1
|
Maggs X. A synthetic review: natural history of amniote reproductive modes in light of comparative evolutionary genomics. Biol Rev Camb Philos Soc 2024. [PMID: 39300750 DOI: 10.1111/brv.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
There is a current lack of consensus on whether the ancestral parity mode was oviparity (egg-laying) or viviparity (live-birth) in amniotes and particularly in squamates (snakes, lizards, and amphisbaenids). How transitions between parity modes occur at the genomic level has primary importance for how science conceptualises the origin of amniotes, and highly variable parity modes in Squamata. Synthesising literature from medicine, poultry science, reproductive biology, and evolutionary biology, I review the genomics and physiology of five broad processes (here termed the 'Main Five') expected to change during transitions between parity modes: eggshell formation, embryonic retention, placentation, calcium transport, and maternal-fetal immune dynamics. Throughout, I offer alternative perspectives and testable hypotheses regarding proximate causes of parity mode evolution in amniotes and squamates. If viviparity did evolve early in the history of lepidosaurs, I offer the nucleation site hypothesis as a proximate explanation. The framework of this hypothesis can be extended to amniotes to infer their ancestral state. I also provide a mechanism and hypothesis on how squamates may transition from viviparity to oviparity and make predictions about the directionality of transitions in three species. After considering evidence for differing perspectives on amniote origins, I offer a framework that unifies (i) the extended embryonic retention model and (ii) the traditional model which describes the amniote egg as an adaptation to the terrestrial environment. Additionally, this review contextualises the origin of amniotes and parity mode evolution within Medawar's paradigm. Medawar posited that pregnancy could be supported by immunosuppression, inertness, evasion, or immunological barriers. I demonstrate that this does not support gestation or gravidity across most amniotes but may be an adequate paradigm to explain how the first amniote tolerated internal fertilization and delayed egg deposition. In this context, the eggshell can be thought of as an immunological barrier. If serving as a barrier underpins the origin of the amniote eggshell, there should be evidence that oviparous gravidity can be met with a lack of immunological responses in utero. Rare examples of two species that differentially express very few genes during gravidity, suggestive of an absent immunological reaction to oviparous gravidity, are two skinks Lampropholis guichenoti and Lerista bougainvillii. These species may serve as good models for the original amniote egg. Overall, this review grounds itself in the historical literature while offering a modern perspective on the origin of amniotes. I encourage the scientific community to utilise this review as a resource in evolutionary and comparative genomics studies, embrace the complexity of the system, and thoughtfully consider the frameworks proposed.
Collapse
Affiliation(s)
- X Maggs
- Richard Gilder Graduate School at The American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Christopher S. Bond Life Science Center at the University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- School of Life and Environmental Sciences at the University of Sydney, Heydon-Laurence Building A08, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Braz HB, Barreto RDSN, da Silva-Júnior LN, Horvath-Pereira BDO, da Silva TS, da Silva MD, Acuña F, Miglino MA. Evolutionary Patterns of Maternal Recognition of Pregnancy and Implantation in Eutherian Mammals. Animals (Basel) 2024; 14:2077. [PMID: 39061539 PMCID: PMC11274353 DOI: 10.3390/ani14142077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The implantation of the embryo into the maternal endometrium is a complex process associated with the evolution of viviparity and placentation in mammals. In this review, we provide an overview of maternal recognition of pregnancy signals and implantation modes in eutherians, focusing on their diverse mechanisms and evolutionary patterns. Different pregnancy recognition signals and implantation modes have evolved in eutherian mammals, reflecting the remarkable diversity of specializations in mammals following the evolution of viviparity. Superficial implantation is the ancestral implantation mode in Eutheria and its major clades. The other modes, secondary, partially, and primary interstitial implantation have each independently evolved multiple times in the evolutionary history of eutherians. Although significant progress has been made in understanding pregnancy recognition signals and implantation modes, there is still much to uncover. Rodents and chiropterans (especially Phyllostomidae) offer valuable opportunities for studying the transitions among implantation modes, but data is still scarce for these diverse orders. Further research should focus on unstudied taxa so we can establish robust patterns of evolutionary changes in pregnancy recognition signaling and implantation modes.
Collapse
Affiliation(s)
| | - Rodrigo da Silva Nunes Barreto
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil;
| | - Leandro Norberto da Silva-Júnior
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.N.d.S.-J.); (B.d.O.H.-P.); (T.S.d.S.); (M.D.d.S.)
- Department of Veterinary Medicine, University of Marília, Marília 17525-902, SP, Brazil
| | - Bianca de Oliveira Horvath-Pereira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.N.d.S.-J.); (B.d.O.H.-P.); (T.S.d.S.); (M.D.d.S.)
| | - Thamires Santos da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.N.d.S.-J.); (B.d.O.H.-P.); (T.S.d.S.); (M.D.d.S.)
| | - Mônica Duarte da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.N.d.S.-J.); (B.d.O.H.-P.); (T.S.d.S.); (M.D.d.S.)
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Francisco Acuña
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata B1900, Argentina;
| | | |
Collapse
|
3
|
Fouks B, Harrison MC, Mikhailova AA, Marchal E, English S, Carruthers M, Jennings EC, Chiamaka EL, Frigard RA, Pippel M, Attardo GM, Benoit JB, Bornberg-Bauer E, Tobe SS. Live-bearing cockroach genome reveals convergent evolutionary mechanisms linked to viviparity in insects and beyond. iScience 2023; 26:107832. [PMID: 37829199 PMCID: PMC10565785 DOI: 10.1016/j.isci.2023.107832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/13/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Live birth (viviparity) has arisen repeatedly and independently among animals. We sequenced the genome and transcriptome of the viviparous Pacific beetle-mimic cockroach and performed comparative analyses with two other viviparous insect lineages, tsetse flies and aphids, to unravel the basis underlying the transition to viviparity in insects. We identified pathways undergoing adaptive evolution for insects, involved in urogenital remodeling, tracheal system, heart development, and nutrient metabolism. Transcriptomic analysis of cockroach and tsetse flies revealed that uterine remodeling and nutrient production are increased and the immune response is altered during pregnancy, facilitating structural and physiological changes to accommodate and nourish the progeny. These patterns of convergent evolution of viviparity among insects, together with similar adaptive mechanisms identified among vertebrates, highlight that the transition to viviparity requires changes in urogenital remodeling, enhanced tracheal and heart development (corresponding to angiogenesis in vertebrates), altered nutrient metabolism, and shifted immunity in animal systems.
Collapse
Affiliation(s)
- Bertrand Fouks
- University of Münster, Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Hüfferstrasse 1, 48149 Münster, Germany
| | - Mark C. Harrison
- University of Münster, Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Hüfferstrasse 1, 48149 Münster, Germany
| | - Alina A. Mikhailova
- University of Münster, Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Hüfferstrasse 1, 48149 Münster, Germany
| | - Elisabeth Marchal
- Department of Biology, Molecular Developmental Physiology and Signal Transduction Lab., Division of Animal Physiology and Neurobiology, Naamsestraat 59-Box 2465, B-3000 Leuven, Belgium
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Emily C. Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ezemuoka L. Chiamaka
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ronja A. Frigard
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Geoffrey M. Attardo
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Erich Bornberg-Bauer
- University of Münster, Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Hüfferstrasse 1, 48149 Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Stephen S. Tobe
- Department of Biology, Molecular Developmental Physiology and Signal Transduction Lab., Division of Animal Physiology and Neurobiology, Naamsestraat 59-Box 2465, B-3000 Leuven, Belgium
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Zheng B, Lyu L, Wang X, Wen H, Li Y, Li J, Yao Y, Zuo C, Yan S, Xie S, Qi X. Comparative transcriptomic analysis and genome-wide characterization of the Semaphorin family reveal the potential mechanism of angiogenesis around embryo in ovoviviparous black rockfish (Sebastes schlegelii). Gen Comp Endocrinol 2023; 338:114275. [PMID: 36940835 DOI: 10.1016/j.ygcen.2023.114275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023]
Abstract
To guarantee the quality and survival rate of their offspring, ovoviviparous teleost evolved special characteristics of in vivo fertilization and embryo development. Maternal black rockfish, having over 50 thousand embryos developing within the ovary simultaneously, provided around 40% nutrition throughout oocyte development, while the capillaries around each embryo contributed the rest 60% during pregnancy. Since fertilization, capillaries started to proliferate and developed into a placenta-like structure that covered over half of each embryo. Aimed to characterize the potential mechanism behind, comparative transcriptome analysis of samples collected according to the process of pregnancy. Three important time point in the process, including mature oocyte stage, fertilization and sarcomere period, were chosen for the transcriptome sequencing. Our study identified key pathways and genes involved in the cell cycle as well as DNA replication and repair, cell migration and adhesion, immune, and metabolic functions. Notably, several of the semaphoring gene family members were differently expressed. To confirm the accuracy of these genes, total of 32 sema genes were identified from the whole genome and distinct expression pattern of sema genes was observed in different pregnant stages. Our results revealed a novel insight for further investigating the functions of sema genes in reproduction physiology and embryo processes in ovoviviparous teleost.
Collapse
Affiliation(s)
- Bingyan Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianshuang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yijia Yao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Shaojing Yan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Songyang Xie
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
5
|
Dong Z, Bai Y, Liu S, Yu H, Kong L, Du S, Li Q. A chromosome-level genome assembly of Ostrea denselamellosa provides initial insights into its evolution. Genomics 2023; 115:110582. [PMID: 36796653 DOI: 10.1016/j.ygeno.2023.110582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
The oyster Ostrea denselamellosa is a live-bearing species with a sharp decline in the natural population. Despite recent breakthroughs in long-read sequencing, high quality genomic data are very limited in O. denselamellosa. Here, we carried out the first whole genome sequencing at the chromosome-level in O. denselamellosa. Our studies yielded a 636 Mb assembly with scaffold N50 around 71.80 Mb. 608.3 Mb (95.6% of the assembly) were anchored to 10 chromosomes. A total of 26,412 protein-coding genes were predicted, of which 22,636 (85.7%) were functionally annotated. By comparative genomics, we found that long interspersed nuclear element (LINE) and short interspersed nuclear element (SINE) made up a larger proportion in O. denselamellosa genome than in other oysters'. Moreover, gene family analysis showed some initial insight into its evolution. This high-quality genome of O. denselamellosa provides a valuable genomic resource for studies of evolution, adaption and conservation in oysters.
Collapse
Affiliation(s)
- Zhen Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yitian Bai
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
6
|
Xie HX, Liang XX, Li WM, Chen ZQ, Wang XF, Ding ZH, Zhou XM, Du WG. The eggshell-matrix protein gene OC-17 is functionally lost in the viviparous Chinese crocodile lizard. J Evol Biol 2022; 35:1568-1575. [PMID: 36129910 DOI: 10.1111/jeb.14097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
Abstract
Thickness reduction or loss of the calcareous eggshell is one of major phenotypic changes in the transition from oviparity to viviparity. Whether the reduction of eggshells in viviparous squamates is associated with specific gene losses is unknown. Taking advantage of a newly generated high-quality genome of the viviparous Chinese crocodile lizard (Shinisaurus crocodilurus), we found that ovocleidin-17 gene (OC-17), which encodes an eggshell matrix protein that is essential for calcium deposition in eggshells, is not intact in the crocodile lizard genome. Only OC-17 transcript fragments were found in the oviduct transcriptome, and no OC-17 peptides were identified in the eggshell proteome of crocodile lizards. In contrast, OC-17 was present in the eggshells of the oviparous Mongolia racerunner (Eremias argus). Although the loss of OC-17 is not common in viviparous species, viviparous squamates show fewer intact eggshell-specific proteins than oviparous squamates. Our study implies that functional loss of eggshell-matrix protein genes may be involved in the reduction of eggshells during the transition from oviparity to viviparity in the crocodile lizard.
Collapse
Affiliation(s)
- Hong-Xin Xie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Xi Liang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Xi-Feng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zi-Han Ding
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Ming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Whittington CM, Van Dyke JU, Liang SQT, Edwards SV, Shine R, Thompson MB, Grueber CE. Understanding the evolution of viviparity using intraspecific variation in reproductive mode and transitional forms of pregnancy. Biol Rev Camb Philos Soc 2022; 97:1179-1192. [PMID: 35098647 PMCID: PMC9064913 DOI: 10.1111/brv.12836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
How innovations such as vision, flight and pregnancy evolve is a central question in evolutionary biology. Examination of transitional (intermediate) forms of these traits can help address this question, but these intermediate phenotypes are very rare in extant species. Here we explore the biology and evolution of transitional forms of pregnancy that are midway between the ancestral state of oviparity (egg-laying) and the derived state, viviparity (live birth). Transitional forms of pregnancy occur in only three vertebrates, all of which are lizard species that also display intraspecific variation in reproductive phenotype. In these lizards (Lerista bougainvillii, Saiphos equalis, and Zootoca vivipara), geographic variation of three reproductive forms occurs within a single species: oviparity, viviparity, and a transitional form of pregnancy. This phenomenon offers the valuable prospect of watching 'evolution in action'. In these species, it is possible to conduct comparative research using different reproductive forms that are not confounded by speciation, and are of relatively recent origin. We identify major proximate and ultimate questions that can be addressed in these species, and the genetic and genomic tools that can help us understand how transitional forms of pregnancy are produced, despite predicted fitness costs. We argue that these taxa represent an excellent prospect for understanding the major evolutionary shift between egg-laying and live birth, which is a fundamental innovation in the history of animals.
Collapse
Affiliation(s)
- Camilla M. Whittington
- School of Life and Environmental SciencesThe University of SydneyHeydon‐Laurence Building A08SydneyNSW2006
| | - James U. Van Dyke
- Department of Pharmacy and Biomedical Sciences, School of Molecular SciencesLa Trobe UniversityBuilding 4WodongaVIC3689Australia
| | - Stephanie Q. T. Liang
- School of Life and Environmental SciencesThe University of SydneyHeydon‐Laurence Building A08SydneyNSW2006
| | - Scott V. Edwards
- Department of Organismic and Evolutionary BiologyHarvard University, and Museum of Comparative ZoologyCambridgeMA02138U.S.A.
| | - Richard Shine
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| | - Michael B. Thompson
- School of Life and Environmental SciencesThe University of SydneyHeydon‐Laurence Building A08SydneyNSW2006
| | - Catherine E. Grueber
- School of Life and Environmental SciencesThe University of SydneyHeydon‐Laurence Building A08SydneyNSW2006
| |
Collapse
|
8
|
Conflict and the evolution of viviparity in vertebrates. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Foster CS, Van Dyke JU, Thompson MB, Smith NM, Simpfendorfer CA, Murphy CR, Whittington CM. Different Genes are Recruited During Convergent Evolution of Pregnancy and the Placenta. Mol Biol Evol 2022; 39:msac077. [PMID: 35388432 PMCID: PMC9048886 DOI: 10.1093/molbev/msac077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The repeated evolution of the same traits in distantly related groups (convergent evolution) raises a key question in evolutionary biology: do the same genes underpin convergent phenotypes? Here, we explore one such trait, viviparity (live birth), which, qualitative studies suggest, may indeed have evolved via genetic convergence. There are >150 independent origins of live birth in vertebrates, providing a uniquely powerful system to test the mechanisms underpinning convergence in morphology, physiology, and/or gene recruitment during pregnancy. We compared transcriptomic data from eight vertebrates (lizards, mammals, sharks) that gestate embryos within the uterus. Since many previous studies detected qualitative similarities in gene use during independent origins of pregnancy, we expected to find significant overlap in gene use in viviparous taxa. However, we found no more overlap in uterine gene expression associated with viviparity than we would expect by chance alone. Each viviparous lineage exhibits the same core set of uterine physiological functions. Yet, contrary to prevailing assumptions about this trait, we find that none of the same genes are differentially expressed in all viviparous lineages, or even in all viviparous amniote lineages. Therefore, across distantly related vertebrates, different genes have been recruited to support the morphological and physiological changes required for successful pregnancy. We conclude that redundancies in gene function have enabled the repeated evolution of viviparity through recruitment of different genes from genomic "toolboxes", which are uniquely constrained by the ancestries of each lineage.
Collapse
Affiliation(s)
- Charles S.P. Foster
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - James U. Van Dyke
- School of Molecular Sciences, La Trobe University, Albury-Wodonga Campus, VIC, Australia
| | - Michael B. Thompson
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Nicholas M.A. Smith
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Colin A. Simpfendorfer
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Christopher R. Murphy
- School of Medical Sciences and The Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
10
|
Nicolau GK, Jackson EA, Jordaan A, Alexander GJ. Tropidosaura essexi Hewitt, 1927 (Reptilia: Lacertidae) is live bearing: the only viviparous African lacertid. AFR J HERPETOL 2022. [DOI: 10.1080/21564574.2021.2019839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Gary K Nicolau
- Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa
| | - Emily A Jackson
- Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa
| | - Adriaan Jordaan
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Cape Town, South Africa
- South African National Biodiversity Institute, Pretoria, South Africa
| | - Graham J Alexander
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Khaire K, Verma U, Buch P, Patel S, Ranadive I, Balakrishnan S. Site-specific variation in the activity of COX-2 alters the pattern of wound healing in the tail and limb of northern house gecko by differentially regulating the expression of local inflammatory mediators. ZOOLOGY 2021; 148:125947. [PMID: 34333369 DOI: 10.1016/j.zool.2021.125947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/29/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
The role of COX-2 induced PGE2 in the site-specific regulation of inflammatory mediators that facilitate disparate wound healing in the tail and limb of a lizard was studied by analysing their levels during various stages of healing. The activity of COX-2 and concentration of PGE2 surged during the early healing phase of tail along with the parallel rise in EP4 receptor. PGE2-EP4 interaction is corelated to early resolution (by 3 dpa) of inflammation by rising the antiinflammatory mediator IL-10. This likely causes reduction in proinflammatory mediators viz., iNOS, TNF-α, IL-6, IL-17 and IL-22. Conversely, in the limb, COX-2 derived PGE2 likely causes rise in inflammation through EP2 receptor-based signalling, as all the proinflammatory mediators stay elevated through the course of healing (till 9 dpa), while expression of IL-10 is reduced. This study brings to light the novel roles of IL-17 and IL-22 in programming wound healing. As IL-17 reduces in tail, IL-22 behaves in reparative way, causing conducive environment for scar-free wound healing. On the contrary, synergic elevation of both IL-17 and Il-22 form a micro-niche suitable for scarred wound healing in limb, thus obliterating its regenerative potential.
Collapse
Affiliation(s)
- Kashmira Khaire
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Urja Verma
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Pranav Buch
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Sonam Patel
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Isha Ranadive
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India.
| |
Collapse
|
12
|
Griffith OW. Novel tissue interactions support the evolution of placentation. J Morphol 2021; 282:1047-1053. [PMID: 33433907 DOI: 10.1002/jmor.21322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/02/2023]
Abstract
Organ development occurs through the coordinated interaction of distinct tissue types. So, a question at the core of understanding the evolution of new organs is, how do new tissue-tissue signalling networks arise? The placenta is a great model for understanding the evolution of new organs, because placentas have evolved repeatedly, evolved relatively recently in some lineages, and exhibit intermediate forms in extant clades. Placentas, like other organs, form from the interaction of two distinct tissues, one maternal and one fetal. If each of these tissues produces signals that can be received by the other, then the apposition of these tissues is likely to result in new signalling dynamics that can be used as a scaffold to support placenta development. Using published data and examples, in this review I demonstrate that placentas are derived from hormonally active organs, that considerable signalling potential exists between maternal and fetal tissues in egg-laying vertebrates, that this signalling potential is conserved through the oviparity-viviparity transition, and that consequences of these interactions form the basis of derived aspects of placentation including embryo implantation. I argue that the interaction of placental tissues, is not merely a consequence of placenta formation, but that novel interactions form the basis of new placental regulatory networks, functions, and patterning mechanisms.
Collapse
Affiliation(s)
- Oliver W Griffith
- Department of Biological Science, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Michel JB. Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and Arterial Smooth Muscle Cells. Physiol Rev 2020; 100:1779-1837. [DOI: 10.1152/physrev.00022.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life’s biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.
Collapse
|
14
|
Whittington CM, Friesen CR. The evolution and physiology of male pregnancy in syngnathid fishes. Biol Rev Camb Philos Soc 2020; 95:1252-1272. [PMID: 32372478 DOI: 10.1111/brv.12607] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022]
Abstract
The seahorses, pipefishes and seadragons (Syngnathidae) are among the few vertebrates in which pregnant males incubate developing embryos. Syngnathids are popular in studies of sexual selection, sex-role reversal, and reproductive trade-offs, and are now emerging as valuable comparative models for the study of the biology and evolution of reproductive complexity. These fish offer the opportunity to examine the physiology, behavioural implications, and evolutionary origins of embryo incubation, independent of the female reproductive tract and female hormonal milieu. Such studies allow us to examine flexibility in regulatory systems, by determining whether the pathways underpinning female pregnancy are also co-opted in incubating males, or whether novel pathways have evolved in response to the common challenges imposed by incubating developing embryos and releasing live young. The Syngnathidae are also ideal for studies of the evolution of reproductive complexity, because they exhibit multiple parallel origins of complex reproductive phenotypes. Here we assay the taxonomic distribution of syngnathid parity mode, examine the selective pressures that may have led to the emergence of male pregnancy, describe the biology of syngnathid reproduction, and highlight pressing areas for future research. Experimental tests of a range of hypotheses, including many generated with genomic tools, are required to inform overarching theories about the fitness implications of pregnancy and the evolution of male pregnancy. Such information will be widely applicable to our understanding of fundamental reproductive and evolutionary processes in animals.
Collapse
Affiliation(s)
- Camilla M Whittington
- The University of Sydney, School of Life and Environmental Sciences, Sydney, New South Wales, 2006, Australia.,The University of Sydney, Sydney School of Veterinary Science, Sydney, New South Wales, 2006, Australia
| | - Christopher R Friesen
- The University of Wollongong, School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, Wollongong, New South Wales, 2522, Australia.,Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
15
|
Transport of maternal transthyretin to the fetus in the viviparous teleost Neoditrema ransonnetii (Perciformes, Embiotocidae). J Comp Physiol B 2020; 190:231-241. [PMID: 31980892 DOI: 10.1007/s00360-020-01261-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 12/27/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
The molecular basis of viviparity in non-mammalian species has not been widely studied. Neoditrema ransonnetii, a surfperch, is a matrotrophic teleost whose fetuses grow by ovarian cavity fluid (OCF) ingestion and by nutrient absorption via their enlarged hindgut. We performed a proteomics analysis of N. ransonnetii plasma protein and found proteins specific to pregnant females; one of these was identified as transthyretin (TTR), a thyroid hormone distributor protein. We synthesized recombinant protein rNrTTR and raised an antibody, anti-rNrTTR, against it. Semi-quantitative analysis by western blotting using the antibody demonstrated that plasma TTR levels were significantly greater in pregnant fish than in non-pregnant fish. OCF and fetal plasma also contained high TTR levels. Immunohistochemical staining showed that large amounts of maternal TTR were taken up by fetal intestinal epithelial cells. These results indicate that maternal TTR is secreted into OCF and taken up by fetal enterocytes, presumably to deliver thyroid hormones to developing fetuses.
Collapse
|
16
|
A comparison of uterine contractile responsiveness to arginine vasopressin in oviparous and viviparous lizards. J Comp Physiol B 2019; 190:49-62. [DOI: 10.1007/s00360-019-01254-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/03/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022]
|
17
|
McLennan D, Recknagel H, Elmer KR, Monaghan P. Distinct telomere differences within a reproductively bimodal common lizard population. Funct Ecol 2019; 33:1917-1927. [PMID: 31762528 PMCID: PMC6853248 DOI: 10.1111/1365-2435.13408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022]
Abstract
Different strategies of reproductive mode, either oviparity (egg-laying) or viviparity (live-bearing), will be associated with a range of other life-history differences that are expected to affect patterns of ageing and longevity. It is usually difficult to compare the effects of alternative reproductive modes because of evolutionary and ecological divergence. However, the very rare exemplars of reproductive bimodality, in which different modes exist within a single species, offer an opportunity for robust and controlled comparisons.One trait of interest that could be associated with life history, ageing and longevity is the length of the telomeres, which form protective caps at the chromosome ends and are generally considered a good indicator of cellular health. The shortening of these telomeres has been linked to stressful conditions; therefore, it is possible that differing reproductive costs will influence patterns of telomere loss. This is important because a number of studies have linked a shorter telomere length to reduced survival.Here, we have studied maternal and offspring telomere dynamics in the common lizard (Zootoca vivipara). Our study has focused on a population where oviparous and viviparous individuals co-occur in the same habitat and occasionally interbreed to form admixed individuals.While viviparity confers many advantages for offspring, it might also incur substantial costs for the mother, for example require more energy. Therefore, we predicted that viviparous mothers would have relatively shorter telomeres than oviparous mothers, with admixed mothers having intermediate telomere lengths. There is thought to be a heritable component to telomere length; therefore, we also hypothesized that offspring would follow the same pattern as the mothers.Contrary to our predictions, the viviparous mothers and offspring had the longest telomeres, and the oviparous mothers and offspring had the shortest telomeres. The differing telomere lengths may have evolved as an effect of the life-history divergence between the reproductive modes, for example due to the increased growth rate that viviparous individuals may undergo to reach a similar size at reproduction. A free http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13408/suppinfo can be found within the Supporting Information of this article.
Collapse
Affiliation(s)
- Darryl McLennan
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- Department of Fish Ecology and EvolutionEAWAGKastanienbaumSwitzerland
| | - Hans Recknagel
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Kathryn R. Elmer
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
18
|
Recknagel H, Elmer KR. Differential reproductive investment in co-occurring oviparous and viviparous common lizards (Zootoca vivipara) and implications for life-history trade-offs with viviparity. Oecologia 2019; 190:85-98. [PMID: 31062164 PMCID: PMC6535419 DOI: 10.1007/s00442-019-04398-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/02/2019] [Indexed: 01/31/2023]
Abstract
Live-bearing reproduction (viviparity) has evolved from egg-laying (oviparity) independently many times and most abundantly in squamate reptiles. Studying life-history trade-offs between the two reproductive modes is an inherently difficult task, as most transitions to viviparity are evolutionarily old and/or are confounded by environmental effects. The common lizard (Zootoca vivipara) is one of very few known reproductively bimodal species, in which some populations are oviparous and others viviparous. Oviparous and viviparous populations can occur in sympatry in the same environment, making this a unique system for investigating alternative life-history trade-offs between oviparous and viviparous reproduction. We find that viviparous females exhibit larger body size, smaller clutch sizes, a larger reproductive investment, and a higher hatching success rate than oviparous females. We find that offspring size and weight from viviparous females was lower compared to offspring from oviparous females, which may reflect space constraints during pregnancy. We suggest that viviparity in common lizards is associated with increased reproductive burden for viviparous females and speculate that this promoted the evolution of larger body size to create more physical space for developing embryos. In the context of life-history trade-offs in the evolution of viviparity, we suggest that the extent of correlation between reproductive traits, or differences between reproductive modes, may also depend on the time since the transition occurred.
Collapse
Affiliation(s)
- Hans Recknagel
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
19
|
Genomic and transcriptomic investigations of the evolutionary transition from oviparity to viviparity. Proc Natl Acad Sci U S A 2019; 116:3646-3655. [PMID: 30808754 DOI: 10.1073/pnas.1816086116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Viviparous (live-bearing) vertebrates have evolved repeatedly within otherwise oviparous (egg-laying) clades. Over two-thirds of these changes in vertebrate reproductive parity mode happened in squamate reptiles, where the transition has happened between 98 and 129 times. The transition from oviparity to viviparity requires numerous physiological, morphological, and immunological changes to the female reproductive tract, including eggshell reduction, delayed oviposition, placental development for supply of water and nutrition to the embryo by the mother, enhanced gas exchange, and suppression of maternal immune rejection of the embryo. We performed genomic and transcriptomic analyses of a closely related oviparous-viviparous pair of lizards (Phrynocephalus przewalskii and Phrynocephalus vlangalii) to examine these transitions. Expression patterns of maternal oviduct through reproductive development of the egg and embryo differ markedly between the two species. We found changes in expression patterns of appropriate genes that account for each of the major aspects of the oviparity to viviparity transition. In addition, we compared the gene sequences in transcriptomes of four oviparous-viviparous pairs of lizards in different genera (Phrynocephalus, Eremias, Scincella, and Sphenomorphus) to look for possible gene convergence at the sequence level. We discovered low levels of convergence in both amino acid replacement and evolutionary rate shift. This suggests that most of the changes that produce the oviparity-viviparity transition are changes in gene expression, so occasional reversals to oviparity from viviparity may not be as difficult to achieve as has been previously suggested.
Collapse
|
20
|
Dudley JS, Murphy CR, Thompson MB, Carter T, McAllan BM. Uterine Epithelial Cells Undergo a Plasma Membrane Transformation During Early Pregnancy in the Domestic Cat (Felis catus
). Anat Rec (Hoboken) 2018; 301:1497-1505. [DOI: 10.1002/ar.23895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/28/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Jessica S. Dudley
- School of Medical Sciences and Bosch Institute; University of Sydney; Sydney New South Wales Australia
| | - Christopher R. Murphy
- School of Medical Sciences and Bosch Institute; University of Sydney; Sydney New South Wales Australia
| | - Michael B. Thompson
- School of Life and Environmental Science; University of Sydney; Sydney New South Wales Australia
| | - Tanya Carter
- Haberfield Veterinary Hospital; Sydney New South Wales Australia
| | - Bronwyn M. McAllan
- School of Medical Sciences and Bosch Institute; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
21
|
Dudley JS, Murphy CR, Thompson MB, Mcallan BM. Uterine Receptivity in Merriam's Kangaroo Rat (Dipodomys merriami
). Anat Rec (Hoboken) 2018; 301:1928-1935. [DOI: 10.1002/ar.23891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/17/2018] [Accepted: 04/21/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Jessica S. Dudley
- School of Medical Sciences and Bosch Institute, Department of Anatomy and Histology; University of Sydney; Sydney New South Wales 2006 Australia
| | - Christopher R. Murphy
- School of Medical Sciences and Bosch Institute, Department of Anatomy and Histology; University of Sydney; Sydney New South Wales 2006 Australia
| | - Michael B. Thompson
- School of Life and Environmental Science, Heydon-Laurence Building; University of Sydney; Sydney New South Wales 2006 Australia
| | - Bronwyn M. Mcallan
- School of Medical Sciences and Bosch Institute, Department of Anatomy and Histology; University of Sydney; Sydney New South Wales 2006 Australia
| |
Collapse
|
22
|
Recknagel H, Kamenos NA, Elmer KR. Common lizards break Dollo’s law of irreversibility: Genome-wide phylogenomics support a single origin of viviparity and re-evolution of oviparity. Mol Phylogenet Evol 2018; 127:579-588. [DOI: 10.1016/j.ympev.2018.05.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 04/12/2018] [Accepted: 05/22/2018] [Indexed: 01/03/2023]
|
23
|
Braz HB, Almeida-Santos SM, Murphy CR, Thompson MB. Uterine and eggshell modifications associated with the evolution of viviparity in South American water snakes (Helicopsspp.). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:165-180. [DOI: 10.1002/jez.b.22800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Henrique B. Braz
- School of Life and Environmental Sciences; University of Sydney; Sydney Australia
- Laboratório de Ecologia e Evolução; Instituto Butantan; São Paulo Brazil
- Departamento de Anatomia; Faculdade de Medicina Veterinária e Zootecnia; Universidade de São Paulo; São Paulo Brazil
| | - Selma M. Almeida-Santos
- Laboratório de Ecologia e Evolução; Instituto Butantan; São Paulo Brazil
- Departamento de Anatomia; Faculdade de Medicina Veterinária e Zootecnia; Universidade de São Paulo; São Paulo Brazil
| | - Christopher R. Murphy
- Discipline of Anatomy and Histology; School of Medical Science and Bosch Institute; University of Sydney; Sydney Australia
| | - Michael B. Thompson
- School of Life and Environmental Sciences; University of Sydney; Sydney Australia
| |
Collapse
|
24
|
The inflammation paradox in the evolution of mammalian pregnancy: turning a foe into a friend. Curr Opin Genet Dev 2017; 47:24-32. [DOI: 10.1016/j.gde.2017.08.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/03/2017] [Accepted: 08/11/2017] [Indexed: 01/03/2023]
|
25
|
An endogenous retroviral envelope syncytin and its cognate receptor identified in the viviparous placental Mabuya lizard. Proc Natl Acad Sci U S A 2017; 114:E10991-E11000. [PMID: 29162694 DOI: 10.1073/pnas.1714590114] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Syncytins are envelope genes from endogenous retroviruses that have been captured during evolution for a function in placentation. They have been found in all placental mammals in which they have been searched, including marsupials. Placental structures are not restricted to mammals but also emerged in some other vertebrates, most frequently in lizards, such as the viviparous Mabuya Scincidae. Here, we performed high-throughput RNA sequencing of a Mabuya placenta transcriptome and screened for the presence of retroviral env genes with a full-length ORF. We identified one such gene, which we named "syncytin-Mab1," that has all the characteristics expected for a syncytin gene. It encodes a membrane-bound envelope protein with fusogenic activity ex vivo, is expressed at the placental level as revealed by in situ hybridization and immunohistochemistry, and is conserved in all Mabuya species tested, spanning over 25 My of evolution. Its cognate receptor, required for its fusogenic activity, was searched for by a screening assay using the GeneBridge4 human/Chinese hamster radiation hybrid panel and found to be the MPZL1 gene, previously identified in mammals as a signal-transducing transmembrane protein involved in cell migration. Together, these results show that syncytin capture is not restricted to placental mammals, but can also take place in the rare nonmammalian vertebrates in which a viviparous placentotrophic mode of reproduction emerged. It suggests that similar molecular tools have been used for the convergent evolution of placentation in independently evolved and highly distant vertebrates.
Collapse
|
26
|
Candidate genes involved in the evolution of viviparity: a RAD sequencing experiment in the lizard Zootoca vivipara (Squamata: Lacertidae). Zool J Linn Soc 2017. [DOI: 10.1093/zoolinnean/zlx069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
27
|
Griffith OW, Brandley MC, Whittington CM, Belov K, Thompson MB. Comparative genomics of hormonal signaling in the chorioallantoic membrane of oviparous and viviparous amniotes. Gen Comp Endocrinol 2017; 244:19-29. [PMID: 27102939 DOI: 10.1016/j.ygcen.2016.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 01/17/2016] [Accepted: 04/16/2016] [Indexed: 01/13/2023]
Abstract
In oviparous amniotes (reptiles, birds, and mammals) the chorioallantoic membrane (CAM) lines the inside of the egg and acts as the living point of contact between the embryo and the outside world. In livebearing (viviparous) amniotes, communication during embryonic development occurs across placental tissues, which form between the uterine tissue of the mother and the CAM of the embryo. In both oviparous and viviparous taxa, the CAM is at the interface of the embryo and the external environment and can transfer signals from there to the embryo proper. To understand the evolution of placental hormone production in amniotes, we examined the expression of genes involved in hormone synthesis, metabolism, and hormone receptivity in the CAM of species across the amniote phylogeny. We collected transcriptome data for the chorioallantoic membranes of the chicken (oviparous), the lizards Lerista bougainvillii (both oviparous and viviparous populations) and Pseudemoia entrecasteauxii (viviparous), and the horse Equus caballus (viviparous). The viviparous taxa differ in their mechanisms of nutrient provisioning: L. bougainvillii is lecithotrophic (embryonic nourishment is provided via the yolk only), but P. entrecasteauxii and the horse are placentotrophic (embryos are nourished via placental transport). Of the 423 hormone-related genes that we examined, 91 genes are expressed in all studied species, suggesting that the chorioallantoic membrane ancestrally had an endocrine function. Therefore, the chorioallantoic membrane appears to be a highly hormonally active organ in all amniotes. No genes are expressed only in viviparous species, suggesting that the evolution of viviparity has not required the recruitment of any specific hormone-related genes. Our data suggest that the endocrine function of the CAM as a placental tissue evolved in part through co-option of ancestral gene expression patterns.
Collapse
Affiliation(s)
- Oliver W Griffith
- School of Life and Environmental Sciences, Heydon-Laurence Building, University of Sydney, Sydney, NSW 2006, Australia; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States.
| | - Matthew C Brandley
- School of Life and Environmental Sciences, Heydon-Laurence Building, University of Sydney, Sydney, NSW 2006, Australia; New York University - Sydney, The Rocks, NSW 2000, Australia
| | - Camilla M Whittington
- School of Life and Environmental Sciences, Heydon-Laurence Building, University of Sydney, Sydney, NSW 2006, Australia; Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Katherine Belov
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Michael B Thompson
- School of Life and Environmental Sciences, Heydon-Laurence Building, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
28
|
Griffith OW, Wagner GP. The placenta as a model for understanding the origin and evolution of vertebrate organs. Nat Ecol Evol 2017; 1:72. [DOI: 10.1038/s41559-017-0072] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/06/2017] [Indexed: 12/19/2022]
|
29
|
Dinis M, Velo-Antón G. How little do we know about the reproductive mode in the north African salamander, Salamandra algira? Pueriparity in divergent mitochondrial lineages of S. a. tingitana. AMPHIBIA-REPTILIA 2017. [DOI: 10.1163/15685381-00003121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Salamandra algirais one of the few species of vertebrates that displays intraspecific variation in reproductive strategies, making it a valuable study model in reproductive mode evolution. How pueriparity (viviparity) inS. algiraarose remains unclear mainly due to insufficient information on the distribution of both reproductive modes in the species. This note summarizes what is known about pueriparous reproduction inS. algiraand adds new data on the distribution and geographic limits of both reproductive strategies and mitochondrial lineages withinS. a. tingitanaacross the Western Rif in Morocco, with possible implications for our understanding of the ecological context of pueriparity. The occurrence of pueriparity in two mitochondrial sublineages suggests multiple events of pueriparity evolution inS. algira, or a model of mitochondrial capture through hybridization and introgression across the contact zone.
Collapse
Affiliation(s)
- Marco Dinis
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Instituto de Ciências Agrárias de Vairão, R. Padre Armando Quintas n° 7, 4485-661 Vairão, Portugal
| | - Guillermo Velo-Antón
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Instituto de Ciências Agrárias de Vairão, R. Padre Armando Quintas n° 7, 4485-661 Vairão, Portugal
| |
Collapse
|
30
|
Griffith OW, Brandley MC, Belov K, Thompson MB. Reptile Pregnancy Is Underpinned by Complex Changes in Uterine Gene Expression: A Comparative Analysis of the Uterine Transcriptome in Viviparous and Oviparous Lizards. Genome Biol Evol 2016; 8:3226-3239. [PMID: 27635053 PMCID: PMC5174741 DOI: 10.1093/gbe/evw229] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The evolution of new organs is difficult to study because most vertebrate organs evolved only once, more than 500 million years ago. An ideal model for understanding complex organ evolution is the placenta, a structure that is present in live bearing reptiles and mammals (amniotes), which has evolved independently more than 115 times. Using transcriptomics, we characterized the uterine gene expression patterns through the reproductive cycle of a viviparous skink lizard, Pseudemoia entrecasteauxii. Then we compare these patterns with the patterns of gene expression from two oviparous skinks Lampropholis guichenoti and Lerista bougainvillii. While thousands of genes are differentially expressed between pregnant and non-pregnant uterine tissue in the viviparous skink, few differentially expressed genes were identified between gravid and non-gravid oviparous skinks. This finding suggests that in P. entrecasteauxii, a pregnant-specific gene expression profile has evolved, allowing for the evolution of pregnancy-specific innovations in the uterus. We find substantial gene expression differences between the uterus of the chorioallantoic and the yolk sac placenta in P. entrecasteauxii, suggesting these placental regions are specialized for different placental functions. In particular, the chorioallantoic placenta is likely a major site of nutrient transport by membrane-bound transport proteins, while the yolk sac placenta also likely transports nutrients but via apocrine secretions. We discuss how the evolution of transcription factor networks is likely to underpin the evolution of the new transcriptional states in the uterine tissue of viviparous reptiles.
Collapse
Affiliation(s)
- Oliver W Griffith
- School of Life and Environmental Science, University of Sydney, Camperdown, NSW, Australia .,Department of Ecology and Evolutionary Biology, Yale University
| | - Matthew C Brandley
- School of Life and Environmental Science, University of Sydney, Camperdown, NSW, Australia.,New York University-Sydney, The Rocks, NSW, Australia
| | - Katherine Belov
- School of Life and Environmental Science, University of Sydney, Camperdown, NSW, Australia
| | - Michael B Thompson
- School of Life and Environmental Science, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
31
|
Schwartz TS, Bronikowski AM. Evolution and Function of the Insulin and Insulin-like Signaling Network in Ectothermic Reptiles: Some Answers and More Questions. Integr Comp Biol 2016; 56:171-84. [PMID: 27252221 DOI: 10.1093/icb/icw046] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The insulin and insulin-like signaling (IIS) molecular network regulates cellular growth and division, and influences organismal metabolism, growth and development, reproduction, and lifespan. As a group, reptiles have incredible diversity in the complex life history traits that have been associated with the IIS network, yet the research on the IIS network in ectothermic reptiles is sparse. Here, we review the IIS network and synthesize what is known about the function and evolution of the IIS network in ectothermic reptiles. The primary hormones of this network-the insulin-like growth factors 1 and 2 (IGFs) likely function in reproduction in ectothermic reptiles, but the precise mechanisms are unclear, and likely range from influencing mating and ovulation to maternal investment in embryonic development. In general, plasma levels of IGF1 increase with food intake in ectothermic reptiles, but the magnitude of the response to food varies across species or populations and the ages of animals. Long-term temperature treatments as well as thermal stress can alter expression of genes within the IIS network. Although relatively little work has been done on IGF2 in ectothermic reptiles, IGF2 is consistently expressed at higher levels than IGF1 in juvenile ectothermic reptiles. Furthermore, in contrast to mammals that have genetic imprinting that silences the maternal IGF2 allele, in reptiles IGF2 is bi-allelically expressed (based on findings in chickens, a snake, and a lizard). Evolutionary analyses indicate some members of the IIS network are rapidly evolving across reptile species, including IGF1, insulin (INS), and their receptors. In particular, IGF1 displays extensive nucleotide variation across lizards and snakes, which suggests that its functional role may vary across this group. In addition, genetic variation across families and populations in the response of the IIS network to environmental conditions illustrates that components of this network may be evolving in natural populations. The diversity in reproductive physiology, metabolic plasticity, and lifespan among reptiles makes the study of the IIS network in this group a potentially rich avenue for insight into the evolution and function of this network. The field would benefit from future studies that discern the respective functions of IGF1 and IGF2 and how these functions vary across taxa, perfecting additional assays for measuring IIS components, and determining the role of IIS in different tissues.
Collapse
Affiliation(s)
- Tonia S Schwartz
- *Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences Bldg, Auburn, AL 36849, USA
| | - Anne M Bronikowski
- Ecology, Evolution & Organismal Biology Department, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
32
|
Whittington CM, Griffith OW, Qi W, Thompson MB, Wilson AB. Seahorse Brood Pouch Transcriptome Reveals Common Genes Associated with Vertebrate Pregnancy. Mol Biol Evol 2015; 32:3114-31. [PMID: 26330546 DOI: 10.1093/molbev/msv177] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Viviparity (live birth) has evolved more than 150 times in vertebrates, and represents an excellent model system for studying the evolution of complex traits. There are at least 23 independent origins of viviparity in fishes, with syngnathid fishes (seahorses and pipefish) unique in exhibiting male pregnancy. Male seahorses and pipefish have evolved specialized brooding pouches that provide protection, gas exchange, osmoregulation, and limited nutrient provisioning to developing embryos. Pouch structures differ widely across the Syngnathidae, offering an ideal opportunity to study the evolution of reproductive complexity. However, the physiological and genetic changes facilitating male pregnancy are largely unknown. We used transcriptome profiling to examine pouch gene expression at successive gestational stages in a syngnathid with the most complex brood pouch morphology, the seahorse Hippocampus abdominalis. Using a unique time-calibrated RNA-seq data set including brood pouch at key stages of embryonic development, we identified transcriptional changes associated with brood pouch remodeling, nutrient and waste transport, gas exchange, osmoregulation, and immunological protection of developing embryos at conception, development and parturition. Key seahorse transcripts share homology with genes of reproductive function in pregnant mammals, reptiles, and other live-bearing fish, suggesting a common toolkit of genes regulating pregnancy in divergent evolutionary lineages.
Collapse
Affiliation(s)
- Camilla M Whittington
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland School of Biological Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Oliver W Griffith
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Centre, University of Zurich, Zurich, Switzerland
| | - Michael B Thompson
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Anthony B Wilson
- School of Biological Sciences, The University of Sydney, Sydney, NSW, Australia Department of Biology, Brooklyn College The Graduate Center, City University of New York
| |
Collapse
|
33
|
Van Damme R, Wijnrocx K, Boeye J, Huyghe K, Van Dongen S. Digit ratios in two lacertid lizards: sexual dimorphism and morphological and physiological correlates. ZOOMORPHOLOGY 2015. [DOI: 10.1007/s00435-015-0275-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
34
|
Blackburn DG. Viviparous placentotrophy in reptiles and the parent-offspring conflict. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:532-48. [DOI: 10.1002/jez.b.22624] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Daniel G. Blackburn
- Departmentof Biology; Electron Microscopy Center; Trinity College; Hartford Connecticut
| |
Collapse
|
35
|
Shine R. The evolution of oviparity in squamate reptiles: An adaptationist perspective. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:487-92. [DOI: 10.1002/jez.b.22622] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 03/06/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Richard Shine
- School of Biological Sciences; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
36
|
Abstract
The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades.
Collapse
|
37
|
Blackburn DG. Evolution of viviparity in squamate reptiles: Reversibility reconsidered. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:473-86. [DOI: 10.1002/jez.b.22625] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/20/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel G. Blackburn
- Department of Biology, Electron Microscopy Center; Trinity College; Hartford Connecticut
| |
Collapse
|
38
|
Cornetti L, Belluardo F, Ghielmi S, Giovine G, Ficetola GF, Bertorelle G, Vernesi C, Hauffe HC. Reproductive isolation between oviparous and viviparous lineages of the Eurasian common lizardZootoca viviparain a contact zone. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luca Cornetti
- Department of Biodiversity and Molecular Ecology; Research and Innovation Centre; Fondazione Edmund Mach; Via E. Mach 1 38010 San Michele all'Adige Trento Italy
- Dipartimento di Scienze della Vita e Biotecnologie; University of Ferrara; Via Borsari 46 44121 Ferrara Italy
| | - Francesco Belluardo
- Department of Biodiversity and Molecular Ecology; Research and Innovation Centre; Fondazione Edmund Mach; Via E. Mach 1 38010 San Michele all'Adige Trento Italy
- Dipartimento di Bioscienze; University of Milan; Via Festa del Perdono 7 20122 Milan Italy
| | - Samuele Ghielmi
- Museo Insubrico di Storia Naturale di Clivio e Induno Olona; Via Manzoni 215 21050 Clivio Varese Italy
| | - Giovanni Giovine
- Stazione sperimentale regionale per lo studio e la conservazione degli anfibi in Lombardia - Lago di Endine; Via del Cantiere 4 24065 Lovere Bergamo Italy
| | - Gentile F. Ficetola
- Dipartimento di Scienze dell'Ambiente e del Territorio e di Scienze della Terra; University of Milano-Bicocca; Piazza dell'Ateneo Nuovo 1 20126 Milan Italy
- Laboratoire d'Ecologie Alpine (LECA); Université Grenoble-Alpes; 2233 Rue de la Piscine 38041 Grenoble Cedex 9 France
| | - Giorgio Bertorelle
- Dipartimento di Scienze della Vita e Biotecnologie; University of Ferrara; Via Borsari 46 44121 Ferrara Italy
| | - Cristiano Vernesi
- Department of Biodiversity and Molecular Ecology; Research and Innovation Centre; Fondazione Edmund Mach; Via E. Mach 1 38010 San Michele all'Adige Trento Italy
| | - Heidi C. Hauffe
- Department of Biodiversity and Molecular Ecology; Research and Innovation Centre; Fondazione Edmund Mach; Via E. Mach 1 38010 San Michele all'Adige Trento Italy
| |
Collapse
|
39
|
Dudley JS, Murphy CR, Thompson MB, McAllan BM. Desmoglein-2 during pregnancy and its role in the evolution of viviparity in a marsupial (Sminthopsis crassicaudata; Dasyuridae). J Morphol 2014; 276:261-72. [DOI: 10.1002/jmor.20333] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/28/2014] [Accepted: 10/02/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jessica S. Dudley
- School of Medical Sciences and Bosch Institute; University of Sydney; Sydney NSW 2006 Australia
| | - Christopher R. Murphy
- School of Medical Sciences and Bosch Institute; University of Sydney; Sydney NSW 2006 Australia
| | - Michael B. Thompson
- School of Biological Science (A08); University of Sydney; Sydney NSW 2006 Australia
| | - Bronwyn M. McAllan
- School of Medical Sciences and Bosch Institute; University of Sydney; Sydney NSW 2006 Australia
| |
Collapse
|
40
|
Novel X-linked genes revealed by quantitative polymerase chain reaction in the green anole, Anolis carolinensis. G3-GENES GENOMES GENETICS 2014; 4:2107-13. [PMID: 25172916 PMCID: PMC4232536 DOI: 10.1534/g3.114.014084] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The green anole, Anolis carolinensis (ACA), is the model reptile for a vast array of biological disciplines. It was the first nonavian reptile to have its genome fully sequenced. During the genome project, the XX/XY system of sex chromosomes homologous to chicken chromosome 15 (GGA15) was revealed, and 106 X-linked genes were identified. We selected 38 genes located on eight scaffolds in ACA and having orthologs located on GGA15, then tested their linkage to ACA X chromosome by using comparative quantitative fluorescent real-time polymerase chain reaction applied to male and female genomic DNA. All tested genes appeared to be X-specific and not present on the Y chromosome. Assuming that all genes located on these scaffolds should be localized to the ACA X chromosome, we more than doubled the number of known X-linked genes in ACA, from 106 to 250. While demonstrating that the gene content of chromosome X in ACA and GGA15 is largely conserved, we nevertheless showed that numerous interchromosomal rearrangements had occurred since the splitting of the chicken and anole evolutionary lineages. The presence of many ACA X-specific genes localized to distinct contigs indicates that the ACA Y chromosome should be highly degenerated, having lost a large amount of its original gene content during evolution. The identification of novel genes linked to the X chromosome and absent on the Y chromosome in the model lizard species contributes to ongoing research as to the evolution of sex determination in reptiles and provides important information for future comparative and functional genomics.
Collapse
|
41
|
Evolution of an Evolutionary Hypothesis: A History of Changing Ideas about the Adaptive Significance of Viviparity in Reptiles. J HERPETOL 2014. [DOI: 10.1670/13-075] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Van Dyke JU, Brandley MC, Thompson MB. The evolution of viviparity: molecular and genomic data from squamate reptiles advance understanding of live birth in amniotes. Reproduction 2014; 147:R15-26. [DOI: 10.1530/rep-13-0309] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Squamate reptiles (lizards and snakes) are an ideal model system for testing hypotheses regarding the evolution of viviparity (live birth) in amniote vertebrates. Viviparity has evolved over 100 times in squamates, resulting in major changes in reproductive physiology. At a minimum, all viviparous squamates exhibit placentae formed by the appositions of maternal and embryonic tissues, which are homologous in origin with the tissues that form the placenta in therian mammals. These placentae facilitate adhesion of the conceptus to the uterus as well as exchange of oxygen, carbon dioxide, water, sodium, and calcium. However, most viviparous squamates continue to rely on yolk for nearly all of their organic nutrition. In contrast, some species, which rely on the placenta for at least a portion of organic nutrition, exhibit complex placental specializations associated with the transport of amino acids and fatty acids. Some viviparous squamates also exhibit reduced immunocompetence during pregnancy, which could be the result of immunosuppression to protect developing embryos. Recent molecular studies using both candidate-gene and next-generation sequencing approaches have suggested that at least some of the genes and gene families underlying these phenomena play similar roles in the uterus and placenta of viviparous mammals and squamates. Therefore, studies of the evolution of viviparity in squamates should inform hypotheses of the evolution of viviparity in all amniotes, including mammals.
Collapse
|
43
|
Renfree MB, Suzuki S, Kaneko-Ishino T. The origin and evolution of genomic imprinting and viviparity in mammals. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120151. [PMID: 23166401 DOI: 10.1098/rstb.2012.0151] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genomic imprinting is widespread in eutherian mammals. Marsupial mammals also have genomic imprinting, but in fewer loci. It has long been thought that genomic imprinting is somehow related to placentation and/or viviparity in mammals, although neither is restricted to mammals. Most imprinted genes are expressed in the placenta. There is no evidence for genomic imprinting in the egg-laying monotreme mammals, despite their short-lived placenta that transfers nutrients from mother to embryo. Post natal genomic imprinting also occurs, especially in the brain. However, little attention has been paid to the primary source of nutrition in the neonate in all mammals, the mammary gland. Differentially methylated regions (DMRs) play an important role as imprinting control centres in each imprinted region which usually comprises both paternally and maternally expressed genes (PEGs and MEGs). The DMR is established in the male or female germline (the gDMR). Comprehensive comparative genome studies demonstrated that two imprinted regions, PEG10 and IGF2-H19, are conserved in both marsupials and eutherians and that PEG10 and H19 DMRs emerged in the therian ancestor at least 160 Ma, indicating the ancestral origin of genomic imprinting during therian mammal evolution. Importantly, these regions are known to be deeply involved in placental and embryonic growth. It appears that most maternal gDMRs are always associated with imprinting in eutherian mammals, but emerged at differing times during mammalian evolution. Thus, genomic imprinting could evolve from a defence mechanism against transposable elements that depended on DNA methylation established in germ cells.
Collapse
Affiliation(s)
- Marilyn B Renfree
- Department of Zoology, The University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
44
|
Gautam M, Mathur A, Khan MA, Majumdar SS, Rai U. Transcriptome analysis of spermatogenically regressed, recrudescent and active phase testis of seasonally breeding wall lizards Hemidactylus flaviviridis. PLoS One 2013; 8:e58276. [PMID: 23536792 PMCID: PMC3594293 DOI: 10.1371/journal.pone.0058276] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/01/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Reptiles are phylogenically important group of organisms as mammals have evolved from them. Wall lizard testis exhibits clearly distinct morphology during various phases of a reproductive cycle making them an interesting model to study regulation of spermatogenesis. Studies on reptile spermatogenesis are negligible hence this study will prove to be an important resource. METHODOLOGY/PRINCIPAL FINDINGS Histological analyses show complete regression of seminiferous tubules during regressed phase with retracted Sertoli cells and spermatognia. In the recrudescent phase, regressed testis regain cellular activity showing presence of normal Sertoli cells and developing germ cells. In the active phase, testis reaches up to its maximum size with enlarged seminiferous tubules and presence of sperm in seminiferous lumen. Total RNA extracted from whole testis of regressed, recrudescent and active phase of wall lizard was hybridized on Mouse Whole Genome 8×60 K format gene chip. Microarray data from regressed phase was deemed as control group. Microarray data were validated by assessing the expression of some selected genes using Quantitative Real-Time PCR. The genes prominently expressed in recrudescent and active phase testis are cytoskeleton organization GO 0005856, cell growth GO 0045927, GTpase regulator activity GO: 0030695, transcription GO: 0006352, apoptosis GO: 0006915 and many other biological processes. The genes showing higher expression in regressed phase belonged to functional categories such as negative regulation of macromolecule metabolic process GO: 0010605, negative regulation of gene expression GO: 0010629 and maintenance of stem cell niche GO: 0045165. CONCLUSION/SIGNIFICANCE This is the first exploratory study profiling transcriptome of three drastically different conditions of any reptilian testis. The genes expressed in the testis during regressed, recrudescent and active phase of reproductive cycle are in concordance with the testis morphology during these phases. This study will pave the way for deeper insight into regulation and evolution of gene regulatory mechanisms in spermatogenesis.
Collapse
Affiliation(s)
- Mukesh Gautam
- Comparative Immuno-Endocrinology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Amitabh Mathur
- Comparative Immuno-Endocrinology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Meraj Alam Khan
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Subeer S. Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Umesh Rai
- Comparative Immuno-Endocrinology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
45
|
Schuett GW, Repp RA, Amarello M, Smith CF. Unlike most vipers, female rattlesnakes(Crotalus atrox)continue to hunt and feed throughout pregnancy. J Zool (1987) 2012. [DOI: 10.1111/j.1469-7998.2012.00969.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - R. A. Repp
- National Optical Astronomy Observatory; Tucson; AZ; USA
| | - M. Amarello
- School of Life Sciences; Arizona State University; Tempe; AZ; USA
| | | |
Collapse
|
46
|
Smith CF, Schuett GW, Hoss SK. Reproduction in female copperhead snakes (Agkistrodon contortrix): plasma steroid profiles during gestation and post-birth periods. Zoolog Sci 2012; 29:273-9. [PMID: 22468838 DOI: 10.2108/zsj.29.273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated levels of plasma progesterone (P4), 17β-estradiol (E2), testosterone (T), and corticosterone (CORT) during gestation and post-birth periods in wild-collected female copperhead snakes (Viperidae; Agkistrodon contortrix). We also sought to determine whether CORT levels at (or near) birth dramatically increase and were correlated with duration of labor and litter size. Specifically, pregnant subjects (N = 14) were collected during early- to mid-gestation, held in the laboratory, and repeatedly bled to obtain plasma for steroid analyses. Progesterone showed significant changes during gestation, with the highest levels at the onset of sampling (circa 50 days prior to birth); P4 progressively declined up to parturition, and basal levels were observed thereafter. At the onset of sampling, E2 was at peak levels and fell sharply at circa 30 days prior to birth, a trend observed throughout the post-birth sampling period. Throughout the entire sampling period, T was undetectable. Although CORT showed no significant changes during gestation and several days following parturition, there was a highly significant peak at the time of birth. Our findings mirror the results of previous studies on pregnancy and steroid hormones of other live-bearing snakes, lizards, and mammals. As expected, there was a significant relationship between duration of labor and litter size; however, although levels of CORT did not achieve significance, there was a positive trend with litter size. We suggest that elevation of CORT at birth is involved in the mobilization and regulation of energy stores necessary for the physiological process of parturition and as a possible mechanism to trigger birth.
Collapse
Affiliation(s)
- Charles F Smith
- Department of Ecology and Evolutionary Biology, The University of Connecticut, Storrs, Connecticut 06269-3043, USA.
| | | | | |
Collapse
|
47
|
Brandley MC, Young RL, Warren DL, Thompson MB, Wagner GP. Uterine gene expression in the live-bearing lizard, Chalcides ocellatus, reveals convergence of squamate reptile and mammalian pregnancy mechanisms. Genome Biol Evol 2012; 4:394-411. [PMID: 22333490 PMCID: PMC3318437 DOI: 10.1093/gbe/evs013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2012] [Indexed: 12/18/2022] Open
Abstract
Although the morphological and physiological changes involved in pregnancy in live-bearing reptiles are well studied, the genetic mechanisms that underlie these changes are not known. We used the viviparous African Ocellated Skink, Chalcides ocellatus, as a model to identify a near complete gene expression profile associated with pregnancy using RNA-Seq analyses of uterine transcriptomes. Pregnancy in C. ocellatus is associated with upregulation of uterine genes involved with metabolism, cell proliferation and death, and cellular transport. Moreover, there are clear parallels between the genetic processes associated with pregnancy in mammals and Chalcides in expression of genes related to tissue remodeling, angiogenesis, immune system regulation, and nutrient provisioning to the embryo. In particular, the pregnant uterine transcriptome is dominated by expression of proteolytic enzymes that we speculate are involved both with remodeling the chorioallantoic placenta and histotrophy in the omphaloplacenta. Elements of the maternal innate immune system are downregulated in the pregnant uterus, indicating a potential mechanism to avoid rejection of the embryo. We found a downregulation of major histocompatability complex loci and estrogen and progesterone receptors in the pregnant uterus. This pattern is similar to mammals but cannot be explained by the mammalian model. The latter finding provides evidence that pregnancy is controlled by different endocrinological mechanisms in mammals and reptiles. Finally, 88% of the identified genes are expressed in both the pregnant and the nonpregnant uterus, and thus, morphological and physiological changes associated with C. ocellatus pregnancy are likely a result of regulation of genes continually expressed in the uterus rather than the initiation of expression of unique genes.
Collapse
|