1
|
Abo-Shaban T, Lee CYQ, Hosie S, Balasuriya GK, Mohsenipour M, Johnston LA, Hill-Yardin EL. GutMap: A New Interface for Analysing Regional Motility Patterns in ex vivo Mouse Gastrointestinal Preparations. Bio Protoc 2023; 13:e4831. [PMID: 37817909 PMCID: PMC10560633 DOI: 10.21769/bioprotoc.4831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 10/12/2023] Open
Abstract
Different regions of the gastrointestinal tract have specific functions and thus distinct motility patterns. Motility is primarily regulated by the enteric nervous system (ENS), an intrinsic network of neurons located within the gut wall. Under physiological conditions, the ENS is influenced by the central nervous system (CNS). However, by using ex vivo organ bath experiments, ENS regulation of gut motility can also be studied in the absence of CNS influences. The current technique enables the characterisation of small intestinal, caecal, and colonic motility patterns using an ex vivo organ bath and video imaging protocol. This approach is combined with the novel edge detection script GutMap, available in MATLAB, that functions across Windows and Mac platforms. Dissected intestinal segments are cannulated in an organ bath containing physiological saline with a camera mounted overhead. Video recordings of gut contractions are then converted to spatiotemporal heatmaps and analysed using the GutMap software interface. Using data analysed from the heatmaps, parameters of contractile patterns (including contraction propagation frequency and velocity as well as gut diameter) at baseline and in the presence of drugs/treatments/genetic mutations can be compared. Here, we studied motility patterns of female mice at baseline and in the presence of a nitric oxide synthase inhibitor (Nω-Nitro-L-arginine; NOLA) (nitric oxide being the main inhibitory neurotransmitter of gut motility) to showcase the application of GutMap. This technique is suitable for application to a broad range of animal models of clinical disorders to understand underlying biological pathways contributing to gastrointestinal dysfunction. Key features • Enhanced video imaging analysis of gut contractility in rodents using a novel software interface. • New edge detection algorithm to accurately contour curvatures of the gastrointestinal tract. • Allows for output of high-resolution spatiotemporal heatmaps across Windows and Mac platforms. • Edge detection and analysis method makes motility measurements accessible in different gut regions including the caecum and stomach.
Collapse
Affiliation(s)
- Tanya Abo-Shaban
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia
| | - Chalystha Y. Q. Lee
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia
| | - Suzanne Hosie
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia
| | - Gayathri K. Balasuriya
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia
- Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mitra Mohsenipour
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia
| | - Leigh A. Johnston
- Department of Biomedical Engineering and Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, VIC, Australia
| | - Elisa L. Hill-Yardin
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
2
|
Lee CYQ, Balasuriya GK, Herath M, Franks AE, Hill-Yardin EL. Impaired cecal motility and secretion alongside expansion of gut-associated lymphoid tissue in the Nlgn3 R451C mouse model of autism. Sci Rep 2023; 13:12687. [PMID: 37542090 PMCID: PMC10403596 DOI: 10.1038/s41598-023-39555-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023] Open
Abstract
Individuals with Autism Spectrum Disorder (ASD; autism) commonly present with gastrointestinal (GI) illness in addition to core diagnostic behavioural traits. The appendix, or cecum in mice, is important for GI homeostasis via its function as a key site for fermentation and a microbial reservoir. Even so, the role of the appendix and cecum in autism-associated GI symptoms remains uninvestigated. Here, we studied mice with an autism-associated missense mutation in the post-synaptic protein neuroligin-3 (Nlgn3R451C), which impacts brain and enteric neuronal activity. We assessed for changes in cecal motility using a tri-cannulation video-imaging approach in ex vivo preparations from wild-type and Nlgn3R451C mice. We investigated cecal permeability and neurally-evoked secretion in wild-type and Nlgn3R451C tissues using an Ussing chamber set-up. The number of cecal patches in fresh tissue samples were assessed and key immune populations including gut macrophages and dendritic cells were visualised using immunofluorescence. Nlgn3R451C mice displayed accelerated cecal motor complexes and reduced cecal weight in comparison to wildtype littermates. Nlgn3R451C mice also demonstrated reduced neurally-evoked cecal secretion in response to the nicotinic acetylcholine receptor agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP), but permeability was unchanged. We observed an increase in the number of cecal patches in Nlgn3R451C mice, however the cellular morphologies of key immune populations studied were not significantly altered. We show that the R451C nervous system mutation leads to cecal dysmotility, impaired secretion, and neuro-immune alterations. Together, these results suggest that the R451C mutation disrupts the gut-brain axis with GI dysfunction in autism.
Collapse
Affiliation(s)
- Chalystha Yie Qin Lee
- School of Health and Biomedical Sciences, RMIT University, 223, Bundoora West Campus, 225-245 Clements Drive, Bundoora, VIC, 3083, Australia
| | | | - Madushani Herath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, USA
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Ashley E Franks
- School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, RMIT University, 223, Bundoora West Campus, 225-245 Clements Drive, Bundoora, VIC, 3083, Australia.
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
3
|
Abo-Shaban T, Sharna SS, Hosie S, Lee CYQ, Balasuriya GK, McKeown SJ, Franks AE, Hill-Yardin EL. Issues for patchy tissues: defining roles for gut-associated lymphoid tissue in neurodevelopment and disease. J Neural Transm (Vienna) 2023; 130:269-280. [PMID: 36309872 PMCID: PMC10033573 DOI: 10.1007/s00702-022-02561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/20/2022] [Indexed: 10/31/2022]
Abstract
Individuals diagnosed with neurodevelopmental conditions such as autism spectrum disorder (ASD; autism) often experience tissue inflammation as well as gastrointestinal dysfunction, yet their underlying causes remain poorly characterised. Notably, the largest components of the body's immune system, including gut-associated lymphoid tissue (GALT), lie within the gastrointestinal tract. A major constituent of GALT in humans comprises secretory lymphoid aggregates known as Peyer's patches that sense and combat constant exposure to pathogens and infectious agents. Essential to the functions of Peyer's patches is its communication with the enteric nervous system (ENS), an intrinsic neural network that regulates gastrointestinal function. Crosstalk between these tissues contribute to the microbiota-gut-brain axis that altogether influences mood and behaviour. Increasing evidence further points to a critical role for this signalling axis in neurodevelopmental homeostasis and disease. Notably, while the neuroimmunomodulatory functions for Peyer's patches are increasingly better understood, functions for tissues of analogous function, such as caecal patches, remain less well characterised. Here, we compare the structure, function and development of Peyer's patches, as well as caecal and appendix patches in humans and model organisms including mice to highlight the roles for these essential tissues in health and disease. We propose that perturbations to GALT function may underlie inflammatory disorders and gastrointestinal dysfunction in neurodevelopmental conditions such as autism.
Collapse
Affiliation(s)
- T Abo-Shaban
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - S S Sharna
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, USA
| | - S Hosie
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - C Y Q Lee
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - G K Balasuriya
- Department of Physiology and Cell Biology, Kobe University School of Medicine, 7-5-1 Kusunoki-Cho, Chuo, Kobe, 650-0017, Japan
| | - S J McKeown
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - A E Franks
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - E L Hill-Yardin
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|
4
|
Bansept F, Schumann-Moor K, Diard M, Hardt WD, Slack E, Loverdo C. Enchained growth and cluster dislocation: A possible mechanism for microbiota homeostasis. PLoS Comput Biol 2019; 15:e1006986. [PMID: 31050663 PMCID: PMC6519844 DOI: 10.1371/journal.pcbi.1006986] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/15/2019] [Accepted: 03/28/2019] [Indexed: 01/26/2023] Open
Abstract
Immunoglobulin A is a class of antibodies produced by the adaptive immune system and secreted into the gut lumen to fight pathogenic bacteria. We recently demonstrated that the main physical effect of these antibodies is to enchain daughter bacteria, i.e. to cross-link bacteria into clusters as they divide, preventing them from interacting with epithelial cells, thus protecting the host. These links between bacteria may break over time. We study several models using analytical and numerical calculations. We obtain the resulting distribution of chain sizes, that we compare with experimental data. We study the rate of increase in the number of free bacteria as a function of the replication rate of bacteria. Our models show robustly that at higher replication rates, bacteria replicate before the link between daughter bacteria breaks, leading to growing cluster sizes. On the contrary at low growth rates two daughter bacteria have a high probability to break apart. Thus the gut could produce IgA against all the bacteria it has encountered, but the most affected bacteria would be the fast replicating ones, that are more likely to destabilize the microbiota. Linking the effect of the immune effectors (here the clustering) with a property directly relevant to the potential bacterial pathogeneicity (here the replication rate) could avoid to make complex decisions about which bacteria to produce effectors against. Inside the organism, the immune system can fight generically against any bacteria. However, the gut lumen is home to a very important microbiota, so the host has to find alternative ways to fight dangerous bacteria while sparing beneficial ones. While many studies have focused on the complex molecular and cellular pathways that trigger an immune response, little is known about how the produced antibodies act once secreted into the intestinal lumen. We recently demonstrated that the main physical effect of these antibodies is to cross-link bacteria into clusters as they divide, preventing them from interacting with epithelial cells, thus protecting the host. These links between bacteria may break over time. Using analytical and numerical calculations, and comparing with experimental data, we studied the dynamics of these clusters. At higher replication rates, bacteria replicate before the link between daughter bacteria breaks, leading to growing cluster sizes, and conversely. Thus the gut could produce IgA against all the bacteria it has encountered, but the most affected bacteria would be the fast replicating ones, that are more likely to destabilize the microbiota. Studying the mechanisms of the immune response may uncover more such processes that enable to target properties hard to escape through evolution.
Collapse
Affiliation(s)
- Florence Bansept
- Laboratoire Jean Perrin, Sorbonne Université / CNRS, Paris, France
| | | | - Médéric Diard
- Institute of Microbiology, Department of Biology, ETH Zürich, Switzerland
| | | | - Emma Slack
- Institute of Microbiology, Department of Biology, ETH Zürich, Switzerland
| | - Claude Loverdo
- Laboratoire Jean Perrin, Sorbonne Université / CNRS, Paris, France
- * E-mail:
| |
Collapse
|
5
|
Lentle RG, Hulls CM. Quantifying Patterns of Smooth Muscle Motility in the Gut and Other Organs With New Techniques of Video Spatiotemporal Mapping. Front Physiol 2018; 9:338. [PMID: 29686624 PMCID: PMC5900429 DOI: 10.3389/fphys.2018.00338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/20/2018] [Indexed: 01/12/2023] Open
Abstract
The uses and limitations of the various techniques of video spatiotemporal mapping based on change in diameter (D-type ST maps), change in longitudinal strain rate (L-type ST maps), change in area strain rate (A-type ST maps), and change in luminous intensity of reflected light (I-maps) are described, along with their use in quantifying motility of the wall of hollow structures of smooth muscle such as the gut. Hence ST-methods for determining the size, speed of propagation and frequency of contraction in the wall of gut compartments of differing geometric configurations are discussed. We also discuss the shortcomings and problems that are inherent in the various methods and the use of techniques to avoid or minimize them. This discussion includes, the inability of D-type ST maps to indicate the site of a contraction that does not reduce the diameter of a gut segment, the manipulation of axis [the line of interest (LOI)] of L-maps to determine the true axis of propagation of a contraction, problems with anterior curvature of gut segments and the use of adjunct image analysis techniques that enhance particular features of the maps.
Collapse
Affiliation(s)
- Roger G Lentle
- Physiology Department, Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Corrin M Hulls
- Physiology Department, Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| |
Collapse
|
6
|
Intraluminal pressure patterns in the human colon assessed by high-resolution manometry. Sci Rep 2017; 7:41436. [PMID: 28216670 PMCID: PMC5316981 DOI: 10.1038/srep41436] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/13/2016] [Indexed: 02/08/2023] Open
Abstract
Assessment of colonic motor dysfunction is rarely done because of inadequate methodology and lack of knowledge about normal motor patterns. Here we report on elucidation of intraluminal pressure patterns using High Resolution Colonic Manometry during a baseline period and in response to a meal, in 15 patients with constipation, chronically dependent on laxatives, 5 healthy volunteers and 9 patients with minor, transient, IBS-like symptoms but no sign of constipation. Simultaneous pressure waves (SPWs) were the most prominent propulsive motor pattern, associated with gas expulsion and anal sphincter relaxation, inferred to be associated with fast propagating contractions. Isolated pressure transients occurred in most sensors, ranging in amplitude from 5–230 mmHg. Rhythmic haustral boundary pressure transients occurred at sensors about 4–5 cm apart. Synchronized haustral pressure waves, covering 3–5 cm of the colon occurred to create a characteristic intrahaustral cyclic motor pattern at 3–6 cycles/min, propagating in mixed direction. This activity abruptly alternated with erratic patterns resembling the segmentation motor pattern of the small intestine. High amplitude propagating pressure waves (HAPWs) were too rare to contribute to function assessment in most subjects. Most patients, dependent on laxatives for defecation, were able to generate normal motor patterns in response to a meal.
Collapse
|
7
|
Ex vivo motility in the base of the rabbit caecum and its associated structures: an electrophysiological and spatiotemporal analysis. J Physiol Biochem 2015; 72:45-57. [PMID: 26671063 DOI: 10.1007/s13105-015-0455-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 11/25/2015] [Indexed: 01/11/2023]
Abstract
We examined the coordination between contractile events at different sites in the basal portion of the rabbit caecum and its associated structures that were identified by electrophysiological recordings with simultaneous one-dimensional, and a novel two-dimensional, spatiotemporal mapping technique. The findings of this work provide evidence that the caecum and proximal colon/ampulla coli act reflexly to augment colonic outflow when the caecum is distended and mass peristalsis instituted, the action of the latter overriding the inherent rhythm and direction of haustral propagation in the adjacent portion of the proximal colon but not in the terminal ileum. Further, the findings suggest that the action of the sacculus rotundus may result from its distension with chyme by ileal peristalsis and that the subsequent propagation of contraction along the basal wall of the caecum towards the colon may be augmented by this local distension.
Collapse
|
8
|
Janssen PWM, Lentle RG, Chambers P, Reynolds GW, De Loubens C, Hulls CM. Spatiotemporal organization of standing postprandial contractions in the distal ileum of the anesthetized pig. Neurogastroenterol Motil 2014; 26:1651-62. [PMID: 25251369 DOI: 10.1111/nmo.12447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/30/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Spatiotemporal (ST) mapping has mainly been applied to ex vivo preparations of the gut. We report the results of ST mapping of the spontaneous and remifentanil-induced motility of circular and longitudinal muscles of the distal ileum in the postprandial anaesthetized pig. METHODS Spatiotemporal maps of strain rate were derived from image sequences of an exteriorized loop of ileum on a superfusion tray at laparotomy. Parameters were obtained by direct measurement from these maps, and by auto- and cross-correlation of map segments. KEY RESULTS Localized domains of standing longitudinal and circular activity that alternated between neighboring domains occurred spontaneously and both were promptly extinguished following intraluminal dosage with lidocaine. Longitudinal or circular contractions within a domain typically occurred at times that would coincide with every second or third cycle of the slow wave but propagated within the domain at a rate consistent with that reported within spike patches. Shortly after intravenous administration of remifentanil, longitudinal and circular contractions at the reported slow wave frequency propagated over longer distances at a high speed before slowing to a rate similar to that reported for slow waves. CONCLUSIONS & INFERENCES ST mapping based on cross-correlation is a robust tool for the analysis of intestinal movement and minimizing movement artefacts. We propose that the ST pattern of standing longitudinal and circular contractions arises from variation in the refractory period of smooth muscle, and hence, in its response to successive slow waves with neural stimuli influencing the former and having a mainly permissive role.
Collapse
Affiliation(s)
- P W M Janssen
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | | | | | | | | | | |
Collapse
|
9
|
Lim YF, Lentle RG, Janssen PWM, Williams MAK, de Loubens C, Mansel BW, Chambers P. Determination of villous rigidity in the distal ileum of the possum (Trichosurus vulpecula). PLoS One 2014; 9:e100140. [PMID: 24956476 PMCID: PMC4067314 DOI: 10.1371/journal.pone.0100140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/21/2014] [Indexed: 12/21/2022] Open
Abstract
We investigated the passive mechanical properties of villi in ex vivo preparations of sections of the wall of the distal ileum from the brushtail possum (Trichosurus vulpecula) by using a flow cell to impose physiological and supra-physiological levels of shear stress on the tips of villi. We directly determined the stress applied from the magnitude of the local velocities in the stress inducing flow and additionally mapped the patterns of flow around isolated villi by tracking the trajectories of introduced 3 µm microbeads with bright field micro particle image velocimetry (mPIV). Ileal villi were relatively rigid along their entire length (mean 550 µm), and exhibited no noticeable bending even at flow rates that exceeded calculated normal physiological shear stress (>0.5 mPa). However, movement of villus tips indicated that the whole rigid structure of a villus could pivot about the base, likely from laxity at the point of union of the villous shaft with the underlying mucosa. Flow moved upward toward the tip on the upper portions of isolated villi on the surface facing the flow and downward toward the base on the downstream surface. The fluid in sites at distances greater than 150 µm below the villous tips was virtually stagnant indicating that significant convective mixing in the lower intervillous spaces was unlikely. Together the findings indicate that mixing and absorption is likely to be confined to the tips of villi under conditions where the villi and intestinal wall are immobile and is unlikely to be greatly augmented by passive bending of the shafts of villi.
Collapse
Affiliation(s)
- Yuen Feung Lim
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Roger G. Lentle
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- * E-mail:
| | - Patrick W. M. Janssen
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Martin A. K. Williams
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Clément de Loubens
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Bradley W. Mansel
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Paul Chambers
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
10
|
Lentle R, Reynolds G, de Loubens C, Hulls C, Janssen P, Ravindran V. Spatiotemporal mapping of the muscular activity of the gizzard of the chicken (Gallus domesticus). Poult Sci 2013; 92:483-91. [DOI: 10.3382/ps.2012-02689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
11
|
Janssen PWM, Lentle RG. Spatiotemporal Mapping Techniques for Quantifying Gut Motility. LECTURE NOTES IN COMPUTATIONAL VISION AND BIOMECHANICS 2013. [DOI: 10.1007/978-94-007-6561-0_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|