mixture AB (A, ethyl isobutyrate; B, ethyl maltol) induces configural processing in humans, who perceive a mixture odour quality (pineapple) distinct from the component qualities (A, strawberry; B, caramel). The same mixture is weakly configurally processed in rabbit neonates, which perceive a particular odour for the mixture in addition to the component odours. Mice and honeybees also perceive the AB mixture configurally, as they respond differently to the mixture compared with its components. Based on these results and others, including neurophysiological approaches, we propose that certain mixtures are convergently perceived across various species of vertebrates/invertebrates, possibly as a result of a similar anatomical organization of their olfactory systems and the common necessity to simplify the environment's chemical complexity in order to display adaptive behaviours.
Collapse
Affiliation(s)
- Gérard Coureaud
- Centre de Recherche en Neurosciences de Lyon, Team Sensory Neuroethology (ENES), CNRS/INSERM/UCBL1/UJM, 69500 Lyon, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, Team Flavor, Food Oral Processing and Perception, INRAE, CNRS, Institut Agro Dijon, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, Université Paris-Saclay, IRD, 91190 Gif-sur-Yvette, France
| | - Donald A Wilson
- Department of Child & Adolescent Psychiatry, New York University Langone School of Medicine and Nathan S. Kline Institute for Psychiatric Research, New York, NY 10016, USA
| |
Collapse
|
12
|
Derby CD, McClintock TS, Caprio J. Understanding responses to chemical mixtures: looking forward from the past. Chem Senses 2022; 47:bjac002. [PMID: 35226060 PMCID: PMC8883806 DOI: 10.1093/chemse/bjac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our goal in this article is to provide a perspective on how to understand the nature of responses to chemical mixtures. In studying responses to mixtures, researchers often identify "mixture interactions"-responses to mixtures that are not accurately predicted from the responses to the mixture's individual components. Critical in these studies is how to predict responses to mixtures and thus to identify a mixture interaction. We explore this issue with a focus on olfaction and on the first level of neural processing-olfactory sensory neurons-although we use examples from taste systems as well and we consider responses beyond sensory neurons, including behavior and psychophysics. We provide a broadly comparative perspective that includes examples from vertebrates and invertebrates, from genetic and nongenetic animal models, and from literature old and new. In the end, we attempt to recommend how to approach these problems, including possible future research directions.
Collapse
Affiliation(s)
- Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - John Caprio
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
13
|
Conchou L, Lucas P, Deisig N, Demondion E, Renou M. Effects of Multi-Component Backgrounds of Volatile Plant Compounds on Moth Pheromone Perception. INSECTS 2021; 12:insects12050409. [PMID: 34062868 PMCID: PMC8147264 DOI: 10.3390/insects12050409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary It is well acknowledged that some of the volatile plant compounds (VPC) naturally present in insect natural habitats alter the perception of their own pheromone when presented individually as a background to pheromone. However, the effects of mixing VPCs as they appear to insects in natural olfactory landscapes are poorly understood. We measured the activity of brain neurons and neurons that detect a sex pheromone component in a moth antenna, while exposed to simple or composite backgrounds of VPCs representative of the odorant variety encountered by this moth. Maps of activities were built using calcium imaging to visualize which brain areas were most affected by VPCs. In the antenna, we observed differences in VPC capacity to elicit firing response that cannot be explained by differences in stimulus intensities because we adjusted concentrations according to volatility. The neuronal network, which reformats the input from antenna neurons in the brain, did not improve pheromone salience. We postulate that moth olfactory system evolved to increase sensitivity and encode fast changes of concentration at some cost for signal extraction. Comparing blends to single compounds indicated that a blend shows the activity of its most active component, VPC salience seems more important than background complexity. Abstract The volatile plant compounds (VPC) alter pheromone perception by insects but mixture effects inside insect olfactory landscapes are poorly understood. We measured the activity of receptor neurons tuned to Z7-12Ac (Z7-ORN), a pheromone component, in the antenna and central neurons in male Agrotis ipsilon while exposed to simple or composite backgrounds of a panel of VPCs representative of the odorant variety encountered by a moth. Maps of activities were built using calcium imaging to visualize which areas in antennal lobes (AL) were affected by VPCs. We compared the VPC activity and their impact as backgrounds at antenna and AL levels, individually or in blends. At periphery, VPCs showed differences in their capacity to elicit Z7-ORN firing response that cannot be explained by differences in stimulus intensities because we adjusted concentrations according to vapor pressures. The AL neuronal network, which reformats the ORN input, did not improve pheromone salience. We postulate that the AL network evolved to increase sensitivity and to encode for fast changes of pheromone at some cost for signal extraction. Comparing blends to single compounds indicated that a blend shows the activity of its most active component. VPC salience seems to be more important than background complexity.
Collapse
|
14
|
Byers KJRP, Darragh K, Fernanda Garza S, Abondano Almeida D, Warren IA, Rastas PMA, Merrill RM, Schulz S, McMillan WO, Jiggins CD. Clustering of loci controlling species differences in male chemical bouquets of sympatric Heliconius butterflies. Ecol Evol 2021; 11:89-107. [PMID: 33437416 PMCID: PMC7790645 DOI: 10.1002/ece3.6947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022] Open
Abstract
The degree to which loci promoting reproductive isolation cluster in the genome-that is, the genetic architecture of reproductive isolation-can influence the tempo and mode of speciation. Tight linkage between these loci can facilitate speciation in the face of gene flow. Pheromones play a role in reproductive isolation in many Lepidoptera species, and the role of endogenously produced compounds as secondary metabolites decreases the likelihood of pleiotropy associated with many barrier loci. Heliconius butterflies use male sex pheromones to both court females (aphrodisiac wing pheromones) and ward off male courtship (male-transferred antiaphrodisiac genital pheromones), and it is likely that these compounds play a role in reproductive isolation between Heliconius species. Using a set of backcross hybrids between H. melpomene and H. cydno, we investigated the genetic architecture of putative male pheromone compound production. We found a set of 40 significant quantitative trait loci (QTL) representing 33 potential pheromone compounds. QTL clustered significantly on two chromosomes, chromosome 8 for genital compounds and chromosome 20 for wing compounds, and chromosome 20 was enriched for potential pheromone biosynthesis genes. There was minimal overlap between pheromone QTL and known QTL for mate choice and color pattern. Nonetheless, we did detect linkage between a QTL for wing androconial area and optix, a color pattern locus known to play a role in reproductive isolation in these species. This tight clustering of putative pheromone loci might contribute to coincident reproductive isolating barriers, facilitating speciation despite ongoing gene flow.
Collapse
Affiliation(s)
- Kelsey J. R. P. Byers
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Cell and Developmental BiologyJohn Innes CentreNorwichUK
| | - Kathy Darragh
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Evolution and EcologyUniversity of California DavisDavisCAUSA
| | - Sylvia Fernanda Garza
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Collective BehaviourMax Planck Institute of Animal BehaviourKonstanzGermany
| | - Diana Abondano Almeida
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Institute for Ecology, Evolution and DiversityGoethe UniversitätFrankfurtGermany
| | - Ian A. Warren
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | | | - Richard M. Merrill
- Smithsonian Tropical Research InstitutePanamaPanama
- Division of Evolutionary BiologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Stefan Schulz
- Institute of Organic ChemistryDepartment of Life SciencesTechnische Universität BraunschweigBraunschweigGermany
| | | | - Chris D. Jiggins
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
| |
Collapse
|
15
|
Terutsuki D, Mitsuno H, Sato K, Sakurai T, Mase N, Kanzaki R. Highly effective volatile organic compound dissolving strategy based on mist atomization for odorant biosensors. Anal Chim Acta 2020; 1139:178-188. [PMID: 33190702 DOI: 10.1016/j.aca.2020.09.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/05/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
The detection of volatile organic compound (VOC) mixtures is crucial in the medical and security fields. Receptor-based odorant biosensors sensitively and selectively detect odorant molecules in a solution; however, odorant molecules generally exist as VOCs in the air and exhibit poor water solubility. Therefore, techniques that enable the dissolution of poorly water-soluble VOCs using portable systems are essential for practical biosensors' applications. We previously proposed a VOC dissolution method based on water atomization to increase the surface area via the generation of fine bubbles, as a proof-of-concept; however, the system was lab-based (non-mobile) and the dissolution was limited to one VOC. In this study, we established a highly effective VOC dissolution method based on mist atomization that can be used in the field. This new method demonstrated a rapid dissolution potential of a sparsely-soluble VOC mixture with various functional groups in distilled water (DW) within 1 min, without the use of any organic solvents. Calcium imaging revealed that odorant receptor 13a-expressing Sf21 cells (Or13a cells) responded to 1-octen-3-ol in the mixture. Further, we successfully developed a field-deployable prototype vacuum and dissolution system with a simple configuration that efficiently captured and rapidly dissolved airborne 1-octen-3-ol in DW. This study proposes a field-deployable system that is appropriate for solubilizing various airborne odorant molecules and therefore is a practical strategy to use in the context of odorant biosensors.
Collapse
Affiliation(s)
- Daigo Terutsuki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| | - Hidefumi Mitsuno
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Kohei Sato
- Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan
| | - Takeshi Sakurai
- Department of Agricultural Innovation for Sustainability, Tokyo University of Agriculture, 1737 Funako, Atsugi-shi, Kanagawa, 243-0034, Japan
| | - Nobuyuki Mase
- Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan; Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| |
Collapse
|
16
|
Sprayberry JDH. Compounds without borders: A mechanism for quantifying complex odors and responses to scent-pollution in bumblebees. PLoS Comput Biol 2020; 16:e1007765. [PMID: 32320390 PMCID: PMC7197864 DOI: 10.1371/journal.pcbi.1007765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 05/04/2020] [Accepted: 03/02/2020] [Indexed: 11/21/2022] Open
Abstract
Bumblebees are critical pollinators whose populations have been experiencing troubling declines over the past several decades. Successful foraging improves colony fitness, thus understanding how anthropogenic influences modulate foraging behavior may aid conservation efforts. Odor pollution can have negative impacts on bumble- and honey-bees foraging behavior. However, given the vast array of potential scent contaminants, individually testing pollutants is an ineffective approach. The ability to quantitatively measure how much scent-pollution of a floral-odor bumblebees can tolerate would represent a paradigm shift in odor-pollution studies. Current statistical methods for analyzing complex odors have poor predictive power because statistically-derived odor-spaces are rewritten when new odors are added. This study presents an alternative method of analyzing complex odor blends based on the encoding properties of insect olfactory systems. This “Compounds Without Borders” (CWB) method vectorizes odors in a multidimensional space representing relevant functional group and carbon characteristics of their component odorants. A single vector can be built for any scent, which allows the angular distance between any two odors to be calculated–including a learned odor and its polluted counterpart. Data presented here indicate that CWB-angles are capable of both describing and predicting bumblebee odor-discrimination behavior: odor pairs with angular distances in the 20–29° range appear to be generalized, while odor pairs over 30 degrees are differentiated. The neurophysiological properties underlying CWB-vectorization of odors are not unique to bumblebees; CWB-angle analysis of a small sample of published odor-data supports the idea that this method may have broader applications.
Collapse
Affiliation(s)
- Jordanna D H Sprayberry
- Departments of Biology & Neuroscience, Muhlenberg College, Allentown, Pennsylvania, United States of America
| |
Collapse
|
17
|
Wilson DA, Fleming G, Vervoordt SM, Coureaud G. Cortical processing of configurally perceived odor mixtures. Brain Res 2020; 1729:146617. [PMID: 31866364 PMCID: PMC6941848 DOI: 10.1016/j.brainres.2019.146617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/01/2023]
Abstract
Most odors are not composed of a single volatile chemical species, but rather are mixtures of many different volatile molecules, the perception of which is dependent on the identity and relative concentrations of the components. Changing either the identity or ratio of components can lead to shifts between configural and elemental perception of the mixture. For example, a 30/70 ratio of ethyl isobutyrate (odorant A, a strawberry scent) and ethyl maltol (odorant B, a caramel scent) is perceived as pineapple by humans - a configural percept distinct from the components. In contrast, a 68/32 ratio of the same odorants is perceived elementally, and is identified as the component odors. Here, we examined single-unit responses in the anterior and posterior piriform cortex (aPCX and pPCX) of mice to these A and B mixtures. We first demonstrate that mouse behavior is consistent with a configural/elemental perceptual shift as concentration ratio varies. We then compared responses to the configural mixture to those evoked by the elemental mixture, as well as to the individual components. Hierarchical cluster analyses suggest that in the mouse aPCX, the configural mixture was coded as distinct from both components, while the elemental mixture was coded as similar to the components. In contrast, mixture perception did not predict pPCX ensemble coding. Similar electrophysiological results were also observed in rats. The results suggest similar perceptual characteristics of the AB mixture across species, and a division in the roles of aPCX and pPCX in the coding of configural and elemental odor mixtures.
Collapse
Affiliation(s)
- Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Child & Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA.
| | - Gloria Fleming
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Samantha M Vervoordt
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Gérard Coureaud
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292/Lyon 1 University, Bron, France.
| |
Collapse
|
18
|
Pannunzi M, Nowotny T. Odor Stimuli: Not Just Chemical Identity. Front Physiol 2019; 10:1428. [PMID: 31827441 PMCID: PMC6890726 DOI: 10.3389/fphys.2019.01428] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/04/2019] [Indexed: 01/14/2023] Open
Abstract
In most sensory modalities the underlying physical phenomena are well understood, and stimulus properties can be precisely controlled. In olfaction, the situation is different. The presence of specific chemical compounds in the air (or water) is the root cause for perceived odors, but it remains unknown what organizing principles, equivalent to wavelength for light, determine the dimensions of odor space. Equally important, but less in the spotlight, odor stimuli are also complex with respect to their physical properties, including concentration and time-varying spatio-temporal distribution. We still lack a complete understanding or control over these properties, in either experiments or theory. In this review, we will concentrate on two important aspects of the physical properties of odor stimuli beyond the chemical identity of the odorants: (1) The amplitude of odor stimuli and their temporal dynamics. (2) The spatio-temporal structure of odor plumes in a natural environment. Concerning these issues, we ask the following questions: (1) Given any particular experimental protocol for odor stimulation, do we have a realistic estimate of the odorant concentration in the air, and at the olfactory receptor neurons? Can we control, or at least know, the dynamics of odorant concentration at olfactory receptor neurons? (2) What do we know of the spatio-temporal structure of odor stimuli in a natural environment both from a theoretical and experimental perspective? And how does this change if we consider mixtures of odorants? For both topics, we will briefly summarize the underlying principles of physics and review the experimental and theoretical Neuroscience literature, focusing on the aspects that are relevant to animals’ physiology and behavior. We hope that by bringing the physical principles behind odor plume landscapes to the fore we can contribute to promoting a new generation of experiments and models.
Collapse
|
19
|
Wolfin MS, Chilson RR, Thrall J, Liu Y, Volo S, Cha DH, Loeb GM, Linn CE. Proximate Mechanisms of Host Plant Location by a Specialist Phytophagous Insect, the Grape Berry Moth, Paralobesia Viteana. J Chem Ecol 2019; 45:946-958. [PMID: 31755018 DOI: 10.1007/s10886-019-01112-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/12/2019] [Accepted: 10/03/2019] [Indexed: 12/01/2022]
Abstract
There are contrasting hypotheses regarding the role of plant volatiles in host plant location. We used the grape berry moth (GBM; Paralobesia viteana)-grape plant (Vitis spp.) complex as a model for studying the proximate mechanisms of long distance olfactory-mediated, host-plant location and selection by a specialist phytophagous insect. We used flight tunnel assays to observe GBM female in-flight responses to host (V. riparia) and non-host (apple, Malus domestica; and gray dogwood, Cornus racimosa,) odor sources in the form of plant shoots, extracts of shoots, and synthetic blends. Gas chromatography-electroantennographic detection and gas chromatography/mass spectrometry analyses were used to identify antennal-active volatile compounds. All antennal-active compounds found in grape shoots were also present in dogwood and apple shoots. Female GBM flew upwind to host and non-host extracts and synthetic blends at similar levels, suggesting discrimination is not occurring at long distance from the plant. Further, females did not land on sources releasing plant extracts and synthetic blends, suggesting not all landing cues were present. Additionally, mated and unmated moths displayed similar levels of upwind flight responses to all odor sources, supporting the idea that plant volatiles are not functioning solely as ovipositional cues. The results of this study support a hypothesis that GBM females are using volatile blends to locate a favorable habitat rather than a specific host plant, and that discrimination is occurring within the habitat, or even post-landing.
Collapse
Affiliation(s)
- Michael S Wolfin
- Department of Entomology, Cornell AgriTech at the New York Agricultural Experiment Station, Cornell University, Geneva, NY, USA. .,Department of Entomology, Pennsylvania State University, State College, PA, USA.
| | - Ronald R Chilson
- Department of Entomology, Cornell AgriTech at the New York Agricultural Experiment Station, Cornell University, Geneva, NY, USA
| | - Jonathan Thrall
- Biology Department, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Yuxi Liu
- Biology Department, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Sara Volo
- Biology Department, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Dong H Cha
- USDA-ARS, Daniel K. Inouye US Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Gregory M Loeb
- Department of Entomology, Cornell AgriTech at the New York Agricultural Experiment Station, Cornell University, Geneva, NY, USA
| | - Charles E Linn
- Department of Entomology, Cornell AgriTech at the New York Agricultural Experiment Station, Cornell University, Geneva, NY, USA
| |
Collapse
|
20
|
An L, Yang X, Lunau K, Fan F, Li M, Wei G. High innate preference of black substrate in the chive gnat, Bradysia odoriphaga (Diptera: Sciaridae). PLoS One 2019; 14:e0210379. [PMID: 31071092 PMCID: PMC6508717 DOI: 10.1371/journal.pone.0210379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/17/2019] [Indexed: 01/19/2023] Open
Abstract
The chive gnat, Bradysia odoriphaga, is a notorious pest of Allium species in China. Colour trapping is an established method for monitoring and control of Bradysia species. In order to clarify the effect of colour preference of B. odoriphaga for the perched substrate, multiple-choice tests were used to assess the response of the chive gnat to different colour hues and brightness levels under different intensities of white illumination and two spectrally different illuminations. Given the choice among four colours differing in hue under different intensities of white illumination and two spectrally different illuminations, chive gnat adults significant preferred the black substrate, a lesser preference to brown and green substrates, and the least preference to orange substrate irrespective of illumination. Given the choice among four levels of brightness under the same illumination conditions as those in the previous experiment (different intensities of white illumination and two spectrally different illuminations), chive gnats preferred black substrate over dark grey, light grey and white substrates. Meanwhile, both virgin and mated adults significantly preferred black over other colour hues and brightness. Based on our results, we conclude that the chive gnat adults significantly prefer black substrates irrespective of colour hues and brightness. This behaviour does not alter with ambient light condition changes. No difference observed between choices of female and male adults. Our results provide new insight for understanding the colour choice behaviour in chive gnat and pave a way to improve monitoring and control of chive gnats and management.
Collapse
Affiliation(s)
- Lina An
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xiaofan Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Klaus Lunau
- Institute of Sensory Ecology, Biology Department, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Fan Fan
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Mengyao Li
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Guoshu Wei
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
21
|
Plant Approach-Avoidance Response in Locusts Driven by Plant Volatile Sensing at Different Ranges. J Chem Ecol 2019; 45:410-419. [DOI: 10.1007/s10886-019-01053-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/24/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
|
22
|
Abstract
In most sensory modalities the underlying physical phenomena are well understood, and stimulus properties can be precisely controlled. In olfaction, the situation is different. The presence of specific chemical compounds in the air (or water) is the root cause for perceived odors, but it remains unknown what organizing principles, equivalent to wavelength for light, determine the dimensions of odor space. Equally important, but less in the spotlight, odor stimuli are also complex with respect to their physical properties, including concentration and time-varying spatio-temporal distribution. We still lack a complete understanding or control over these properties, in either experiments or theory. In this review, we will concentrate on two important aspects of the physical properties of odor stimuli beyond the chemical identity of the odorants: (1) The amplitude of odor stimuli and their temporal dynamics. (2) The spatio-temporal structure of odor plumes in a natural environment. Concerning these issues, we ask the following questions: (1) Given any particular experimental protocol for odor stimulation, do we have a realistic estimate of the odorant concentration in the air, and at the olfactory receptor neurons? Can we control, or at least know, the dynamics of odorant concentration at olfactory receptor neurons? (2) What do we know of the spatio-temporal structure of odor stimuli in a natural environment both from a theoretical and experimental perspective? And how does this change if we consider mixtures of odorants? For both topics, we will briefly summarize the underlying principles of physics and review the experimental and theoretical Neuroscience literature, focusing on the aspects that are relevant to animals' physiology and behavior. We hope that by bringing the physical principles behind odor plume landscapes to the fore we can contribute to promoting a new generation of experiments and models.
Collapse
|
23
|
Lin T, Li C, Liu J, Smith BH, Lei H, Zeng X. Glomerular Organization in the Antennal Lobe of the Oriental Fruit Fly Bactrocera dorsalis. Front Neuroanat 2018; 12:71. [PMID: 30233333 PMCID: PMC6127620 DOI: 10.3389/fnana.2018.00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/06/2018] [Indexed: 11/30/2022] Open
Abstract
The oriental fruit fly, Bactrocera dorsalis is one of the most destructive pests of horticultural crops in tropical and subtropical Asia. The insect relies heavily on its olfactory system to select suitable hosts for development and reproduction. To understand the neural basis of its odor-driven behaviors, it is fundamental to characterize the anatomy of its olfactory system. In this study, we investigated the anatomical organization of the antennal lobe (AL), the primary olfactory center, in B. dorsalis, and constructed a 3D glomerular atlas of the AL based on synaptic antibody staining combined with computerized 3D reconstruction. To facilitate identification of individual glomeruli, we also applied mass staining of olfactory sensory neurons (OSNs) and projection neurons (PNs). In total, 64 or 65 glomeruli are identifiable in both sexes based on their shape, size, and relative spatial relationship. The overall glomerular volume of two sexes is not statistically different. However, eight glomeruli are sexually dimorphic: four (named AM2, C1, L2, and L3) are larger in males, and four are larger in females (A3, AD1, DM3, and M1). The results from anterograde staining, obtained by applying dye in the antennal lobe, show that three typical medial, media lateral, and lateral antennal-lobe tracts form parallel connections between the antennal lobe and protocerebrum. In addition to these three tracts, we also found a transverse antennal-lobe tract. Based on the retrograde staining of the calyx in the mushroom body, we also characterize the arrangement of roots and cell body clusters linked to the medial antennal-lobe tracts. These data provide a foundation for future studies on the olfactory processing of host odors in B. dorsalis.
Collapse
Affiliation(s)
- Tao Lin
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou, China
| | - Chaofeng Li
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou, China
| | - Jiali Liu
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou, China
| | - Brian H. Smith
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Hong Lei
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Xinnian Zeng
- Guangdong Engineering Research Center for Insect Behavior Regulation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
24
|
Diaz-Santiz E, Rojas JC, Cruz-López L, Hernández E, Malo EA. Olfactory response of Anastrepha striata (Diptera: Tephritidae) to guava and sweet orange volatiles. INSECT SCIENCE 2016; 23:720-727. [PMID: 25800723 DOI: 10.1111/1744-7917.12222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2015] [Indexed: 06/04/2023]
Abstract
The behavioral responses of virgin and mated female Anastrepha striata Schiner (Diptera: Tephritidae) to guava (Psidium guajava L.) or sweet orange (Citrus sinensis L.) were evaluated separately using multilure traps in two-choice tests in field cages. The results showed that flies were more attracted to guava and sweet orange volatiles than to control (unbaited trap). The physiological state (virgin or mated) of females did not affect their attraction to the fruit volatiles. Combined analysis of gas chromatography coupled with electroantennography (GC-EAD) of volatile extracts of both fruits showed that 1 and 6 compounds from orange and guava, respectively elicited repeatable antennal responses from mated females. The EAD active compounds in guava volatile extracts were identified by gas chromatography-mass spectrometry (GC-MS) as ethyl butyrate, (Z)-3-hexenol, hexanol, ethyl hexanoate, hexyl acetate, and ethyl octanoate. Linalool was identified as the only antennal active compound in sweet orange extracts. In field cage tests, there were no significant differences between the number of mated flies captured by the traps baited with guava extracts and the number caught by traps baited with the 6-component blend that was formulated according to the relative proportions in the guava extracts. Similar results occurred when synthetic linalool was evaluated against orange extracts. From a practical point of view, the compounds identified in this study could be used for monitoring A. striata populations.
Collapse
Affiliation(s)
- Edvin Diaz-Santiz
- Grupo de Ecología de Artrópodos y Manejo de plagas, El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto km 2.5, Tapachula, Chiapas, CP, 30700, México
| | - Julio C Rojas
- Grupo de Ecología de Artrópodos y Manejo de plagas, El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto km 2.5, Tapachula, Chiapas, CP, 30700, México
| | - Leopoldo Cruz-López
- Grupo de Ecología de Artrópodos y Manejo de plagas, El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto km 2.5, Tapachula, Chiapas, CP, 30700, México
| | - Emilio Hernández
- Programa Moscafrut SAGARPA-IICA, Subdirección de Desarrollo de Métodos, Camino a los Cacahotales S/N, Metapa de Domínguez, Chiapas, CP, 30860, México
| | - Edi A Malo
- Grupo de Ecología de Artrópodos y Manejo de plagas, El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto km 2.5, Tapachula, Chiapas, CP, 30700, México.
| |
Collapse
|
25
|
Cunningham JP, Carlsson MA, Villa TF, Dekker T, Clarke AR. Do Fruit Ripening Volatiles Enable Resource Specialism in Polyphagous Fruit Flies? J Chem Ecol 2016; 42:931-940. [PMID: 27586434 DOI: 10.1007/s10886-016-0752-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
Frugivorous tephritid fruit flies have lineages with high levels of host generalism. These insects use olfaction to locate fruits, but how they are able to recognize the odors of so many different host species is poorly understood. We used a series of behavioral experiments to investigate the role of fruit ripening volatiles as host cues in the Queensland fruit fly, Bactrocera tryoni (Froggatt), a polyphagous pest in Australia. Odors of mature guava (Psidium guajava) attracted female and male flies more strongly than three other ripening stages and guava pulp. We analyzed volatiles from guava odor and selected eleven compounds, all of which elicited an electrophysiological response in the antenna of female flies. Three of these, ethyl acetate, ethyl butyrate, and ethyl propionate, were released at the highest rates from the most attractive ripening stage. In behavioral trials, these three esters were not attractive individually, whereas a combination was necessary and sufficient in attracting female flies. The three-component blend was as attractive as the entire 11-component blend, which without these key volatiles was not attractive. Moreover, injecting low ranking hosts (squash and cucumber) with the three volatiles increased attraction in ovipositing female flies. These fruit flies are classed as generalists, but like many polyphagous insects they could be regarded as resource specialists, preferring specific plant reproductive stages with predictable odor cues. Exploring olfaction from this perspective could improve our understanding of host choice in polyphagous insects, and the selection of volatiles to be used as attractants in insect pest management.
Collapse
Affiliation(s)
- John Paul Cunningham
- Department of Economic Development, Jobs, Transport & Resources, Biosciences Research, AgriBio Centre, 5 Ring Road, Bundoora, VIC, 3083, Australia. .,Queensland University of Technology, Gardens Point, Brisbane, QLD, 4001, Australia.
| | - Mikael A Carlsson
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Tommaso F Villa
- Queensland University of Technology, Gardens Point, Brisbane, QLD, 4001, Australia
| | - Teun Dekker
- Department of Plant Protection Biology, Swedish University of Agricultural Science, Alnarp, Sweden
| | - Anthony R Clarke
- Queensland University of Technology, Gardens Point, Brisbane, QLD, 4001, Australia.,Cooperative Research Centre for Plant Biosecurity, ACT, Bruce, Australia
| |
Collapse
|
26
|
Couto A, Lapeyre B, Thiéry D, Sandoz JC. Olfactory pathway of the hornet Vespa velutina
: New insights into the evolution of the hymenopteran antennal lobe. J Comp Neurol 2016; 524:2335-59. [DOI: 10.1002/cne.23975] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/20/2016] [Accepted: 01/29/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Antoine Couto
- Laboratory Evolution Genome Behavior and Ecology, CNRS, Université Paris-Sud, IRD, Université Paris Saclay; F-91198 Gif-sur-Yvette France
| | - Benoit Lapeyre
- Laboratory Evolution Genome Behavior and Ecology, CNRS, Université Paris-Sud, IRD, Université Paris Saclay; F-91198 Gif-sur-Yvette France
| | - Denis Thiéry
- UMR 1065 Santé et Agroécologie du Vignoble, INRA; F-33883 Villenave d'Ornon France
- Université de Bordeaux, ISVV, UMR 1065 Santé et Agroécologie du Vignoble, Bordeaux Sciences Agro; F-33883 Villenave d'Ornon France
| | - Jean-Christophe Sandoz
- Laboratory Evolution Genome Behavior and Ecology, CNRS, Université Paris-Sud, IRD, Université Paris Saclay; F-91198 Gif-sur-Yvette France
| |
Collapse
|
27
|
Ammagarahalli B, Gemeno C. Interference of plant volatiles on pheromone receptor neurons of male Grapholita molesta (Lepidoptera: Tortricidae). JOURNAL OF INSECT PHYSIOLOGY 2015; 81:118-128. [PMID: 26188269 DOI: 10.1016/j.jinsphys.2015.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/29/2015] [Accepted: 07/14/2015] [Indexed: 06/04/2023]
Abstract
In moths, sex pheromone components are detected by pheromone-specific olfactory receptor neurons (ph-ORNs) housed in sensilla trichodea in the male antennae. In Grapholita molesta, ph-ORNs are highly sensitive and specific to the individual sex pheromone components, and thus help in the detection and discrimination of the unique conspecific pheromone blend. Plant odors interspersed with a sub-optimal pheromone dose are reported to increase male moth attraction. To determine if the behavioral synergism of pheromone and plant odors starts at the ph-ORN level, single sensillum recordings were performed on Z8-12:Ac and E8-12:Ac ph-ORNs (Z-ORNs and E-ORNs, respectively) stimulated with pheromone-plant volatile mixtures. First, biologically meaningful plant-volatile doses were determined by recording the response of plant-specific ORNs housed in sensilla auricillica and trichodea to several plant odorants. This exploration provided a first glance at plant ORNs in this species. Then, using these plant volatile doses, we found that the spontaneous activity of ph-ORNs was not affected by the stimulation with plant volatiles, but that a binary mixture of sex pheromone and plant odorants resulted in a small (about 15%), dose-independent, but statistically significant, reduction in the spike frequency of Z-ORNs with respect to stimulation with Z8-12:Ac alone. The response of E-ORNs to a combination of E8-12:Ac and plant volatiles was not different from E8-12:Ac alone. We argue that the small inhibition of Z-ORNs caused by physiologically realistic plant volatile doses is probably not fully responsible for the observed behavioral synergism of pheromone and plant odors.
Collapse
Affiliation(s)
- Byrappa Ammagarahalli
- University of Lleida, Department of Crop and Forest Sciences, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - César Gemeno
- University of Lleida, Department of Crop and Forest Sciences, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
28
|
Park KC, Withers TM, Suckling DM. Identification of olfactory receptor neurons in Uraba lugens (Lepidoptera: Nolidae) and its implications for host range. JOURNAL OF INSECT PHYSIOLOGY 2015; 78:33-46. [PMID: 25937382 DOI: 10.1016/j.jinsphys.2015.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 06/04/2023]
Abstract
Phytophagous insects detect volatile compounds produced by host and non-host plants, using species-specific sets of olfactory receptor neurons (ORNs). To investigate the relationship between the range of host plants and the profile of ORNs, single sensillum recordings were carried out to identify ORNs and corresponding active compounds in female Uraba lugens (Lepidoptera: Nolidae), an oligophagous eucalypt feeder. Based on the response profiles to 39 plant volatile compounds, 13 classes of sensilla containing 40 classes of ORNs were identified in female U. lugens. More than 95% (163 out of 171) of these sensilla contained 16 classes of ORNs with narrow response spectra, and 62.6% (107 out of 171) 18 classes of ORNs with broad response spectra. Among the specialized ORNs, seven classes of ORNs exhibited high specificity to 1,8-cineole, (±)-citronellal, myrcene, (±)-linalool and (E)-β-caryophyllene, major volatiles produced by eucalypts, while nine other classes of ORNs showed highly specialized responses to green leaf volatiles, germacrene D, (E)-β-farnesene and geranyl acetate that are not produced by most eucalypts. We hypothesize that female U. lugens can recognize their host plants by detecting key host volatile compounds, using a set of ORNs tuned to host volatiles, and discriminate them from non-host plants using another set of ORNs specialized for non-host volatiles. The ORNs with broad response spectra may enhance the discrimination between host and non-host plants by adding moderately selective sensitivity. Based on our finding, it is suggested that phytophagous insects use the combinational input from both host-specific and non-host specific ORNs for locating their host plants, and the electrophysiological characterization of ORN profiles would be useful in predicting the range of host plants in phytophagous insects.
Collapse
Affiliation(s)
- Kye Chung Park
- The New Zealand Institute for Plant & Food Research, PB 4704, Christchurch 8140, New Zealand.
| | | | - David Maxwell Suckling
- The New Zealand Institute for Plant & Food Research, PB 4704, Christchurch 8140, New Zealand.
| |
Collapse
|
29
|
Lu Y, Yao Y, Zhang Q, Zhang D, Zhuang S, Li H, Liu Q. Olfactory biosensor for insect semiochemicals analysis by impedance sensing of odorant-binding proteins on interdigitated electrodes. Biosens Bioelectron 2015; 67:662-9. [DOI: 10.1016/j.bios.2014.09.098] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/06/2014] [Accepted: 09/29/2014] [Indexed: 11/16/2022]
|
30
|
Sparks JT, Bohbot JD, Dickens JC. Olfactory Disruption. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 130:81-108. [DOI: 10.1016/bs.pmbts.2014.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Thomas-Danguin T, Sinding C, Romagny S, El Mountassir F, Atanasova B, Le Berre E, Le Bon AM, Coureaud G. The perception of odor objects in everyday life: a review on the processing of odor mixtures. Front Psychol 2014; 5:504. [PMID: 24917831 PMCID: PMC4040494 DOI: 10.3389/fpsyg.2014.00504] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/08/2014] [Indexed: 11/13/2022] Open
Abstract
Smelling monomolecular odors hardly ever occurs in everyday life, and the daily functioning of the sense of smell relies primarily on the processing of complex mixtures of volatiles that are present in the environment (e.g., emanating from food or conspecifics). Such processing allows for the instantaneous recognition and categorization of smells and also for the discrimination of odors among others to extract relevant information and to adapt efficiently in different contexts. The neurophysiological mechanisms underpinning this highly efficient analysis of complex mixtures of odorants is beginning to be unraveled and support the idea that olfaction, as vision and audition, relies on odor-objects encoding. This configural processing of odor mixtures, which is empirically subject to important applications in our societies (e.g., the art of perfumers, flavorists, and wine makers), has been scientifically studied only during the last decades. This processing depends on many individual factors, among which are the developmental stage, lifestyle, physiological and mood state, and cognitive skills; this processing also presents striking similarities between species. The present review gathers the recent findings, as observed in animals, healthy subjects, and/or individuals with affective disorders, supporting the perception of complex odor stimuli as odor objects. It also discusses peripheral to central processing, and cognitive and behavioral significance. Finally, this review highlights that the study of odor mixtures is an original window allowing for the investigation of daily olfaction and emphasizes the need for knowledge about the underlying biological processes, which appear to be crucial for our representation and adaptation to the chemical environment.
Collapse
Affiliation(s)
- Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| | - Charlotte Sinding
- Smell and Taste Clinic, Department of Otorhinolaryngoly TU Dresden, Dresden, Germany
| | - Sébastien Romagny
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| | - Fouzia El Mountassir
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| | | | | | - Anne-Marie Le Bon
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| | - Gérard Coureaud
- Centre des Sciences du Goût et de l'Alimentation, CNRS UMR6265, INRA UMR1324, Université de Bourgogne Dijon, France
| |
Collapse
|
32
|
Guidobaldi F, May-Concha IJ, Guerenstein PG. Morphology and physiology of the olfactory system of blood-feeding insects. ACTA ACUST UNITED AC 2014; 108:96-111. [PMID: 24836537 DOI: 10.1016/j.jphysparis.2014.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/21/2014] [Accepted: 04/29/2014] [Indexed: 01/12/2023]
Abstract
Several blood-feeding (hematophagous) insects are vectors of a number of diseases including dengue, Chagas disease and leishmaniasis which persistently affect public health throughout Latin America. The vectors of those diseases include mosquitoes, triatomine bugs and sandflies. As vector control is an efficient way to prevent these illnesses it is important to understand the sensory biology of those harmful insects. We study the physiology of the olfactory system of those insects and apply that knowledge on the development of methods to manipulate their behavior. Here we review some of the latest information on insect olfaction with emphasis on hematophagous insects. The insect olfactory sensory neurons are housed inside hair-like organs called sensilla which are mainly distributed on the antenna and mouthparts. The identity of many of the odor compounds that those neurons detect are already known in hematophagous insects. They include several constituents of host (vertebrate) odor, sex, aggregation and alarm pheromones, and compounds related to egg-deposition behavior. Recent work has contributed significant knowledge on how odor information is processed in the insect first odor-processing center in the brain, the antennal lobe. The quality, quantity, and temporal features of the odor stimuli are encoded by the neural networks of the antennal lobe. Information regarding odor mixtures is also encoded. While natural mixtures evoke strong responses, synthetic mixtures that deviate from their natural counterparts in terms of key constituents or proportions of those constituents evoke weaker responses. The processing of olfactory information is largely unexplored in hematophagous insects. However, many aspects of their olfactory behavior are known. As in other insects, responses to relevant single odor compounds are weak while natural mixtures evoke strong responses. Future challenges include studying how information about odor mixtures is processed in their brain. This could help develop highly attractive synthetic odor blends to lure them into traps.
Collapse
Affiliation(s)
- F Guidobaldi
- Laboratorio de Neuroetología Ecológica, CICyTTP-CONICET, Diamante, Entre Ríos, Argentina; Facultad de Ingeniería, UNER, Oro Verde, Entre Ríos, Argentina
| | - I J May-Concha
- Laboratorio de Neuroetología Ecológica, CICyTTP-CONICET, Diamante, Entre Ríos, Argentina; Centro Regional de Investigación en Salud Pública (CRISP), Instituto Nacional de Salud Pública (INSP), Tapachula, Chiapas, Mexico.
| | - P G Guerenstein
- Laboratorio de Neuroetología Ecológica, CICyTTP-CONICET, Diamante, Entre Ríos, Argentina; Facultad de Ingeniería, UNER, Oro Verde, Entre Ríos, Argentina
| |
Collapse
|
33
|
Chaffiol A, Dupuy F, Barrozo RB, Kropf J, Renou M, Rospars JP, Anton S. Pheromone modulates plant odor responses in the antennal lobe of a moth. Chem Senses 2014; 39:451-63. [PMID: 24798893 DOI: 10.1093/chemse/bju017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In nature, male moths are exposed to a complex plant odorant environment when they fly upwind to a sex pheromone source in their search for mates. Plant odors have been shown to affect responses to pheromone at various levels but how does pheromone affects plant odor perception? We recorded responses from neurons within the non-pheromonal "ordinary glome ruli" of the primary olfactory center, the antennal lobe (AL), to single and pulsed stimulations with the plant odorant heptanal, the pheromone, and their mixture in the male moth Agrotis ipsilon. We identified 3 physiological types of neurons according to their activity patterns combining excitatory and inhibitory phases. Both local and projection neurons were identified in each physiological type. Neurons with excitatory responses to heptanal responded also frequently to the pheromone and showed additive responses to the mixture. Moreover, the neuron's ability of resolving successive pulses generally improved with the mixture. Only some neurons with combined excitatory/inhibitory, or purely inhibitory responses to heptanal, also responded to the pheromone. Although individual mixture responses were not significantly different from heptanal responses in these neurons, pulse resolution was improved with the mixture as compared with heptanal alone. These results demonstrate that the pheromone and the general odorant subsystems interact more intensely in the moth AL than previously thought.
Collapse
Affiliation(s)
- Antoine Chaffiol
- UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, 78000 Versailles, France and Present address: INSERM, U968, Paris, F-75012, France
| | - Fabienne Dupuy
- UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, 78000 Versailles, France and Université d'Angers, Laboratoire Récepteurs et Canaux Ioniques Membranaires, UPRES-EA 2647, USC INRA 1330, SFR 4207 QUASAV, UFR Sciences, 2 Boulevard Lavoisier, 49045 Angers, France
| | - Romina B Barrozo
- UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, 78000 Versailles, France and Present address: Laboratorio de Fisiología de Insectos, DBBE, FCEyN, Universidad de Buenos Aires, IBBEA, CONICET-UBA, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Jan Kropf
- UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, 78000 Versailles, France and Present address: Behavioral Physiology and Sociobiology, University of Wuerzburg, D-97074 Wuerzburg, Germany
| | - Michel Renou
- UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, 78000 Versailles, France and
| | - Jean-Pierre Rospars
- UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, 78000 Versailles, France and
| | - Sylvia Anton
- UMR 1392 Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, 78000 Versailles, France and Université d'Angers, Laboratoire Récepteurs et Canaux Ioniques Membranaires, UPRES-EA 2647, USC INRA 1330, SFR 4207 QUASAV, UFR Sciences, 2 Boulevard Lavoisier, 49045 Angers, France,
| |
Collapse
|
34
|
Galizia CG. Olfactory coding in the insect brain: data and conjectures. Eur J Neurosci 2014; 39:1784-95. [PMID: 24698302 PMCID: PMC4237541 DOI: 10.1111/ejn.12558] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 11/28/2022]
Abstract
Much progress has been made recently in understanding how olfactory coding works in insect brains. Here, I propose a wiring diagram for the major steps from the first processing network (the antennal lobe) to behavioral readout. I argue that the sequence of lateral inhibition in the antennal lobe, non-linear synapses, threshold-regulating gated spring network, selective lateral inhibitory networks across glomeruli, and feedforward inhibition to the lateral protocerebrum cover most of the experimental results from different research groups and model species. I propose that the main difference between mushroom bodies and the lateral protocerebrum is not about learned vs. innate behavior. Rather, mushroom bodies perform odor identification, whereas the lateral protocerebrum performs odor evaluation (both learned and innate). I discuss the concepts of labeled line and combinatorial coding and postulate that, under restrictive experimental conditions, these networks lead to an apparent existence of 'labeled line' coding for special odors. Modulatory networks are proposed as switches between different evaluating systems in the lateral protocerebrum. A review of experimental data and theoretical conjectures both contribute to this synthesis, creating new hypotheses for future research.
Collapse
|
35
|
Rössler W, Stengl M. Insect chemoreception: a tribute to John G. Hildebrand. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:875-7. [PMID: 24114616 DOI: 10.1007/s00359-013-0857-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany,
| | | |
Collapse
|
36
|
Synchronous firing of antennal-lobe projection neurons encodes the behaviorally effective ratio of sex-pheromone components in male Manduca sexta. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:963-79. [PMID: 24002682 DOI: 10.1007/s00359-013-0849-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
Abstract
Olfactory stimuli that are essential to an animal's survival and reproduction are often complex mixtures of volatile organic compounds in characteristic proportions. Here, we investigated how these proportions are encoded in the primary olfactory processing center, the antennal lobe, of male Manduca sexta moths. Two key components of the female's sex pheromone, present in an approximately 2:1 ratio, are processed in each of two neighboring glomeruli in the macroglomerular complex (MGC) of males of this species. In wind-tunnel flight experiments, males exhibited behavioral selectivity for ratios approximating the ratio released by conspecific females. The ratio between components was poorly represented, however, in the firing-rate output of uniglomerular MGC projection neurons (PNs). PN firing rate was mostly insensitive to the ratio between components, and individual PNs did not exhibit a preference for a particular ratio. Recording simultaneously from pairs of PNs in the same glomerulus, we found that the natural ratio between components elicited the most synchronous spikes, and altering the proportion of either component decreased the proportion of synchronous spikes. The degree of synchronous firing between PNs in the same glomerulus thus selectively encodes the natural ratio that most effectively evokes the natural behavioral response to pheromone.
Collapse
|