1
|
Méndez-Narváez J, Warkentin KM. Early onset of urea synthesis and ammonia detoxification pathways in three terrestrially developing frogs. J Comp Physiol B 2023; 193:523-543. [PMID: 37639061 DOI: 10.1007/s00360-023-01506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023]
Abstract
Frogs evolved terrestrial development multiple times, necessitating mechanisms to avoid ammonia toxicity at early stages. Urea synthesis from ammonia is a key adaptation that reduces water dependence after metamorphosis. We tested for early expression and plasticity of enzymatic mechanisms of ammonia detoxification in three terrestrial-breeding frogs: foam-nest-dwelling larvae of Leptodactylus fragilis (Lf) and arboreal embryos of Hyalinobatrachium fleischmanni (Hf) and Agalychnis callidryas (Ac). Activity of two ornithine-urea cycle (OUC) enzymes, arginase and CPSase, and levels of their products urea and CP in tissues were high in Lf regardless of nest hydration, but reduced in experimental low- vs. high-ammonia environments. High OUC activity in wet and dry nests, comparable to that under experimental high ammonia, suggests terrestrial Lf larvae maintain high capacity for urea excretion regardless of their immediate risk of ammonia toxicity. This may aid survival through unpredictably long waiting periods before rain enables their transition to water. Moderate levels of urea and CP were present in Hf and Ac tissues and enzymatic activities were lower than in Lf. In both species, embryos in drying clutches can hatch and enter the water early, behaviorally avoiding ammonia toxicity. Moreover, glutamine synthetase was active in early stages of all three species, condensing ammonia and glutamate to glutamine as another mechanism of detoxification. Enzyme activity appeared highest in Lf, although substrate and product levels were higher in Ac and Lf. Our results reveal that multiple biochemical mechanisms of ammonia detoxification occur in early life stages of anuran lineages that evolved terrestrial development.
Collapse
Affiliation(s)
- Javier Méndez-Narváez
- Calima, Fundación para la Investigación de la Biodiversidad y Conservación en el Trópico, Cali, Colombia.
- Department of Biology, Boston University, Boston, MA, USA.
| | - Karen M Warkentin
- Department of Biology, Boston University, Boston, MA, USA
- Smithsonian Tropical Research Institute, Panamá, Republic of Panama
| |
Collapse
|
2
|
Ip YK, Leong CWQ, Boo MV, Wong WP, Lam SH, Chew SF. Evidence for the involvement of branchial Vacuolar-type H +-ATPase in the acidification of the external medium by the West African lungfish, Protopterus annectens, exposed to ammonia-loading conditions. Comp Biochem Physiol A Mol Integr Physiol 2022; 273:111297. [PMID: 35987338 DOI: 10.1016/j.cbpa.2022.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/31/2022]
Abstract
African lungfishes are obligatory air-breathers with exceptionally high environmental ammonia tolerance. They can lower the pH of the external medium during exposure to ammonia-loading conditions. This study aimed to demonstrate the possible involvement of branchial vacuolar-type H+-ATPase (Vha) in the ammonia-induced acidification of the external medium by the West African lungfish, Protopterus annectens, and to examine whether its capacity to acidify the medium could be augmented after exposure to 100 mmol l-1 NH4Cl for six days. Two full coding cDNA sequences of Vha subunit B (atp6v1b), atp6v1b1 and atp6v1b2, were obtained from the internal gills of P. annectens. The sequence of atp6v1b1 comprised 1548 bp, encoding 515 amino acids (57.4 kDa), while that of atp6v1b2 comprised 1536 bp, encoding 511 amino acids (56.6 kDa). Using a custom-made antibody reactive to both isoforms, immunofluorescence microscopy revealed the collective localization of Atp6v1b (atp6v1b1 and atp6v1b2) at the apical or the basolateral membrane of two different types of branchial Na+/K+-ATPase-immunoreactive ionocyte. The ionocytes labelled apically with Atp6v1b presumably expressed Atp6v1b1 containing a PDZ-binding domain, indicating that the apical Vha was positioned to transport H+ to the external medium. The expression of Atp6v1b was regulated post-transcriptionally, as the protein abundance of Atp6v1b and Vha activity increased significantly in the gills of fish exposed to 100 mmol l-1 NH4Cl for six days. Correspondingly, the fish exposed to ammonia had a greater capacity to acidify the external medium, presumably to decrease the ratio of [NH3] to [NH4+] in order to reduce the influx of exogenous NH3.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore.
| | - Charmaine W Q Leong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Mel V Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Siew H Lam
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| |
Collapse
|
3
|
Méndez‐Narváez J, Warkentin KM. Reproductive colonization of land by frogs: Embryos and larvae excrete urea to avoid ammonia toxicity. Ecol Evol 2022; 12:e8570. [PMID: 35222954 PMCID: PMC8843769 DOI: 10.1002/ece3.8570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
Vertebrate colonization of land has occurred multiple times, including over 50 origins of terrestrial eggs in frogs. Some environmental factors and phenotypic responses that facilitated these transitions are known, but responses to water constraints and risk of ammonia toxicity during early development are poorly understood. We tested if ammonia accumulation and dehydration risk induce a shift from ammonia to urea excretion during early stages of four anurans, from three origins of terrestrial development. We quantified ammonia and urea concentrations during early development on land, under well-hydrated and dry conditions. Where we found urea excretion, we tested for a plastic increase under dry conditions and with ammonia accumulation in developmental environments. We assessed the potential adaptive role of urea excretion by comparing ammonia tolerance measured in 96h-LC50 tests with ammonia levels in developmental environments. Ammonia accumulated in foam nests and perivitelline fluid, increasing over development and reaching higher concentrations under dry conditions. All four species showed high ammonia tolerance, compared to fishes and aquatic-breeding frogs. Both nest-dwelling larvae of Leptodactylus fragilis and late embryos of Hyalinobatrachium fleischmanni excreted urea, showing a plastic increase under dry conditions. These two species can develop the longest on land and urea excretion appears adaptive, preventing their exposure to potentially lethal levels of ammonia. Neither late embryos of Agalychnis callidryas nor nest-dwelling larvae of Engystomops pustulosus experienced toxic ammonia levels under dry conditions, and neither excreted urea. Our results suggest that an early onset of urea excretion, its increase under dry conditions, and elevated ammonia tolerance can all help prevent ammonia toxicity during terrestrial development. High ammonia represents a general risk for development which may be exacerbated as climate change increases dehydration risk for terrestrial-breeding frogs. It may also be a cue that elicits adaptive physiological responses during early development.
Collapse
Affiliation(s)
- Javier Méndez‐Narváez
- Department of BiologyBoston UniversityBostonMassachusettsUSA
- CalimaFundación para la Investigación de la Biodiversidad y Conservación en el TrópicoCaliColombia
| | - Karen M. Warkentin
- Department of BiologyBoston UniversityBostonMassachusettsUSA
- Smithsonian Tropical Research InstitutePanamaRepublic of Panama
| |
Collapse
|
4
|
Zhang Y, Shang Z, Wang G, You K, Mi D. High concentrations of environmental ammonia induced changes in large-scale loach ( Paramisgurnus dabryanus) immunity. Ecol Evol 2021; 11:8614-8622. [PMID: 34257919 PMCID: PMC8258188 DOI: 10.1002/ece3.7675] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/25/2023] Open
Abstract
High concentrations of environmental ammonia can cause reduced immunity and death in fish, causing enormous economic losses. Air-breathing fish usually have a high ammonia tolerance and are very suitable for high-density fish farming. However, research on the effects of environmental ammonia on air-breathing fish immunity is lacking. Therefore, this study investigated the effects of environmental ammonia on the immunity of large-scale loach (Paramisgurnus dabryanus) by exposing fish to 30 mmol/L NH4Cl solution and subsequently analyzing the changes in serum and liver immune indicators, including total protein, albumin, globulin, immunoglobulin (Ig) M, lysozyme, complement component (C) 3 and C4, heat shock protein (HSP) 70, HSP90, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-12. Results revealed that ammonia exposure significantly affected the total protein, albumin, globulin, IgM, complement C3 and C4, HSP70, HSP90, and inflammatory cytokine contents in the body, indicating that ammonia exposure induced a significant immune response and lowered bodily immunity. However, most of the immune indicators significantly decreased in the later stages of the experiment, suggesting a weakened immune response, which may be due to the species-specific ammonia detoxification ability of large-scale loach that reduces ammonia toxicity in the body.
Collapse
Affiliation(s)
- Yun‐Long Zhang
- College of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Ze‐Hao Shang
- College of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Guang‐Yi Wang
- College of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Kun You
- College of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Di Mi
- College of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
5
|
Kovarik JJ, Morisawa N, Wild J, Marton A, Takase‐Minegishi K, Minegishi S, Daub S, Sands JM, Klein JD, Bailey JL, Kovalik J, Rauh M, Karbach S, Hilgers KF, Luft F, Nishiyama A, Nakano D, Kitada K, Titze J. Adaptive physiological water conservation explains hypertension and muscle catabolism in experimental chronic renal failure. Acta Physiol (Oxf) 2021; 232:e13629. [PMID: 33590667 PMCID: PMC8244025 DOI: 10.1111/apha.13629] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 12/22/2022]
Abstract
Aim We have reported earlier that a high salt intake triggered an aestivation‐like natriuretic‐ureotelic body water conservation response that lowered muscle mass and increased blood pressure. Here, we tested the hypothesis that a similar adaptive water conservation response occurs in experimental chronic renal failure. Methods In four subsequent experiments in Sprague Dawley rats, we used surgical 5/6 renal mass reduction (5/6 Nx) to induce chronic renal failure. We studied solute and water excretion in 24‐hour metabolic cage experiments, chronic blood pressure by radiotelemetry, chronic metabolic adjustment in liver and skeletal muscle by metabolomics and selected enzyme activity measurements, body Na+, K+ and water by dry ashing, and acute transepidermal water loss in conjunction with skin blood flow and intra‐arterial blood pressure. Results 5/6 Nx rats were polyuric, because their kidneys could not sufficiently concentrate the urine. Physiological adaptation to this renal water loss included mobilization of nitrogen and energy from muscle for organic osmolyte production, elevated norepinephrine and copeptin levels with reduced skin blood flow, which by means of compensation reduced their transepidermal water loss. This complex physiologic‐metabolic adjustment across multiple organs allowed the rats to stabilize their body water content despite persisting renal water loss, albeit at the expense of hypertension and catabolic mobilization of muscle protein. Conclusion Physiological adaptation to body water loss, termed aestivation, is an evolutionary conserved survival strategy and an under‐studied research area in medical physiology, which besides hypertension and muscle mass loss in chronic renal failure may explain many otherwise unexplainable phenomena in medicine.
Collapse
Affiliation(s)
- Johannes J. Kovarik
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
- Clinical Division of Nephrology and Dialysis Department of Internal Medicine III Medical University of Vienna Vienna Austria
| | - Norihiko Morisawa
- Department of Pharmacology Faculty of Medicine Kagawa University Kagawa Japan
| | - Johannes Wild
- Division for Cardiology 1 Centre for Cardiology Johannes Gutenberg‐University Mainz Mainz Germany
| | - Adriana Marton
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
| | - Kaoru Takase‐Minegishi
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
- Department of Stem Cell and Immune Regulation Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Shintaro Minegishi
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
- Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Steffen Daub
- Division for Cardiology 1 Centre for Cardiology Johannes Gutenberg‐University Mainz Mainz Germany
| | - Jeff M. Sands
- Renal Division Department of Medicine Emory University Atlanta GA USA
| | - Janet D. Klein
- Renal Division Department of Medicine Emory University Atlanta GA USA
| | - James L. Bailey
- Renal Division Department of Medicine Emory University Atlanta GA USA
| | - Jean‐Paul Kovalik
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
| | - Manfred Rauh
- Division of Paediatrics Research Laboratory Erlangen Germany
| | - Susanne Karbach
- Division for Cardiology 1 Centre for Cardiology Johannes Gutenberg‐University Mainz Mainz Germany
| | - Karl F. Hilgers
- Division of Nephrology and Hypertension University Clinic Erlangen Erlangen Germany
| | - Friedrich Luft
- Experimental and Clinical Research Center Max Delbrück Center for Molecular Medicine Berlin Germany
| | - Akira Nishiyama
- Department of Pharmacology Faculty of Medicine Kagawa University Kagawa Japan
| | - Daisuke Nakano
- Department of Pharmacology Faculty of Medicine Kagawa University Kagawa Japan
| | - Kento Kitada
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
- JSPS Overseas Research Fellow Japan Society for the Promotion of Science Tokyo Japan
| | - Jens Titze
- Programme in Cardiovascular and Metabolic DisordersDuke‐NUS Medical School Singapore Singapore
- Division of Nephrology and Hypertension University Clinic Erlangen Erlangen Germany
- Division of Nephrology Duke University School of Medicine Durham NC USA
| |
Collapse
|
6
|
White LJ, Sutton G, Shechonge A, Day JJ, Dasmahapatra KK, Pownall ME. Adaptation of the carbamoyl-phosphate synthetase enzyme in an extremophile fish. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201200. [PMID: 33204476 PMCID: PMC7657897 DOI: 10.1098/rsos.201200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/21/2020] [Indexed: 05/03/2023]
Abstract
Tetrapods and fish have adapted distinct carbamoyl-phosphate synthase (CPS) enzymes to initiate the ornithine urea cycle during the detoxification of nitrogenous wastes. We report evidence that in the ureotelic subgenus of extremophile fish Oreochromis Alcolapia, CPS III has undergone convergent evolution and adapted its substrate affinity to ammonia, which is typical of terrestrial vertebrate CPS I. Unusually, unlike in other vertebrates, the expression of CPS III in Alcolapia is localized to the skeletal muscle and is activated in the myogenic lineage during early embryonic development with expression remaining in mature fish. We propose that adaptation in Alcolapia included both convergent evolution of CPS function to that of terrestrial vertebrates, as well as changes in development mechanisms redirecting CPS III gene expression to the skeletal muscle.
Collapse
Affiliation(s)
- Lewis J. White
- Biology Department, University of York, York YO10 5DD, UK
- Author for correspondence: Lewis J. White e-mail:
| | - Gemma Sutton
- Biology Department, University of York, York YO10 5DD, UK
| | - Asilatu Shechonge
- Tanzania Fisheries Research Institute, PO BOX 98, Kyela, Mbeya, Tanzania
| | - Julia J. Day
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
7
|
Marton A, Kaneko T, Kovalik JP, Yasui A, Nishiyama A, Kitada K, Titze J. Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation. Nat Rev Nephrol 2020; 17:65-77. [PMID: 33005037 DOI: 10.1038/s41581-020-00350-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
Therapeutic inhibition of the sodium-glucose co-transporter 2 (SGLT2) leads to substantial loss of energy (in the form of glucose) and additional solutes (in the form of Na+ and its accompanying anions) in urine. However, despite the continuously elevated solute excretion, long-term osmotic diuresis does not occur in humans with SGLT2 inhibition. Rather, patients on SGLT2 inhibitor therapy adjust to the reduction in energy availability and conserve water. The metabolic adaptations that are induced by SGLT2 inhibition are similar to those observed in aestivation - an evolutionarily conserved survival strategy that enables physiological adaptation to energy and water shortage. Aestivators exploit amino acids from muscle to produce glucose and fatty acid fuels. This endogenous energy supply chain is coupled with nitrogen transfer for organic osmolyte production, which allows parallel water conservation. Moreover, this process is often accompanied by a reduction in metabolic rate. By comparing aestivation metabolism with the fuel switches that occur during therapeutic SGLT2 inhibition, we suggest that SGLT2 inhibitors induce aestivation-like metabolic patterns, which may contribute to the improvements in cardiac and renal function observed with this class of therapeutics.
Collapse
Affiliation(s)
- Adriana Marton
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Tatsuroh Kaneko
- Medicine Division, Nippon Boehringer Ingelheim Co., Ltd, Tokyo, Japan
| | - Jean-Paul Kovalik
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Atsutaka Yasui
- Medicine Division, Nippon Boehringer Ingelheim Co., Ltd, Tokyo, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kento Kitada
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.,Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Jens Titze
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore. .,Division of Nephrology and Hypertension, University Clinic Erlangen, Erlangen, Germany. .,Division of Nephrology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
8
|
Sun YC, Han SC, Yao MZ, Liu HB, Wang YM. Exploring the metabolic biomarkers and pathway changes in crucian under carbonate alkalinity exposure using high-throughput metabolomics analysis based on UPLC-ESI-QTOF-MS. RSC Adv 2020; 10:1552-1571. [PMID: 35494719 PMCID: PMC9047290 DOI: 10.1039/c9ra08090b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
The aims of this study is to explore the metabolomic biomarker and pathway changes in crucian under carbonate alkalinity exposures using high-throughput metabolomics analysis based on ultra-performance liquid chromatography-electrospray ionization-quadrupole time of flight-tandem mass spectrometry (UPLC-ESI-QTOF-MS) for carrying out adaptive evolution of fish in environmental exposures and understanding molecular physiological mechanisms of saline–alkali tolerance in fishes. Under 60 day exposure management, the UPLC-ESI-QTOF-MS technology, coupled with a pattern recognition approach and metabolic pathway analysis, was utilized to give insight into the metabolic biomarker and pathway changes. In addition, biochemical parameters in response to carbonate alkalinity in fish were detected for chronic impairment evaluation. A total of twenty-seven endogenous metabolites were identified to distinguish the biochemical changes in fish in clean water under exposure to different concentrations of carbonate alkalinity (CA); these mainly involved amino acid synthesis and metabolism, arachidonic acid metabolism, glyoxylate and dicarboxylate metabolism, pyruvate metabolism and the citrate cycle (TCA cycle). Compared with the control group, CA exposure increased the level of blood ammonia; TP; ALB; Gln in the liver and gills; GS; urea in blood, the liver and gills; CREA; CPS; Glu and LDH; and decreased the level of weight gain rate, oxygen consumption, discharge rate of ammonia, SOD, CAT, ALT, AST and Na+/K+-ATPase. At low concentrations, CA can change the normal metabolism of fish in terms of changing the osmotic pressure regulation capacity, antioxidant capacity, ammonia metabolism and liver and kidney function to adapt to the CA exposure environment. As the concentration of CA increases, various metabolic processes in crucian are inhibited, causing chronic damage to the body. The results show that the metabolomic strategy is a potentially powerful tool for identifying the mechanisms in response to different environmental exposomes and offers precious information about the chronic response of fish to CA. We explore the metabolic biomarker and pathway changes accompanying the adaptive evolution of crucian subjected to carbonate alkalinity exposure, using UPLC-ESI-QTOF-MS, in order to understand the molecular physiological mechanisms of saline–alkali tolerance.![]()
Collapse
Affiliation(s)
- Yan-chun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Shi-cheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Ming-zhu Yao
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Hong-bai Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Yu-mei Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| |
Collapse
|
9
|
Zhang YL, Wang GY, Zhang ZH, Xie YY, Jin H, Dong ZR. Partial Amino Acid Metabolism and Glutamine Synthesis as the Ammonia Defensive Strategies During Aerial Exposure in Chinese Loach Paramisgurnus dabryanus. Front Physiol 2019; 10:14. [PMID: 30761010 PMCID: PMC6362400 DOI: 10.3389/fphys.2019.00014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
The Paramisgurnus dabryanus was exposed to air to assess the changes in plasma, liver and muscle free amino acid (FAA) contents. The FAA concentrations in plasma, liver and muscle of P. dabryanus were significantly affected by aerial exposure (P < 0.05). After 12 h of aerial exposure, the plasma glutamate contents increased significantly (P < 0.05) and reached peak value at 24 h of air exposure. With increasing air exposure time, the plasma alanine contents increased significantly and more dramatically than the control values (P < 0.05). From 24 to 48 h of aerial exposure, the liver free glutamate contents increased significantly and reached the peak value at 48 h of air exposure (P < 0.05). The liver free alanine contents in air exposure group were markedly higher than these values in the control group (P < 0.05). After 72 h of air exposure, the muscle free glutamate contents increased markedly (P < 0.05) and were significantly higher than the control values (P < 0.05). The muscle free alanine contents remained at constant values during the first 12 h of aerial exposure (P > 0.05), thereafter, these concentrations increased significantly until the end of experiment (P < 0.05). Our results showed that glutamate and NH4+ could be used to synthesize glutamine via glutamine synthetase to convert internal ammonia into non-toxic glutamine in P. dabryanus during air exposure. Furthermore, the P. dabryanus could catabolize several certain amino acids, leading alanine form to reduce endogenous ammonia production. The decrease in tissue free glutamate, arginine and proline in P. dabryanus indicated that these certain amino acids should be the starting substrate to be converted to alanine and energy.
Collapse
Affiliation(s)
- Yun-Long Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Guang-Yi Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zi-Han Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yun-Yi Xie
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Hui Jin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhao-Ran Dong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
Abstract
During water-land transition, ancient fishes acquired the ability to breathe air, but air-breathing engendered problems in nitrogenous waste excretion. Nitrogen is a fundamental component of amino acids, proteins, and nucleic acids, and the degradation of these nitrogen-containing compounds releases ammonia. Ammonia is toxic and must be removed. Fishes in water excrete ammonia as the major nitrogenous waste through gills, but gills of air-breathing fishes are modified for air-breathing or largely replaced by air-breathing organs. Notably, fishes emerged from water can no longer excrete ammonia effectively because of a lack of water to flush the gills. Hence, ancient fishes that participated in water-land transition must have developed means to deal with ammonia toxicity. Extant air-breathing fishes, particularly amphibious ones, can serve as models to examine adaptations which might have facilitated the emergence of ancient fishes from water. Some of these fishes can actively emerge from water and display complex behaviors on land, while a few can burrow into mud and survive for years during drought. Many of them are equipped with mechanisms to ameliorate ammonia toxicity during emersion. In this review, the mechanisms adopted by air-breathing fishes to deal with ammonia toxicity during emersion were organized into seven disparate strategies. In addition, eight extant air-breathing fishes with distinctive terrestrial behaviors and peculiar natural habitats were selected to describe in detail how these seven strategies could be adopted in disparate combinations to ameliorate ammonia toxicity during emersion.
Collapse
|
11
|
Chng YR, Ong JLY, Ching B, Chen XL, Hiong KC, Wong WP, Chew SF, Lam SH, Ip YK. Molecular characterization of three Rhesus glycoproteins from the gills of the African lungfish, Protopterus annectens, and effects of aestivation on their mRNA expression levels and protein abundance. PLoS One 2017; 12:e0185814. [PMID: 29073147 PMCID: PMC5657625 DOI: 10.1371/journal.pone.0185814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/20/2017] [Indexed: 11/19/2022] Open
Abstract
African lungfishes are ammonotelic in water. They can aestivate for long periods on land during drought. During aestivation, the gills are covered with dried mucus and ammonia excretion ceases. In fishes, ammonia excretion through the gills involves Rhesus glycoproteins (RhGP/Rhgp). This study aimed to obtain the complete cDNA coding sequences of rhgp from the gills of Protopterus annectens, and to determine their branchial mRNA and protein expression levels during the induction, maintenance and arousal phases of aestivation. Three isoforms of rhgp (rhag, rhbg and rhcg) were obtained in the gills of P. annectens. Their complete cDNA coding sequences ranged between 1311 and 1398 bp, coding for 436 to 465 amino acids with estimated molecular masses between 46.8 and 50.9 kDa. Dendrogramic analyses indicated that Rhag was grouped closer to fishes, while Rhbg and Rhcg were grouped closer to tetrapods. During the induction phase, the protein abundance of Rhag, but not its transcript level, was down-regulated in the gills, suggesting that there could be a decrease in the release of ammonia from the erythrocytes to the plasma. Furthermore, the branchial transcript levels of rhbg and rhcg decreased significantly, in preparation for the subsequent shutdown of gill functions. During the maintenance phase, the branchial expression levels of rhag/Rhag, rhbg/Rhbg and rhcg/Rhcg decreased significantly, indicating that their transcription and translation were down-regulated. This could be part of an overall mechanism to shut down branchial functions and save metabolic energy used for transcription and translation. It could also be regarded as an adaptive response to stop ammonia excretion. During the arousal phase, it is essential for the lungfish to regain the ability to excrete ammonia. Indeed, the protein abundance of Rhag, Rhbg and Rhcg recovered to the corresponding control levels after 1 day or 3 days of recovery from 6 months of aestivation.
Collapse
Affiliation(s)
- You R. Chng
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jasmine L. Y. Ong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Biyun Ching
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Xiu L. Chen
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Kum C. Hiong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore
| | - Siew H. Lam
- Department of Biological Sciences, National University of Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
12
|
Chng YR, Ong JLY, Ching B, Chen XL, Hiong KC, Wong WP, Chew SF, Lam SH, Ip YK. Aestivation Induces Changes in the mRNA Expression Levels and Protein Abundance of Two Isoforms of Urea Transporters in the Gills of the African Lungfish, Protopterus annectens. Front Physiol 2017; 8:71. [PMID: 28261105 PMCID: PMC5311045 DOI: 10.3389/fphys.2017.00071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/26/2017] [Indexed: 11/26/2022] Open
Abstract
The African lungfish, Protopterus annectens, is ammonotelic in water despite being ureogenic. When it aestivates in mucus cocoon on land, ammonia is detoxified to urea. During the maintenance phase of aestivation, urea accumulates in the body, which is subsequently excreted upon arousal. Urea excretion involves urea transporters (UT/Ut). This study aimed to clone and sequence the ut isoforms from the gills of P. annectens, and to test the hypothesis that the mRNA and/or protein expression levels of ut/Ut isoforms could vary in the gills of P. annectens during the induction, maintenance, and arousal phases of aestivation. Two isoforms of ut, ut-a2a and ut-a2b, were obtained from the gills of P. annectens. ut-a2a consisted of 1227 bp and coded for 408 amino acids with an estimated molecular mass of 44.7 kDa, while ut-a2b consisted of 1392 bp and coded for 464 amino acids with an estimated molecular mass of 51.2 kDa. Ut-a2a and Ut-a2b of P. annectens had a closer phylogenetic relationship with Ut/UT of tetrapods than Ut of fishes. While the mRNA expression pattern of ut-a2a and ut-a2b across various tissues of P. annectens differed, the transcript levels of ut-a2a and ut-a2b in the gills were comparable, indicating that they might be equally important for branchial urea excretion during the initial arousal phase of aestivation. During the maintenance phase of aestivation, the transcript level of ut-a2a increased significantly, but the protein abundance of Ut-a2a remained unchanged in the gills of P. annectens. This could be an adaptive feature to prepare for an increase in the production of Ut-a2a upon arousal. Indeed, arousal led to a significant increase in the branchial Ut-a2a protein abundance. Although the transcript level of ut-a2b remained unchanged, there were significant increases in the protein abundance of Ut-a2b in the gills of P. annectens throughout the three phases of aestivation. The increase in the protein abundance of Ut-a2b during the maintenance phase could also be an adaptive feature to prepare for efficient urea excretion when water becomes available.
Collapse
Affiliation(s)
- You R. Chng
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Jasmine L. Y. Ong
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Biyun Ching
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Xiu L. Chen
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Kum C. Hiong
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological UniversitySingapore, Singapore
| | - Siew H. Lam
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
- NUS Environmental Research Institute, National University of SingaporeSingapore, Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| |
Collapse
|
13
|
Ong JLY, Chng YR, Ching B, Chen XL, Hiong KC, Wong WP, Chew SF, Ip YK. Molecular characterization of myostatin from the skeletal muscle of the African lungfish, Protopterus annectens, and changes in its mRNA and protein expression levels during three phases of aestivation. J Comp Physiol B 2017; 187:575-589. [PMID: 28184997 DOI: 10.1007/s00360-017-1057-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/26/2016] [Accepted: 01/11/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Jasmine L Y Ong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - You R Chng
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Biyun Ching
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Xiu L Chen
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Kum C Hiong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore.
| |
Collapse
|
14
|
Hiong KC, Ip YK, Wong WP, Chew SF. Differential gene expression in the liver of the African lungfish, Protopterus annectens, after 6 months of aestivation in air or 1 day of arousal from 6 months of aestivation. PLoS One 2015; 10:e0121224. [PMID: 25822522 PMCID: PMC4378924 DOI: 10.1371/journal.pone.0121224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/29/2015] [Indexed: 01/15/2023] Open
Abstract
The African lungfish, Protopterus annectens, can undergo aestivation during drought. Aestivation has three phases: induction, maintenance and arousal. The objective of this study was to examine the differential gene expression in the liver of P. annectens after 6 months (the maintenance phase) of aestivation as compared with the freshwater control, or after 1 day of arousal from 6 months aestivation as compared with 6 months of aestivation using suppression subtractive hybridization. During the maintenance phase of aestivation, the mRNA expression of argininosuccinate synthetase 1 and carbamoyl phosphate synthetase III were up-regulated, indicating an increase in the ornithine-urea cycle capacity to detoxify ammonia to urea. There was also an increase in the expression of betaine homocysteine-S-transferase 1 which could reduce and prevent the accumulation of hepatic homocysteine. On the other hand, the down-regulation of superoxide dismutase 1 expression could signify a decrease in ROS production during the maintenance phase of aestivation. In addition, the maintenance phase was marked by decreases in expressions of genes related to blood coagulation, complement fixation and iron and copper metabolism, which could be strategies used to prevent thrombosis and to conserve energy. Unlike the maintenance phase of aestivation, there were increases in expressions of genes related to nitrogen, carbohydrate and lipid metabolism and fatty acid transport after 1 day of arousal from 6 months aestivation. There were also up-regulation in expressions of genes that were involved in the electron transport system and ATP synthesis, indicating a greater demand for metabolic energy during arousal. Overall, our results signify the importance of sustaining a low rate of waste production and conservation of energy store during the maintenance phase, and the dependence on internal energy store for repair and structural modification during the arousal phase, of aestivation in the liver of P. annectens.
Collapse
Affiliation(s)
- Kum C. Hiong
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Republic of Singapore
| | - Yuen K. Ip
- Department of Biological Science, National University of Singapore, Singapore, Republic of Singapore
| | - Wai P. Wong
- Department of Biological Science, National University of Singapore, Singapore, Republic of Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
15
|
Ong JLY, Woo JM, Hiong KC, Ching B, Wong WP, Chew SF, Ip YK. Molecular characterization of betaine-homocysteine methyltransferase 1 from the liver, and effects of aestivation on its expressions and homocysteine concentrations in the liver, kidney and muscle, of the African lungfish, Protopterus annectens. Comp Biochem Physiol B Biochem Mol Biol 2015; 183:30-41. [PMID: 25575738 DOI: 10.1016/j.cbpb.2014.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/19/2014] [Accepted: 12/23/2014] [Indexed: 01/12/2023]
Abstract
Homocysteine accumulation has numerous deleterious effects, and betaine-homocysteine S-methyltransferase (BHMT) catalyses the synthesis of methionine from homocysteine and betaine. This study aimed to determine homocysteine concentrations, and mRNA expression levels and protein abundances of bhmt1/Bhmt1 in the liver, kidney and muscle of the African lungfish, Protopterus annectens, during the induction (6 days), maintenance (6 months) or arousal (3 days after arousal) phase of aestivation. The homocysteine concentration decreased significantly in the liver of P. annectens after 6 days or 6 months of aestivation, but it returned to the control level upon arousal. By contrast, homocysteine concentrations in the kidney and muscle remained unchanged during the three phases of aestivation. The complete coding cDNA sequence of bhmt1 from P. annectens consisted of 1236 bp, coding for 412 amino acids. The Bhmt1 from P. annectens had a close phylogenetic relationship with those from tetrapods and Callorhinchus milii. The expression of bhmt1 was detected in multiple organs/tissues of P. annectens, and this is the first report on the expression of bhmt1/Bhmt1 in animal skeletal muscle. The mRNA and protein expression levels of bhmt1/Bhmt1 were up-regulated in the liver of P. annectens during the induction and maintenance phases of aestivation, possibly to regulate the hepatic homocysteine concentration. The significant increase in hepatic Bhmt1 protein abundance during the arousal phase could be a response to increased cellular methylation for the purpose of tissue reconstruction. Unlike the liver, Bhmt1 expression in the kidney and muscle of P. annectens was regulated translationally, and its up-regulation could be crucial to prevent homocysteine accumulation.
Collapse
Affiliation(s)
- Jasmine L Y Ong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore
| | - Jia M Woo
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore
| | - Kum C Hiong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore
| | - Biyun Ching
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore; The Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore 119227, Republic of Singapore.
| |
Collapse
|
16
|
Garofalo F, Amelio D, Icardo J, Chew S, Tota B, Cerra M, Ip Y. Signal molecule changes in the gills and lungs of the African lungfish Protopterus annectens, during the maintenance and arousal phases of aestivation. Nitric Oxide 2015; 44:71-80. [DOI: 10.1016/j.niox.2014.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/17/2014] [Accepted: 11/26/2014] [Indexed: 01/20/2023]
|
17
|
Hiong KC, Tan XR, Boo MV, Wong WP, Chew SF, Ip YK. Aestivation induces changes in transcription and translation of coagulation factor II and fibrinogen gamma chain in the liver of the African lungfish, Protopterus annectens. J Exp Biol 2015; 218:3717-28. [DOI: 10.1242/jeb.125260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/17/2015] [Indexed: 11/20/2022]
Abstract
This study aimed to sequence and characterize two pro-coagulant genes, coagulation factor II (f2) and fibrinogen gamma chain (fgg), from the liver of the African lungfish Protopterus annectens, and to determine their hepatic mRNA expression levels during three phases of aestivation. The protein abundances of F2 and Fgg in the liver and plasma were determined by immunoblotting. Results indicated that F2 and Fgg of P. annectens were phylogenetically closer to those of amphibians than those of teleosts. Three days of aestivation resulted in an up-regulation in the hepatic fgg mRNA expression level, while 6 days of aestivation led to a significant increase (3-fold) in the protein abundance of Fgg in the plasma. Hence, there could be an increase in the blood clotting ability in P. annectens during the induction phase of aestivation. By contrast, the blood clotting ability in P. annectens might be reduced in response to decreased blood flow and increased possibility of thrombosis during the maintenance phase of aestivation, as 6 months of aestivation led to significant decreases in mRNA expression levels of f2 and fgg in the liver. There could also be a decrease in the export of F2 and Fgg from the liver to the plasma so as to avert thrombosis. Upon 3-6 days of arousal from 6 months of aestivation, the protein abundances of F2 and Fgg recovered partially in the plasma of P. annectens, and a complete recovery of the transcription and translation of f2/F2 in the liver might occur only after refeeding.
Collapse
Affiliation(s)
- Kum C. Hiong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Xiang R. Tan
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Mel V. Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
- The Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore 119227, Republic of Singapore
| |
Collapse
|
18
|
Uchiyama M, Konno N, Shibuya S, Nogami S. Cloning and expression of the epithelial sodium channel and its role in osmoregulation of aquatic and estivating African lungfish Protopterus annectens. Comp Biochem Physiol A Mol Integr Physiol 2014; 183:1-8. [PMID: 25541184 DOI: 10.1016/j.cbpa.2014.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 11/18/2022]
Abstract
The epithelial sodium channel (ENaC) is a sodium (Na(+))-selective aldosterone-stimulated ion channel involved in Na(+) transport homeostasis of tetrapods. We examined full-length cDNA sequences and tissue distributions of ENaCα, ENaCβ, and ENaCγ subunits in the African lungfish Protopterus annectens. Protopterus ENaC (pENaC) comprises 3 subunits: pENaCα, pENaCβ, and pENaCγ. pENaCα, pENaCβ, and pENaCγ subunits are closely related to α, β, and γ subunits of the Australian lungfish Neoceratodus forsteri ENaC (nENaC), respectively. Three ENaC subunit mRNAs were highly expressed in the gills and moderately expressed in the kidney and rectum of P. annectens. During estivation for 2-4weeks and 2-3months, plasma Na(+) concentration was relatively stable, but plasma urea concentration significantly increased in comparison with the control fish kept in a freshwater environment. Plasma aldosterone concentration and mRNA expression of the ENaCα subunit gradually and significantly decreased in the gills and kidney after 2months of estivation. Thus, aldosterone-dependent Na(+) absorption via ENaC probably exists in the epithelial cells of osmoregulatory organs of lungfish kept in fresh water, whereas plasma Na(+) concentration may be maintained by a mechanism independent of aldosterone-ENaC axis during estivation in lungfish.
Collapse
Affiliation(s)
- Minoru Uchiyama
- Department of Life and Environmental Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.
| | - Norifumi Konno
- Department of Life and Environmental Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Sachika Shibuya
- Department of Life and Environmental Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Satoshi Nogami
- Department of Life and Environmental Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| |
Collapse
|
19
|
Molecular characterization of argininosuccinate synthase and argininosuccinate lyase from the liver of the African lungfish Protopterus annectens, and their mRNA expression levels in the liver, kidney, brain and skeletal muscle during aestivation. J Comp Physiol B 2014; 184:835-53. [PMID: 25034132 DOI: 10.1007/s00360-014-0842-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/11/2014] [Accepted: 06/20/2014] [Indexed: 02/05/2023]
Abstract
Argininosuccinate synthase (Ass) and argininosuccinate lyase (Asl) are involved in arginine synthesis for various purposes. The complete cDNA coding sequences of ass and asl from the liver of Protopterus annectens consisted of 1,296 and 1,398 bp, respectively. Phylogenetic analyses revealed that the deduced Ass and Asl of P. annectens had close relationship with that of the cartilaginous fish Callorhinchus milii. Besides being strongly expressed in the liver, ass and asl expression were detectable in many tissues/organs. In the liver, mRNA expression levels of ass and asl increased significantly during the induction phase of aestivation, probably to increase arginine production to support increased urea synthesis. The increases in ass and asl mRNA expression levels during the prolonged maintenance phase and early arousal phase of aestivation could reflect increased demand on arginine for nitric oxide (NO) production in the liver. In the kidney, there was a significant decrease in ass mRNA expression level after 6 months of aestivation, indicating possible decreases in the synthesis and supply of arginine to other tissues/organs. In the brain, changes in ass and asl mRNA expression levels during the three phases of aestivation could be related to the supply of arginine for NO synthesis in response to conditions that resemble ischaemia and ischaemia-reperfusion during the maintenance and arousal phase of aestivation, respectively. The decrease in ass mRNA expression level, accompanied with decreases in the concentrations of arginine and NO, in the skeletal muscle of aestivating P. annectens might ameliorate the potential of disuse muscle atrophy.
Collapse
|
20
|
Brain Na+/K+-ATPase α-subunit isoforms and aestivation in the African lungfish, Protopterus annectens. J Comp Physiol B 2014; 184:571-87. [PMID: 24696295 DOI: 10.1007/s00360-014-0809-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/16/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
This study aimed to clone and sequence Na (+) / K (+)-ATPase (nka) α-subunit isoforms from, and to determine their mRNA expression levels and protein abundance in the brain of the African lungfish, Protopterus annectens during the induction, maintenance and arousal phases of aestivation in air. We obtained the full cDNA sequences of nkaα1, nkaα2 and nkaα3 from the brain of P. annectens. Phylogenetic analysis of their deduced amino acid sequences revealed that they are closer to the corresponding NKA α-subunits of tetrapods than to those of fishes. The mRNA expression of these three nkaα isoforms showed differential changes in the brain of P. annectens during the three phases of aestivation. After 12 days of aestivation, there was a significant increase in the protein abundance of Nkaα1 in the brain of P. annectens. This could be an important response to maintain cellular Na(+) and K(+) concentrations and regulate cell volume during the early maintenance phase of aestivation. On the other hand, the mRNA expression of nkaα2 decreased significantly in the brain of P. annectens after 6 months of aestivation, which could be a result of a suppression of transcriptional activities to reduce energy expenditure. The down-regulation of mRNA expression of nkaα1, nkaα2 and nkaα3 and the overall protein abundance of Nka α-subunit isoforms in the brain of P. annectens after 1 day of arousal from 6 months of aestivation were novel observations, and it could be an adaptive response to restore blood pressure and/or to prevent brain oedema.
Collapse
|
21
|
Chew SF, Ip YK. Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes. JOURNAL OF FISH BIOLOGY 2014; 84:603-38. [PMID: 24438022 DOI: 10.1111/jfb.12279] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
With the development of air-breathing capabilities, some fishes can emerge from water, make excursions onto land or even burrow into mud during droughts. Air-breathing fishes have modified gill morphology and morphometry and accessory breathing organs, which would tend to reduce branchial ammonia excretion. As ammonia is toxic, air-breathing fishes, especially amphibious ones, are equipped with various strategies to ameliorate ammonia toxicity during emersion or ammonia exposure. These strategies can be categorized into (1) enhancement of ammonia excretion and reduction of ammonia entry, (2) conversion of ammonia to a less toxic product for accumulation and subsequent excretion, (3) reduction of ammonia production and avoidance of ammonia accumulation and (4) tolerance of ammonia at cellular and tissue levels. Active ammonia excretion, operating in conjunction with lowering of ambient pH and reduction in branchial and cutaneous NH₃ permeability, is theoretically the most effective strategy to maintain low internal ammonia concentrations. NH₃ volatilization involves the alkalization of certain epithelial surfaces and requires mechanisms to prevent NH₃ back flux. Urea synthesis is an energy-intensive process and hence uncommon among air-breathing teleosts. Aestivating African lungfishes detoxify ammonia to urea and the accumulated urea is excreted following arousal. Reduction in ammonia production is achieved in some air-breathing fishes through suppression of amino acid catabolism and proteolysis, or through partial amino acid catabolism leading to alanine formation. Others can slow down ammonia accumulation through increased glutamine synthesis in the liver and muscle. Yet, some others develop high tolerance of ammonia at cellular and tissue levels, including tissues in the brain. In summary, the responses of air-breathing fishes to ameliorate ammonia toxicity are many and varied, determined by the behaviour of the species and the nature of the environment in which it lives.
Collapse
Affiliation(s)
- S F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| | | |
Collapse
|
22
|
Hiong KC, Ip YK, Wong WP, Chew SF. Differential gene expression in the brain of the African lungfish, Protopterus annectens, after six days or six months of aestivation in air. PLoS One 2013; 8:e71205. [PMID: 23976998 PMCID: PMC3745453 DOI: 10.1371/journal.pone.0071205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 07/03/2013] [Indexed: 11/18/2022] Open
Abstract
The African lungfish, Protopterus annectens, can undergo aestivation during drought. Aestivation has three phases: induction, maintenance and arousal. The objective of this study was to examine the differential gene expression in the brain of P. annectens during the induction (6 days) and maintenance (6 months) phases of aestivation as compared with the freshwater control using suppression subtractive hybridization. During the induction phase of aestivation, the mRNA expression of prolactin (prl) and growth hormone were up-regulated in the brain of P. annectens, which indicate for the first time the possible induction role of these two hormones in aestivation. Also, the up-regulation of mRNA expression of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein γ polypeptide and the down-regulation of phosphatidylethanolamine binding protein, suggest that there could be a reduction in biological and neuronal activities in the brain. The mRNA expression of cold inducible RNA-binding protein and glucose regulated protein 58 were also up-regulated in the brain, probably to enhance their cytoprotective effects. Furthermore, the down-regulation of prothymosin α expression suggests that there could be a suppression of transcription and cell proliferation in preparation for the maintenance phase. In general, the induction phase appeared to be characterized by reduction in glycolytic capacity and metabolic activity, suppression of protein synthesis and degradation, and an increase in defense against ammonia toxicity. In contrast, there was a down-regulation in the mRNA expression of prl in the brain of P. annectens during the maintenance phase of aestivation. In addition, there could be an increase in oxidative defense capacity, and up-regulation of transcription, translation, and glycolytic capacities in preparation for arousal. Overall, our results signify the importance of reconstruction of protein structures and regulation of energy expenditure during the induction phase, and the needs to suppress protein degradation and conserve metabolic fuel stores during the maintenance phase of aestivation.
Collapse
Affiliation(s)
- Kum C. Hiong
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Republic of Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Republic of Singapore
| |
Collapse
|
23
|
Ip YK, Loong AM, Chng YR, Hiong KC, Chew SF. Hepatic carbamoyl phosphate synthetase (CPS) I and urea contents in the hylid tree frog, Litoria caerulea: transition from CPS III to CPS I. J Comp Physiol B 2012; 182:1081-94. [PMID: 22736308 DOI: 10.1007/s00360-012-0682-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/26/2012] [Accepted: 06/01/2012] [Indexed: 11/26/2022]
Abstract
The complete cDNA sequence of CPS I obtained from the liver of the hylid tree frog, Litoria caerulea, consisted of 4,485 bp which coded for 1,495 amino acids with an estimated molecular mass of 163.7 kDa. The deduced CPS I consisted of a mitochondrial targeting sequence of 33 amino acid residues, a glutaminase amidotransferase component spanning from tyrosine 95 to leucine 425, and a methylglyoxal synthetase-like component spanning from valine 441 to lysine 1566. It also comprised two cysteine residues (cysteine 1360 and cysteine 1370) that are characteristic of N-acetyl-L-glutamate dependency. Similar to the CPS I of Rana catesbeiana and Cps III of lungfishes and teleosts, it contained the Cys-His-Glu catalytic triad (cysteine 304, histidine 388 and glutamate 390). All Cps III contain methionine 305 and glutamine 308, which are essential for the Cys-His-Glu triad to react with glutamine, but the CPS I of R. catesbeiana contains lysine 305 and glutamate 308, and therefore cannot effectively utilize glutamine as a substrate. However, the CPS I of L. caerulea, unlike that of R. catesbeiana, contained besides glutamate 308, methionine 305 instead of lysine 305, and thus represented a transitional form between Cps III and CPS I. Indeed, CPS I of L. caerulea could utilize glutamine or NH₄⁺ as a substrate in vitro, but the activity obtained with glutamine + NH₄⁺ reflected that obtained with NH₄⁺ alone. Furthermore, only <5 % of the glutamine synthetase activity was present in the hepatic mitochondria, indicating that CPS I of L. caerulea did not have an effective supply of glutamine in vivo. Hence, our results confirmed that the evolution of CPS I from Cps III occurred in amphibians. Since L. caerulea contained high levels of urea in its muscle and liver, which increased significantly in response to desiccation, its CPS I had the dual functions of detoxifying ammonia to urea and producing urea to reduce evaporative water loss.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore.
| | | | | | | | | |
Collapse
|
24
|
Ip YK, Wilson JM, Loong AM, Chen XL, Wong WP, Delgado ILS, Lam SH, Chew SF. Cystic fibrosis transmembrane conductance regulator in the gills of the climbing perch, Anabas testudineus, is involved in both hypoosmotic regulation during seawater acclimation and active ammonia excretion during ammonia exposure. J Comp Physiol B 2012; 182:793-812. [PMID: 22526263 DOI: 10.1007/s00360-012-0664-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/26/2012] [Accepted: 04/02/2012] [Indexed: 01/20/2023]
Abstract
This study aimed to clone and sequence the cystic fibrosis transmembrane conductance regulator (cftr) from, and to determine the effects of seawater acclimation or exposure to 100 mmol l⁻¹ NH₄Cl in freshwater on its mRNA and protein expressions in, the gills of Anabas testudineus. There were 4,530 bp coding for 1,510 amino acids in the cftr cDNA sequence from A. testudineus. The branchial mRNA expression of cftr in fish kept in freshwater was low (<50 copies of transcript per ng cDNA), but significant increases were observed in fish acclimated to seawater for 1 day (92-fold) or 6 days (219-fold). Branchial Cftr expression was detected in fish acclimated to seawater but not in the freshwater control, indicating that Cl⁻ excretion through the apical Cftr of the branchial epithelium was essential to seawater acclimation. More importantly, fish exposed to ammonia also exhibited a significant increase (12-fold) in branchial mRNA expression of cftr, with Cftr being expressed in a type of Na⁺/K⁺-ATPase-immunoreactive cells that was apparently different from the type involved in seawater acclimation. It is probable that Cl⁻ excretion through Cftr generated a favorable electrical potential across the apical membrane to drive the excretion of NH₄⁺ against a concentration gradient through a yet to be determined transporter, but it led to a slight loss of endogenous Cl⁻. Since ammonia exposure also resulted in significant decreases in blood pH, [HCO₃⁻] and [total CO₂] in A. testudineus, it can be deduced that active NH₄⁺ excretion could also be driven by the exit of HCO₃⁻ through the apical Cftr. Furthermore, A. testudineus uniquely responded to ammonia exposure by increasing the ambient pH and decreasing the branchial bafilomycin-sensitive V-type H⁺-ATPase activity, which suggests that its gills might have low NH₃ permeability.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore.
| | | | | | | | | | | | | | | |
Collapse
|