1
|
Strauß J. The neuronal innervation pattern of the subgenual organ complex in Peruphasma schultei (Insecta: Phasmatodea). ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 74:101277. [PMID: 37209489 DOI: 10.1016/j.asd.2023.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
The proximal tibia of orthopteroid insects contains sensory organs, the subgenual organ complex, detecting mechanical stimuli including substrate vibration. In stick insects, two chordotonal organs occur in close proximity, the subgenual organ and the distal organ, which likely detect substrate vibrations. In most stick insects, both organs are innervated by separate nerve branches. To obtain more data on the neuroanatomy of the subgenual organ complex from the New World phasmids (Occidophasmata), the present study documents the neuronal innervation of sensory organs in the subgenual organ complex of Peruphasma schultei, the first species from Pseudophasmatinae investigated for this sensory complex. The innervation pattern shows a distinct nerve branch for the subgenual organ and for the distal organ in most cases. Some variability in the innervation, which generally occurs for these chordotonal organs, was noted for both organs in P. schultei. The most common innervation for both organs was by a single nerve branch for each organ. The innervation of the subgenual organ resembled the nerve pattern of another New World phasmid, but was simpler than in the Old World phasmids (Oriophasmata) studied so far. Therefore, the peripheral neuronal innervation of sensory organs could reflect phylogenetic relationships and provide phylogenetic information, while the overall neuroanatomy of the subgenual organ complex is similar in stick insects.
Collapse
Affiliation(s)
- Johannes Strauß
- AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus Liebig University Gießen, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig, University Gießen, Germany.
| |
Collapse
|
2
|
Schilling M, Cruse H. neuroWalknet, a controller for hexapod walking allowing for context dependent behavior. PLoS Comput Biol 2023; 19:e1010136. [PMID: 36693085 PMCID: PMC9897571 DOI: 10.1371/journal.pcbi.1010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/03/2023] [Accepted: 11/18/2022] [Indexed: 01/25/2023] Open
Abstract
Decentralized control has been established as a key control principle in insect walking and has been successfully leveraged to account for a wide range of walking behaviors in the proposed neuroWalknet architecture. This controller allows for walking patterns at different velocities in both, forward and backward direction-quite similar to the behavior shown in stick insects-, for negotiation of curves, and for robustly dealing with various disturbances. While these simulations focus on the cooperation of different, decentrally controlled legs, here we consider a set of biological experiments not yet been tested by neuroWalknet, that focus on the function of the individual leg and are context dependent. These intraleg studies deal with four groups of interjoint reflexes. The reflexes are elicited by stimulation of the femoral chordotonal organ (fCO) or groups of campaniform sensilla (CS). Motor output signals are recorded from the alpha-joint, the beta-joint or the gamma-joint of the leg. Furthermore, the influence of these sensory inputs to artificially induced oscillations by application of pilocarpine has been studied. Although these biological data represent results obtained from different local reflexes in different contexts, they fit with and are embedded into the behavior shown by the global structure of neuroWalknet. In particular, a specific and intensively studied behavior, active reaction, has since long been assumed to represent a separate behavioral element, from which it is not clear why it occurs in some situations, but not in others. This question could now be explained as an emergent property of the holistic structure of neuroWalknet which has shown to be able to produce artificially elicited pilocarpine-driven oscillation that can be controlled by sensory input without the need of explicit innate CPG structures. As the simulation data result from a holistic system, further results were obtained that could be used as predictions to be tested in further biological experiments.
Collapse
Affiliation(s)
- Malte Schilling
- Malte Schilling, Autonomous Intelligent Systems Group, University of Münster, Münster, Germany
| | - Holk Cruse
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
3
|
Günzel Y, Schmitz J, Dürr V. Locomotor resilience through load-dependent modulation of muscle co-contraction. J Exp Biol 2022; 225:276888. [PMID: 36039914 DOI: 10.1242/jeb.244361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Terrestrial locomotor behavior in variable environments requires resilience to sudden changes in substrate properties. For example, walking animals can adjust to substantial changes in slope and corresponding changes in load distribution among legs. In insects, slope-dependent adjustments have mainly been examined under steady-state conditions, whereas the transition dynamics have been largely neglected. In a previous study, we showed that steady-state adjustments of stick insects to ±45° slopes involve substantial changes in joint torques and muscle activity with only minor changes in leg kinematics. Here, we take a close look at the time course of these adjustments as stick insects compensate for various kinds of disturbances to load distribution. In particular, we test whether the transition from one steady state to another involves distinct transition steps or follows a graded process. To resolve this, we combined simultaneous recordings of whole-body kinematics and hind leg muscle activity to elucidate how freely walking Carausius morosus negotiated a step-change in substrate slope. Step-by-step adjustments reveal that muscle activity changed in a graded manner as a function of body pitch relative to gravity. We further show analogous transient adjustment of muscle activity in response to destabilizing lift-off events of neighboring legs and the disappearance of antagonist co-activation during crawling episodes. Given these three examples of load-dependent regulation of antagonist muscle co-contraction, we conclude that stick insects respond to both transient and sustained changes in load distribution by regulating joint stiffness rather than through distinct transition steps.
Collapse
Affiliation(s)
- Yannick Günzel
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany.,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld 33615, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany.,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld 33615, Germany
| |
Collapse
|
4
|
Gebehart C, Büschges A. Temporal differences between load and movement signal integration in the sensorimotor network of an insect leg. J Neurophysiol 2021; 126:1875-1890. [PMID: 34705575 DOI: 10.1152/jn.00399.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nervous systems face a torrent of sensory inputs, including proprioceptive feedback. Signal integration depends on spatially and temporally coinciding signals. It is unclear how relative time delays affect multimodal signal integration from spatially distant sense organs. We measured transmission times and latencies along all processing stages of sensorimotor pathways in the stick insect leg muscle control system, using intra- and extracellular recordings. Transmission times of signals from load-sensing tibial and trochanterofemoral campaniform sensilla (tiCS, tr/fCS) to the premotor network were longer than from the movement-sensing femoral chordotonal organ (fCO). We characterized connectivity patterns from tiCS, tr/fCS, and fCO afferents to identified premotor nonspiking interneurons (NSIs) and motor neurons (MNs) by distinguishing short- and long-latency responses to sensory stimuli. Functional NSI connectivity depended on sensory context. The timeline of multisensory integration in the NSI network showed an early phase of movement signal processing and a delayed phase of load signal integration. The temporal delay of load signals relative to movement feedback persisted into MN activity and muscle force development. We demonstrate differential delays in the processing of two distinct sensory modalities generated by the sensorimotor network and affecting motor output. The reported temporal differences in sensory processing and signal integration improve our understanding of sensory network computation and function in motor control.NEW & NOTEWORTHY Networks integrating multisensory input face the challenge of not only spatial but also temporal integration. In the local network controlling insect leg movements, proprioceptive signal delays differ between sensory modalities. Specifically, signal transmission times to and neuronal connectivity within the sensorimotor network lead to delayed information about leg loading relative to movement signals. Temporal delays persist up to the level of the motor output, demonstrating its relevance for motor control.
Collapse
Affiliation(s)
- Corinna Gebehart
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Haberkorn A, Özbagci B, Gruhn M, Büschges A. Optical inactivation of a proprioceptor in an insect by non-genetic tools. J Neurosci Methods 2021; 363:109322. [PMID: 34391793 DOI: 10.1016/j.jneumeth.2021.109322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/12/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The specific role of sensory organs in locomotor pattern generation is traditionally investigated by means of mechanical ablation in arthropods that currently do not allow genetic manipulation. Mechanical ablation is irreversible, and may lead to injury discharges and changes in the structural integrity of the cuticle. NEW METHOD Here, we present a new method to temporarily or permanently deprive parts of an insect nervous system of sensory feedback from leg proprioceptors by means of blue light application. We illuminated campaniform sensilla (CS) with a blue LED (420-480 nm) or a 473 nm laser at different light intensities to optically eliminate sensory and motor neuron responses to mechanical stimulation. RESULTS We were able to eliminate all stimulus-evoked responses of CS. Individual CS groups were precisely and selectively inactivated without affecting nearby proprioceptors, using an optical fiber (Ø 200 µm) to guide the light. Our results demonstrated that lower light intensities significantly increase the required exposure time, but also the chance for recovery, thus making the effect reversible. COMPARISON WITH EXISTING METHODS In contrast to mechanical ablation, optical inactivation of individual sensory organs is non-invasive and does not affect the behavioral state of the animal, nor does it induce escape behavior. This is especially relevant in non-model system experimental animals where optogenetic manipulation cannot be used, due to a lack of established methods of access. CONCLUSION Our results show that the proposed method is a reliable alternative to mechanical ablation and can be successfully applied to the CS, as it fulfills all requirements regarding selectivity, efficiency, and reproducibility.
Collapse
Affiliation(s)
- Anna Haberkorn
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Burak Özbagci
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Matthias Gruhn
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Ansgar Büschges
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
6
|
Zill SN, Dallmann CJ, S Szczecinski N, Büschges A, Schmitz J. Evaluation of force feedback in walking using joint torques as "naturalistic" stimuli. J Neurophysiol 2021; 126:227-248. [PMID: 34107221 PMCID: PMC8424542 DOI: 10.1152/jn.00120.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Control of adaptive walking requires the integration of sensory signals of muscle force and load. We have studied how mechanoreceptors (tibial campaniform sensilla) encode “naturalistic” stimuli derived from joint torques of stick insects walking on a horizontal substrate. Previous studies showed that forces applied to the legs using the mean torque profiles of a proximal joint were highly effective in eliciting motor activities. However, substantial variations in torque direction and magnitude occurred at the more distal femorotibial joint, which can generate braking or propulsive forces and provide lateral stability. To determine how these forces are encoded, we used torque waveforms of individual steps that had maximum values in stance in the directions of flexion or extension. Analysis of kinematic data showed that the torques in different directions tended to occur in different ranges of joint angles. Variations within stance were not accompanied by comparable changes in joint angle but often reflected vertical ground reaction forces and leg support of body load. Application of torque waveforms elicited sensory discharges with variations in firing frequency similar to those seen in freely walking insects. All sensilla directionally encoded the dynamics of force increases and showed hysteresis to transient force decreases. Smaller receptors exhibited more tonic firing. Our findings suggest that dynamic sensitivity in force feedback can modulate ongoing muscle activities to stabilize distal joints when large forces are generated at proximal joints. Furthermore, use of “naturalistic” stimuli can reproduce characteristics seen in freely moving animals that are absent in conventional restrained preparations. NEW & NOTEWORTHY Sensory encoding of forces during walking by campaniform sensilla was characterized in stick insects using waveforms of joint torques calculated by inverse dynamics as mechanical stimuli. Tests using the mean joint torque and torques of individual steps showed the system is highly sensitive to force dynamics (dF/dt). Use of “naturalistic” stimuli can reproduce characteristics of sensory discharges seen in freely walking insects, such as load transfer among legs.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Chris J Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Nicholas S Szczecinski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter, University of Cologne, Cologne, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
7
|
Gebehart C, Schmidt J, Büschges A. Distributed processing of load and movement feedback in the premotor network controlling an insect leg joint. J Neurophysiol 2021; 125:1800-1813. [PMID: 33788591 DOI: 10.1152/jn.00090.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In legged animals, integration of information from various proprioceptors in and on the appendages by local premotor networks in the central nervous system is crucial for controlling motor output. To ensure posture maintenance and precise active movements, information about limb loading and movement is required. In insects, various groups of campaniform sensilla (CS) measure forces and loads acting in different directions on the leg, and the femoral chordotonal organ (fCO) provides information about movement of the femur-tibia (FTi) joint. In this study, we used extra- and intracellular recordings of extensor tibiae (ExtTi) and retractor coxae (RetCx) motor neurons (MNs) and identified local premotor nonspiking interneurons (NSIs) and mechanical stimulation of the fCO and tibial or trochanterofemoral CS (tiCS, tr/fCS), to investigate the premotor network architecture underlying multimodal proprioceptive integration. We found that load feedback from tiCS altered the strength of movement-elicited resistance reflexes and determined the specificity of ExtTi and RetCx MN responses to various load and movement stimuli. These responses were mediated by a common population of identified NSIs into which synaptic inputs from the fCO, tiCS, and tr/fCS are distributed, and whose effects onto ExtTi MNs can be antagonistic for both stimulus modalities. Multimodal sensory signal interaction was found at the level of single NSIs and MNs. The results provide evidence that load and movement feedback are integrated in a multimodal, distributed local premotor network consisting of antagonistic elements controlling movements of the FTi joint, thus substantially extending current knowledge on how legged motor systems achieve fine-tuned motor control.NEW & NOTEWORTHY Proprioception is crucial for motor control in legged animals. We show the extent to which processing of movement (fCO) and load (CS) signals overlaps in the local premotor network of an insect leg. Multimodal signals converge onto the same set of interneurons, and our knowledge about distributed, antagonistic processing is extended to incorporate multiple modalities within one perceptual neuronal framework.
Collapse
Affiliation(s)
- Corinna Gebehart
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Joachim Schmidt
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Harris CM, Dinges GF, Haberkorn A, Gebehart C, Büschges A, Zill SN. Gradients in mechanotransduction of force and body weight in insects. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 58:100970. [PMID: 32702647 DOI: 10.1016/j.asd.2020.100970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Posture and walking require support of the body weight, which is thought to be detected by sensory receptors in the legs. Specificity in sensory encoding occurs through the numerical distribution, size and response range of sense organs. We have studied campaniform sensilla, receptors that detect forces as strains in the insect exoskeleton. The sites of mechanotransduction (cuticular caps) were imaged by light and confocal microscopy in four species (stick insects, cockroaches, blow flies and Drosophila). The numbers of receptors and cap diameters were determined in projection images. Similar groups of receptors are present in the legs of each species (flies lack Group 2 on the anterior trochanter). The number of receptors is generally related to the body weight but similar numbers are found in blow flies and Drosophila, despite a 30 fold difference in their weight. Imaging data indicate that the gradient (range) of cap sizes may more closely correlate with the body weight: the range of cap sizes is larger in blow flies than in Drosophila but similar to that found in juvenile cockroaches. These studies support the idea that morphological properties of force-detecting sensory receptors in the legs may be tuned to reflect the body weight.
Collapse
Affiliation(s)
- Christian M Harris
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA
| | - Gesa F Dinges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, 50923 Cologne, Germany
| | - Anna Haberkorn
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, 50923 Cologne, Germany
| | - Corinna Gebehart
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, 50923 Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, 50923 Cologne, Germany
| | - Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA.
| |
Collapse
|
9
|
Strauß J. Early postembryogenic development of the subgenual organ complex in the stick insect Sipyloidea sipylus. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 56:100933. [PMID: 32259775 DOI: 10.1016/j.asd.2020.100933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Stick insects have elaborate mechanosensory organs in their subgenual organ complex in the proximal tibia, particularly the distal organ with scolopidial sensilla in linear arrangement. For early postembryonic developmental stages of Sipyloidea sipylus (Phasmatodea: Necrosciinae), the neuroanatomy of the scolopidial organs in the subgenual organ complex and the campaniform sensilla is documented by retrograde axonal tracing, and compared to the adult neuroanatomy. Already after hatching of the first larval instars are the sensory structures of subgenual organ and distal organ as well as tibial campaniform sensilla differentiated. In the distal organ, the full set of sensilla is shown in all larval stages examined. This finding indicates that the sensory organs differentiate during embryogenesis, and are already functional by the time of hatching. The constancy of distal organ sensilla over postembryonic stages allows investigation of the representative number of sensilla in adult animals as well as in larval instars. Some anatomical changes occur by postembryogenic length increase of the distal organ, and grouping of the anterior subgenual sensilla. The embryonic development of scolopidial sensilla is similar for auditory sensilla in hemimetabolous Orthoptera (locusts, bushcrickets, crickets) where tympanal membranes develop during postembryogenic stages, conferring a successive gain of sensitivity with larval moults.
Collapse
Affiliation(s)
- Johannes Strauß
- AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus-Liebig-Universität Gießen, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Gießen, Germany.
| |
Collapse
|
10
|
Strauß J. Neuronal Innervation of the Subgenual Organ Complex and the Tibial Campaniform Sensilla in the Stick Insect Midleg. INSECTS 2020; 11:E40. [PMID: 31947968 PMCID: PMC7022571 DOI: 10.3390/insects11010040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 01/30/2023]
Abstract
Mechanosensory organs in legs play are crucial receptors in the feedback control of walking and in the detection of substrate-borne vibrations. Stick insects serve as a model for the physiological role of chordotonal organs and campaniform sensilla. This study documents, by axonal tracing, the neural innervation of the complex chordotonal organs and groups of campaniform sensilla in the proximal tibia of the midleg in Sipyloidea sipylus. In total, 6 nerve branches innervate the different sensory structures, and the innervation pattern associates different sensilla types by their position. Sensilla on the anterior and posterior tibia are innervated from distinct nerve branches. In addition, the variation in innervation is studied for five anatomical branching points. The most common variation is the innervation of the subgenual organ sensilla by two nerve branches rather than a single one. The fusion of commonly separated nerve branches also occurred. However, a common innervation pattern can be demonstrated, which is found in >75% of preparations. The variation did not include crossings of nerves between the anterior and posterior side of the leg. The study corrects the innervation of the posterior subgenual organ reported previously. The sensory neuroanatomy and innervation pattern can guide further physiological studies of mechanoreceptor organs and allow evolutionary comparisons to related insect groups.
Collapse
Affiliation(s)
- Johannes Strauß
- AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26 (IFZ), 35392 Gießen, Germany
| |
Collapse
|
11
|
Dürr V, Arena PP, Cruse H, Dallmann CJ, Drimus A, Hoinville T, Krause T, Mátéfi-Tempfli S, Paskarbeit J, Patanè L, Schäffersmann M, Schilling M, Schmitz J, Strauss R, Theunissen L, Vitanza A, Schneider A. Integrative Biomimetics of Autonomous Hexapedal Locomotion. Front Neurorobot 2019; 13:88. [PMID: 31708765 PMCID: PMC6819508 DOI: 10.3389/fnbot.2019.00088] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/07/2019] [Indexed: 01/31/2023] Open
Abstract
Despite substantial advances in many different fields of neurorobotics in general, and biomimetic robots in particular, a key challenge is the integration of concepts: to collate and combine research on disparate and conceptually disjunct research areas in the neurosciences and engineering sciences. We claim that the development of suitable robotic integration platforms is of particular relevance to make such integration of concepts work in practice. Here, we provide an example for a hexapod robotic integration platform for autonomous locomotion. In a sequence of six focus sections dealing with aspects of intelligent, embodied motor control in insects and multipedal robots-ranging from compliant actuation, distributed proprioception and control of multiple legs, the formation of internal representations to the use of an internal body model-we introduce the walking robot HECTOR as a research platform for integrative biomimetics of hexapedal locomotion. Owing to its 18 highly sensorized, compliant actuators, light-weight exoskeleton, distributed and expandable hardware architecture, and an appropriate dynamic simulation framework, HECTOR offers many opportunities to integrate research effort across biomimetics research on actuation, sensory-motor feedback, inter-leg coordination, and cognitive abilities such as motion planning and learning of its own body size.
Collapse
Affiliation(s)
- Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Paolo P. Arena
- DIEEI: Dipartimento di Ingegneria Elettrica Elettronica e Informatica, Università degli Studi di Catania, Catania, Italy
| | - Holk Cruse
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Chris J. Dallmann
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Alin Drimus
- Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Thierry Hoinville
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Tammo Krause
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität, Mainz, Germany
| | | | - Jan Paskarbeit
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Luca Patanè
- DIEEI: Dipartimento di Ingegneria Elettrica Elettronica e Informatica, Università degli Studi di Catania, Catania, Italy
| | - Mattias Schäffersmann
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Malte Schilling
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Roland Strauss
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität, Mainz, Germany
| | - Leslie Theunissen
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Alessandra Vitanza
- DIEEI: Dipartimento di Ingegneria Elettrica Elettronica e Informatica, Università degli Studi di Catania, Catania, Italy
| | - Axel Schneider
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
- Institute of System Dynamics and Mechatronics, Bielefeld University of Applied Sciences, Bielefeld, Germany
| |
Collapse
|