1
|
Zhang Q, Chang Y, Zheng C, Sun L. Identification and Expression Profiling of the 5-HT Receptor Gene in Harmonia axyridis. INSECTS 2023; 14:508. [PMID: 37367324 DOI: 10.3390/insects14060508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
It has been found that 5-hydroxytryptamine (5-HT) modulates the feeding of some insects, and this phenomenon was found in Harmonia axyridis (Pallas) by our previous study. An understanding of the 5-HT system in this beetle is helpful for utilizing 5-HT to modulate its predation to improve biological control efficiency, especially in greenhouses in winter in north China. This is because 5-HT influences diapause in insects by modulating the synthesis and release of prothoracic hormone (PTTH) and, therefore, influences feeding. To elucidate the molecular basis of the H. axyridis 5-HT system, reverse-transcription polymerase chain reaction (RT-PCR), multiple sequence alignment, and phylogenetic tree construction were used to identify the 5-HT receptor in H. axyridis, and quantitative real-time PCR (qRT-PCR) was used to analyze the expression pattern of these receptor genes in different developmental stages and in the nervous system (brain + ventral nerve cord), digestive tract, pectoral muscles, and gonads of the adult ladybird. The results showed that four 5-HT receptors were identified in H. axyridis, named 5-HT1AHar, 5-HT1BHar, 5-HT2Har, and 5-HT7Har. The four receptors were expressed at high levels in the adult stage, especially in 2-day-old adults, with expression levels of 18.72-fold (male) and 14.21-fold (female) of that in eggs for 5-HT1A, 32.27-fold (male) and 83.58-fold (female) of that in eggs for 5-HT1B, 36.82-fold (male) and 119.35-fold (female) of that in eggs for 5-HT2, and 165.47-fold (male) and 115.59-fold (female) of that in eggs for 5-HT7. The level of expression decreased with the advance of day-age in adults. The levels of expression of 5-HT1BHar, 5-HT2Har, and 5-HT7Har were low at the egg, larval, and pupal stages, and 5-HT1AHar was not expressed in the larval stage. The four receptors were expressed in the nervous system, digestive tract, pectoral muscles, and male and female gonads. The 5-HT1AHar was expressed at a high level in the pectoral muscle (6.75-fold of that in the nervous system), 5-HT1BHar in male gonads (1.02-fold of that in the nervous system) and the nervous system, 5-HT2Har in male gonads (5.74-fold of that in the nervous system), and 5-HT7Har in the digestive tract (1.81-fold of that in the nervous system). The results of this study will lay a foundation for research on the function of the 5-HT receptor by RNA interference in the regulation of predation by H. axyridis.
Collapse
Affiliation(s)
- Qiqi Zhang
- Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yifang Chang
- Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Changying Zheng
- Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Lijuan Sun
- Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
2
|
Tian Y, Morin-Poulard I, Liu X, Vanzo N, Crozatier M. A mechanosensitive vascular niche for Drosophila hematopoiesis. Proc Natl Acad Sci U S A 2023; 120:e2217862120. [PMID: 37094122 PMCID: PMC10160988 DOI: 10.1073/pnas.2217862120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/09/2023] [Indexed: 04/26/2023] Open
Abstract
Hematopoietic stem and progenitor cells maintain blood cell homeostasis by integrating various cues provided by specialized microenvironments or niches. Biomechanical forces are emerging as key regulators of hematopoiesis. Here, we report that mechanical stimuli provided by blood flow in the vascular niche control Drosophila hematopoiesis. In vascular niche cells, the mechanosensitive channel Piezo transduces mechanical forces through intracellular calcium upregulation, leading to Notch activation and repression of FGF ligand transcription, known to regulate hematopoietic progenitor maintenance. Our results provide insight into how the vascular niche integrates mechanical stimuli to regulate hematopoiesis.
Collapse
Affiliation(s)
- Yushun Tian
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Ismaël Morin-Poulard
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Xiaohui Liu
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Nathalie Vanzo
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Michèle Crozatier
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| |
Collapse
|
3
|
Brock KE, Elliott ER, Abul-Khoudoud MO, Cooper RL. The effects of Gram-positive and Gram-negative bacterial toxins (LTA & LPS) on cardiac function in Drosophila melanogaster larvae. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104518. [PMID: 37119936 DOI: 10.1016/j.jinsphys.2023.104518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
The effects of Gram negative and positive bacterial sepsis depend on the type of toxins released, such as lipopolysaccharides (LPS) or lipoteichoic acid (LTA). Previous studies show LPS to rapidly hyperpolarize larval Drosophila skeletal muscle, followed by desensitization and return to baseline. In larvae, heart rate increased then decreased with exposure to LPS. However, responses to LTA, as well as the combination of LTA and LPS, on the larval Drosophila heart have not been previously examined. This study examined the effects of LTA and a cocktail of LTA and LPS on heart rate. The combined effects were examined by first treating with either LTA or LPS only, and then with the cocktail. The results showed a rapid increase in heart rate upon LTA application, followed by a gradual decline over time. When applying LTA followed by the cocktail, an increase in the rate occurred. However, if LPS was applied before the cocktail, the rate continued declining. These responses indicate the receptors or cellular cascades responsible for controlling heart rate within seconds and the rapid desensitization are affected by LTA or LPS and a combination of the two. The mechanisms for rapid changes which are not regulated by gene expression by exposure to LTA or LPS or associated bacterial peptidoglycans have yet to be identified in cardiac tissues of any organism.
Collapse
Affiliation(s)
- Kaitlyn E Brock
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | - Elizabeth R Elliott
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | | | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
4
|
Pankau C, Nadolski J, Tanner H, Cryer C, Di Girolamo J, Haddad C, Lanning M, Miller M, Neely D, Wilson R, Whittinghill B, Cooper RL. Examining the effect of manganese on physiological processes: Invertebrate models. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109209. [PMID: 34628058 PMCID: PMC8922992 DOI: 10.1016/j.cbpc.2021.109209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/24/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023]
Abstract
Manganese (Mn2+ as MnSO4 &/or MnCl2) is a common and essential element for maintaining life in plants and animals and is found in soil, fresh waters and marine waters; however, over exposure is toxic to organisms. MnSO4 is added to soil for agricultural purposes and people are exposed to Mn2+ in the mining industry. Hypermanganesemia in mammals is associated with neurological issues mimicking Parkinson's disease (PD) and appears to target dopaminergic neural circuits. However, it also seems that hypermanganesemia can affect many aspects of health besides dopaminergic synapses. We examined the effect on development, behavior, survival, cardiac function, and glutamatergic synaptic transmission in the Drosophila melanogaster. In addition, we examined the effect of Mn2+ on a sensory proprioceptive organ and nerve conduction in a marine crustacean and synaptic transmission at glutamatergic neuromuscular junctions of freshwater crayfish. A dose-response effect of higher Mn2+ retards development, survival and cardiac function in larval Drosophila and survival in larvae and adults. MnSO4 as well as MnCl2 blocks stretch activated responses in primary proprioceptive neurons in a dose-response manner. Mn2+ blocks glutamatergic synaptic transmission in Drosophila as well as crayfish via presynaptic action. This study is relevant in demonstrating the effects of Mn2+ on various physiological functions in order to learn more about acute and long-term consequences Mn2+ exposure.
Collapse
Affiliation(s)
- Cecilia Pankau
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Jeremy Nadolski
- Department of Mathematical and Computational Sciences, Benedictine University, Lisle, IL 60532, USA
| | - Hannah Tanner
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; Department of Biology, Eastern Kentucky University, Richmond, KY 40475, USA
| | - Carlie Cryer
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - John Di Girolamo
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Christine Haddad
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Matthew Lanning
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Mason Miller
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Devan Neely
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Reece Wilson
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | | | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
5
|
Lee WP, Chiang MH, Chang LY, Shyu WH, Chiu TH, Fu TF, Wu T, Wu CL. Serotonin Signals Modulate Mushroom Body Output Neurons for Sustaining Water-Reward Long-Term Memory in Drosophila. Front Cell Dev Biol 2021; 9:755574. [PMID: 34858982 PMCID: PMC8631865 DOI: 10.3389/fcell.2021.755574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 11/27/2022] Open
Abstract
Memory consolidation is a time-dependent process through which an unstable learned experience is transformed into a stable long-term memory; however, the circuit and molecular mechanisms underlying this process are poorly understood. The Drosophila mushroom body (MB) is a huge brain neuropil that plays a crucial role in olfactory memory. The MB neurons can be generally classified into three subsets: γ, αβ, and α′β′. Here, we report that water-reward long-term memory (wLTM) consolidation requires activity from α′β′-related mushroom body output neurons (MBONs) in a specific time window. wLTM consolidation requires neurotransmission in MBON-γ3β′1 during the 0–2 h period after training, and neurotransmission in MBON-α′2 is required during the 2–4 h period after training. Moreover, neurotransmission in MBON-α′1α′3 is required during the 0–4 h period after training. Intriguingly, blocking neurotransmission during consolidation or inhibiting serotonin biosynthesis in serotoninergic dorsal paired medial (DPM) neurons also disrupted the wLTM, suggesting that wLTM consolidation requires serotonin signals from DPM neurons. The GFP Reconstitution Across Synaptic Partners (GRASP) data showed the connectivity between DPM neurons and MBON-γ3β′1, MBON-α′2, and MBON-α′1α′3, and RNAi-mediated silencing of serotonin receptors in MBON-γ3β′1, MBON-α′2, or MBON-α′1α′3 disrupted wLTM. Taken together, our results suggest that serotonin released from DPM neurons modulates neuronal activity in MBON-γ3β′1, MBON-α′2, and MBON-α′1α′3 at specific time windows, which is critical for the consolidation of wLTM in Drosophila.
Collapse
Affiliation(s)
- Wang-Pao Lee
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Hsuan Chiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Yun Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Huan Shyu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tai-Hsiang Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Tony Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Neurology, New Taipei Municipal Tucheng Hospital, Tucheng, Taiwan.,Department of Neurology, Xiamen Chang Gung Hospital, Xiamen, China
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
6
|
Pang YY, Huang GY, Song YM, Song XZ, Lv JH, He L, Niu C, Shi AY, Shi XL, Cheng YX, Yang XZ. Effects of miR-143 and its target receptor 5-HT2B on agonistic behavior in the Chinese mitten crab (Eriocheir sinensis). Sci Rep 2021; 11:4492. [PMID: 33627750 PMCID: PMC7904944 DOI: 10.1038/s41598-021-83984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/10/2021] [Indexed: 11/17/2022] Open
Abstract
Chinese mitten crab (Eriocheir sinensis) as a commercially important species is widely cultured in China. However, E. sinensis is prone to agonistic behavior, which causes physical damage and wastes energy resources, negatively impacting their growth and survival. Therefore, understanding the regulatory mechanisms that underlie the switching of such behavior is essential for ensuring the efficient and cost-effective aquaculture of E. sinensis. The 5-HT2B receptor is a key downstream target of serotonin (5-HT), which is involved in regulating animal behavior. In this study, the full-length sequence of 5-HT2B gene was cloned. The total length of the 5-HT2B gene was found to be 3127 bp with a 236 bp 5′-UTR (untranslated region), a 779 bp 3′-UTR, and a 2112 bp open reading frame encoding 703 amino acids. Phylogenetic tree analysis revealed that the 5-HT2B amino acid sequence of E. sinensis is highly conserved with that of Cancer borealis. Using in vitro co-culture and luciferase assays, the miR-143 targets the 5-HT2B 3′-UTR and inhibits 5-HT2B expression was confirmed. Furthermore, RT-qPCR and Western blotting analyses revealed that the miR-143 mimic significantly inhibits 5-HT2B mRNA and protein expression. However, injection of miR-143 did not decrease agonistic behavior, indicating that 5-HT2B is not involved in the regulation of such behavior in E. sinensis.
Collapse
Affiliation(s)
- Yang-Yang Pang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Gen-Yong Huang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Ya-Meng Song
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Xiao- Zhe Song
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Jia-Huan Lv
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Long He
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Chao Niu
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Ao-Ya Shi
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Xing-Liang Shi
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China
| | - Yong-Xu Cheng
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
| | - Xiao-Zhen Yang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
7
|
Santalla M, Pagola L, Gómez I, Balcazar D, Valverde CA, Ferrero P. Smoking flies: testing the effect of tobacco cigarettes on heart function of Drosophila melanogaster. Biol Open 2021; 10:bio.055004. [PMID: 33431431 PMCID: PMC7903996 DOI: 10.1242/bio.055004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies about the relationship between substances consumed by humans and their impact on health, in animal models, have been a challenge due to differences between species in the animal kingdom. However, the homology of certain genes has allowed extrapolation of certain knowledge obtained in animals. Drosophila melanogaster, studied for decades, has been widely used as model for human diseases as well as to study responses associated with the consumption of several substances. In the present work we explore the impact of tobacco consumption on a model of 'smoking flies'. Throughout these experiments, we aim to provide information about the effects of tobacco consumption on cardiac physiology. We assessed intracellular calcium handling, a phenomenon underlying cardiac contraction and relaxation. Flies chronically exposed to tobacco smoke exhibited an increased heart rate and alterations in the dynamics of the transient increase of intracellular calcium in myocardial cells. These effects were also evident under acute exposure to nicotine of the heart, in a semi-intact preparation. Moreover, the alpha 1 and 7 subunits of the nicotinic receptors are involved in the heart response to tobacco and nicotine under chronic (in the intact fly) as well as acute exposure (in the semi-intact preparation). The present data elucidate the implication of the intracellular cardiac pathways affected by nicotine on the heart tissue. Based on the probed genetic and physiological similarity between the fly and human heart, cardiac effects exerted by tobacco smoke in Drosophila advances our understanding of the impact of it in the human heart. Additionally, it may also provide information on how nicotine-like substances, e.g. neonicotinoids used as insecticides, affect cardiac function.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Manuela Santalla
- Departamento de Ciencias Básicas y Experimentales, UNNOBA, Monteagudo 2772, Pergamino B2700, Argentina.,Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CONICET, Facultad de Ciencias Médicas, Av 60 & 120. UNLP, La Plata B1900, Argentina
| | - Lucía Pagola
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CONICET, Facultad de Ciencias Médicas, Av 60 & 120. UNLP, La Plata B1900, Argentina
| | - Ivana Gómez
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CONICET, Facultad de Ciencias Médicas, Av 60 & 120. UNLP, La Plata B1900, Argentina
| | - Darío Balcazar
- Centro de Estudios Parasitológicos y de Vectores, UNLP-CONICET, Bv 120s/n, La Plata B1900, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CONICET, Facultad de Ciencias Médicas, Av 60 & 120. UNLP, La Plata B1900, Argentina
| | - Paola Ferrero
- Departamento de Ciencias Básicas y Experimentales, UNNOBA, Monteagudo 2772, Pergamino B2700, Argentina .,Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CONICET, Facultad de Ciencias Médicas, Av 60 & 120. UNLP, La Plata B1900, Argentina
| |
Collapse
|
8
|
The effects of tricaine mesylate on arthropods: crayfish, crab and Drosophila. INVERTEBRATE NEUROSCIENCE 2020; 20:10. [PMID: 32474706 DOI: 10.1007/s10158-020-00243-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/20/2020] [Indexed: 12/27/2022]
Abstract
Tricaine mesylate, also known as MS-222, was investigated to characterize its effects on sensory neurons, synaptic transmission at the neuromuscular junction, and heart rate in invertebrates. Three species were examined: Drosophila melanogaster, blue crab (Callinectes sapidus), and red swamp crayfish (Procambarus clarkii). Intracellular measures of action potentials in motor neurons of the crayfish demonstrated that MS-222 dampened the amplitude, suggesting that voltage-gated Na + channels are blocked by MS-222. This is likely the mechanism behind the reduced activity measured in sensory neurons and depressed synaptic transmission in all three species as well as reduced cardiac function in the larval Drosophila. To address public access to data, a group effort was used for analysis of given data sets, blind to the experimental design, to gauge analytical accuracy. The determination of a threshold in analysis for measuring extracellular recorded sensory events is critical and is not easily performed with commercial software.
Collapse
|
9
|
Impedance Measures and a Mounting Technique for Drosophila: Larval Movements, Heart Rate, Imaging, and Electrophysiology. Methods Protoc 2020; 3:mps3010012. [PMID: 31991683 PMCID: PMC7189670 DOI: 10.3390/mps3010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Monitoring movements of larval Drosophila with electrical detection allows one to record the behaviors without the use of lights and cameras. This is a suitable technique when studying the use of light-sensitive proteins in optogenetic studies. Electrical measures are feasible to use in determining when a larva starts to move or continues to move after a light induced activation of channelrhodopsin. We have developed a technique using an electrical measure of the media as an index of larval movement. As a proof of concept, recordings with an infrared camera of the larval movement were simultaneous made with electrical measures. The two techniques parallel each other in their ability to index larval movements. Bright light-emitting diode (LED) lights used in optogenetic experiments tend to saturate the detectors of the camera unless filters are used and different filters maybe necessary depending on the LED spectrum and sensitivity of the camera. Impedance measures are independent of the type of LED or brightness. We also assessed the use of a non-solvent based glue (3M Vetbond) to hold larvae in place while measuring synaptic function of neuromuscular junctions, cardiac function and influence of modulators, or activation of light-sensitive channels.
Collapse
|
10
|
Ballinger- C, Anyagaligb O, Bernard J, Bierbower SM, Dupont-Ver EE, Ghoweri A, Greenhalgh A, Harrison D, Istas O, McNabb M, Saelinger C, Stanback A, Stanback M, Thibault O, Cooper RL. Effects of Bacterial Endotoxin (LPS) on Cardiac and Synaptic Function in Various Animal Models: Larval Drosophila, Crayfish, Crab and Rodent. ACTA ACUST UNITED AC 2019. [DOI: 10.3923/ijzr.2020.33.62] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Potter S, Sifers J, Yocom E, Blümich SLE, Potter R, Nadolski J, Harrison DA, Cooper RL. Effects of inhibiting mTOR with rapamycin on behavior, development, neuromuscular physiology and cardiac function in larval Drosophila. Biol Open 2019; 8:bio.046508. [PMID: 31704693 PMCID: PMC6899040 DOI: 10.1242/bio.046508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rapamycin and other mTOR inhibitors are being heralded as possible treatments for many human ailments. It is currently being utilized clinically as an immunomodulator after transplantation procedures and as a treatment for certain forms of cancer, but it has numerous potential clinical indications. Some studies have shown profound effects on life cycle and muscle physiology, but these issues have not been addressed in an organism undergoing developmental processes. This paper fills this void by examining the effect of mTOR inhibition by rapamycin on several different qualities of larval Drosophila. Various dosages of the compound were fed to second instar larvae. These larvae were monitored for pupae formation to elucidate possible life cycle effects, and a delay to pupation was quantified. Behavioral deficits were documented in rapamycin-treated larvae. Electrophysiological measurements were taken to discern changes in muscle physiology and synaptic signaling (i.e. resting membrane potential, amplitude of excitatory post-synaptic potentials, synaptic facilitation). Pupation delay and effects on behavior that are likely due to synaptic alterations within the central nervous system were discovered in rapamycin-fed larvae. These results allow for several conclusions as to how mTOR inhibition by rapamycin affects a developing organism. This could eventually allow for a more informed decision when using rapamycin and other mTOR inhibitors to treat human diseases, especially in children and adolescents, to account for known side effects. Summary: Inhibiting mTOR by rapamycin delays pupation, reduced body wall contractions and mouth-hook movements while synaptic transmission appeared normal in larval Drosophila.
Collapse
Affiliation(s)
- Samuel Potter
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Jacob Sifers
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA.,Alice Lloyd College, 100 Purpose Road, Pippa Passes, KY, 41844, USA
| | - Emily Yocom
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA.,Kentucky Wesleyan College, Owensboro, KY, 42301, USA
| | - Sandra L E Blümich
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA.,Veterinärmedizinische Fakultät, Universität Leipzig, Leipzig, Germany
| | - Rachel Potter
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Jeremy Nadolski
- Department of Mathematical and Computational Sciences, Benedictine University, Lisle, IL, 60532 , USA
| | - Douglas A Harrison
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Robin L Cooper
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
12
|
Pang YY, Song YM, Zhang L, Song XZ, Zhang C, Lv JH, He L, Cheng YX, Yang XZ. 5-HT2B, 5-HT7, and DA2 Receptors Mediate the Effects of 5-HT and DA on Agonistic Behavior of the Chinese Mitten Crab ( Eriocheir sinensis). ACS Chem Neurosci 2019; 10:4502-4510. [PMID: 31642670 DOI: 10.1021/acschemneuro.9b00342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Chinese mitten crab (Eriocheir sinensis) is a commercially important crab in China and is usually managed at high stocking densities. Agonistic behavior directly impacts crab integrity, survival, and growth and results in economic losses. In the present study, we evaluated the modulatory effects of serotonin (5-HT) and dopamine (DA) though the 5-HT2 and DA2 receptor-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway on agonistic behavior. The results showed that injection of either 10-6 mol/crab 5-HT or DA reduced the agonistic behavior of E. sinensis (P < 0.05), as did 10-10 mol/crab DA and 10-8 mol/crab 5-HT and DA (P < 0.05); however, a dose of 10-10 mol/crab 5-HT promoted agonistic behavior. 5-HT significantly increased the mRNA expression level of 5-HT7 receptor and reduced that of the DA2 receptor in the cerebral ganglion (P < 0.05). In contrast to 5-HT, DA significantly decreased 5-HT2B mRNA levels and increased 5-HT7 and DA2 receptor levels in the thoracic ganglia (P < 0.05). In addition, injections of either 5-HT or DA increased the cAMP and PKA levels in hemolymph (P < 0.05). By using in vitro culture of the thoracic ganglia, the current study showed that ketanserin (5-HT2 antagonist) and [R(-)-TNPA] (DA2 agonist) had obvious effects on the expression levels of the two receptors (P < 0.05). In vivo experiments further demonstrated that ketanserin and [R(-)-TNPA] could both significantly reduce the agonistic behavior of the crabs (P < 0.05). Furthermore, both ketanserin and [R(-)-TNPA] promoted the cAMP and PKA levels (P < 0.05). The injection of CPT-cAMP (cAMP analogue) elevated the PKA levels and inhibited agonistic behavior. In summary, this study showed that 5HT-2B and DA2 receptors were involved in the agonistic behavior that 5-HT/DA induced through the cAMP-PKA pathway in E. sinensis.
Collapse
Affiliation(s)
- Yang-Yang Pang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Ya-Meng Song
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Long Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xiao-Zhe Song
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Cong Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jia-Huan Lv
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Long He
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yong-Xu Cheng
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xiao-Zhen Yang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
13
|
Stanley CE, Mauss AS, Borst A, Cooper RL. The Effects of Chloride Flux on Drosophila Heart Rate. Methods Protoc 2019; 2:mps2030073. [PMID: 31443492 PMCID: PMC6789470 DOI: 10.3390/mps2030073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022] Open
Abstract
Approaches are sought after to regulate ionotropic and chronotropic properties of the mammalian heart. Electrodes are commonly used for rapidly exciting cardiac tissue and resetting abnormal pacing. With the advent of optogenetics and the use of tissue-specific expression of light-activated channels, cardiac cells cannot only be excited but also inhibited with ion-selective conductance. As a proof of concept for the ability to slow down cardiac pacing, anion-conducting channelrhodopsins (GtACR1/2) and the anion pump halorhodopsin (eNpHR) were expressed in hearts of larval Drosophila and activated by light. Unlike body wall muscles in most animals, the equilibrium potential for Cl− is more positive as compared to the resting membrane potential in larval Drosophila. As a consequence, upon activating the two forms of GtACR1 and 2 with low light intensity the heart rate increased, likely due to depolarization and opening of voltage-gated Ca2+ channels. However, with very intense light activation the heart rate ceases, which may be due to Cl– shunting to the reversal potential for chloride. Activating eNpHR hyperpolarizes body wall and cardiac muscle in larval Drosophila and rapidly decreases heart rate. The decrease in heart rate is related to light intensity. Intense light activation of eNpHR stops the heart from beating, whereas lower intensities slowed the rate. Even with upregulation of the heart rate with serotonin, the pacing of the heart was slowed with light. Thus, regulation of the heart rate in Drosophila can be accomplished by activating anion-conducting channelrhodopsins using light. These approaches are demonstrated in a genetically amenable insect model.
Collapse
Affiliation(s)
- Catherine E Stanley
- Department of Biology, Center for Muscle Biology. University of Kentucky, Lexington, KY 40506-0225, USA
| | - Alex S Mauss
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Alexander Borst
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Robin L Cooper
- Department of Biology, Center for Muscle Biology. University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
14
|
Brenman-Suttner DB, Yost RT, Frame AK, Robinson JW, Moehring AJ, Simon AF. Social behavior and aging: A fly model. GENES BRAIN AND BEHAVIOR 2019; 19:e12598. [PMID: 31286644 DOI: 10.1111/gbb.12598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
The field of behavioral genetics has recently begun to explore the effect of age on social behaviors. Such studies are particularly important, as certain neuropsychiatric disorders with abnormal social interactions, like autism and schizophrenia, have been linked to older parents. Appropriate social interaction can also have a positive impact on longevity, and is associated with successful aging in humans. Currently, there are few genetic models for understanding the effect of aging on social behavior and its potential transgenerational inheritance. The fly is emerging as a powerful model for identifying the basic molecular mechanisms underlying neurological and neuropsychiatric disorders. In this review, we discuss these recent advancements, with a focus on how studies in Drosophila melanogaster have provided insight into the effect of aging on aspects of social behavior, including across generations.
Collapse
Affiliation(s)
- Dova B Brenman-Suttner
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada.,Department of Biology, York University, Toronto, Ontario, Canada
| | - Ryley T Yost
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Ariel K Frame
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - J Wesley Robinson
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Amanda J Moehring
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Anne F Simon
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| |
Collapse
|
15
|
Anyagaligbo O, Bernard J, Greenhalgh A, Cooper RL. The effects of bacterial endotoxin (LPS) on cardiac function in a medicinal blow fly (Phaenicia sericata) and a fruit fly (Drosophila melanogaster). Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:15-24. [PMID: 30448591 DOI: 10.1016/j.cbpc.2018.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
The bacterial endotoxins, lipopolysaccharides (LPS), are known to have direct effects on mammalian heart cells; thus, LPS is likely to have some effects in other cardiac models. Drosophila melanogaster was used since it serves as a model for cardiac physiology. Larvae of blow flies (Phaenicia sericata) commonly used as therapy for debriding dead tissue, are exposed to high levels of bacterial endotoxins, but their mechanisms of LPS resistance are not entirely understood. Comparative effects of LPS on heart rate (HR) were examined for both Drosophila and blowfly larvae. Acute 10-min direct exposure of in situ heart tubes with saline containing 1, 100, and 500 μg/ml LPS from two common bacterial stains (Pseudomonas aeruginosa and Serratia marcescens) revealed a dose-dependent effect. The effects differed between the two fly models. Larval hearts of Drosophila stopped rapidly in low Ca2+ containing saline, but the hearts of blow flies appear unaffected for >30 min. S. marcescens increased HR initially in Drosophila followed by a reduction for low and high doses, but no change was observed in larvae of blow flies. Whereas P. aeruginosa at a high dose decreased HR in larvae of Drosophila but increased HR in larvae of blow flies. The goal of this study is to better the understanding in the direct action of LPS on HR. Knowing the acute and direct actions of LPS exposure on HR in different species of larvae may aid in understanding the underlying mechanisms in other animals during septicemia.
Collapse
Affiliation(s)
- Ogechi Anyagaligbo
- Department of Biology, Center for Muscle Biology, University of Kentucky, Lexington, KY 40506-0225, USA
| | - Jate Bernard
- Department of Biology, Center for Muscle Biology, University of Kentucky, Lexington, KY 40506-0225, USA
| | - Abigail Greenhalgh
- Department of Biology, Center for Muscle Biology, University of Kentucky, Lexington, KY 40506-0225, USA
| | - Robin L Cooper
- Department of Biology, Center for Muscle Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
16
|
Hillyer JF. Insect heart rhythmicity is modulated by evolutionarily conserved neuropeptides and neurotransmitters. CURRENT OPINION IN INSECT SCIENCE 2018; 29:41-48. [PMID: 30551824 DOI: 10.1016/j.cois.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 05/15/2023]
Abstract
Insects utilize an open circulatory system to transport nutrients, waste, hormones and immune factors throughout the hemocoel. The primary organ that drives hemolymph circulation is the dorsal vessel, which is a muscular tube that traverses the length of the body and is divided into an aorta in the head and thorax, and a heart in the abdomen. The dorsal vessel is myogenic, but its rhythmicity is modulated by neuropeptides and neurotransmitters. This review summarizes how neuropeptides such as crustacean cardioactive peptide (CCAP), FMRFamide-like peptides, proctolin, allatotropin and allatostatin modulate the heart contraction rate and the directionality of heart contractions. Likewise, it discusses how neurotransmitters such as serotonin, octopamine, glutamate and nitric oxide influence the heart rate, and how transcriptomic and proteomic approaches are advancing our understanding of insect circulatory physiology. Finally, this review argues that the immune system may modulate heart rhythmicity, and discusses how the myotropic activity of cardioactive factors extends to the accessory pulsatile organs, such as the auxiliary hearts of the antennae.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
17
|
Park J, Kondo S, Tanimoto H, Kohsaka H, Nose A. Data-driven analysis of motor activity implicates 5-HT2A neurons in backward locomotion of larval Drosophila. Sci Rep 2018; 8:10307. [PMID: 29985473 PMCID: PMC6037780 DOI: 10.1038/s41598-018-28680-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/27/2018] [Indexed: 01/16/2023] Open
Abstract
Rhythmic animal behaviors are regulated in part by neural circuits called the central pattern generators (CPGs). Classifying neural population activities correlated with body movements and identifying the associated component neurons are critical steps in understanding CPGs. Previous methods that classify neural dynamics obtained by dimension reduction algorithms often require manual optimization which could be laborious and preparation-specific. Here, we present a simpler and more flexible method that is based on the pre-trained convolutional neural network model VGG-16 and unsupervised learning, and successfully classifies the fictive motor patterns in Drosophila larvae under various imaging conditions. We also used voxel-wise correlation mapping to identify neurons associated with motor patterns. By applying these methods to neurons targeted by 5-HT2A-GAL4, which we generated by the CRISPR/Cas9-system, we identified two classes of interneurons, termed Seta and Leta, which are specifically active during backward but not forward fictive locomotion. Optogenetic activation of Seta and Leta neurons increased backward locomotion. Conversely, thermogenetic inhibition of 5-HT2A-GAL4 neurons or application of a 5-HT2 antagonist decreased backward locomotion induced by noxious light stimuli. This study establishes an accelerated pipeline for activity profiling and cell identification in larval Drosophila and implicates the serotonergic system in the modulation of backward locomotion.
Collapse
Affiliation(s)
- Jeonghyuk Park
- Department of Physics, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Hiroshi Kohsaka
- Department of Complexity Science and Engineering, University of Tokyo, Chiba, 277-8561, Japan
| | - Akinao Nose
- Department of Physics, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan.
- Department of Complexity Science and Engineering, University of Tokyo, Chiba, 277-8561, Japan.
| |
Collapse
|
18
|
Zhu YC, Cooper RL. Cold Exposure Effects on Cardiac Function and Synaptic Transmission at the Neuromuscular Junction in Invertebrates. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/ijzr.2018.49.60] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Huser A, Eschment M, Güllü N, Collins KAN, Böpple K, Pankevych L, Rolsing E, Thum AS. Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae. PLoS One 2017; 12:e0181865. [PMID: 28777821 PMCID: PMC5544185 DOI: 10.1371/journal.pone.0181865] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
The biogenic amine serotonin (5-HT) is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a useful model for studying the anatomical and molecular basis of chemosensory behaviors. This is particularly true for the olfactory system, which is mostly described down to the synaptic level over the first three orders of neuronal information processing. Here we focus on the 5-HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical and behavioral experiments we describe the distribution and the implications of individual 5-HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice behaviors as well as for appetitive and aversive associative olfactory learning and memory. In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an acute neuronal function, affects associative olfactory learning and memory using high salt concentration as a negative unconditioned stimulus. These findings describe for the first time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the longer run these results may uncover developmental, 5-HT dependent principles related to reinforcement processing possibly shared with adult Drosophila and other insects.
Collapse
Affiliation(s)
- Annina Huser
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Melanie Eschment
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nazli Güllü
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Kathrin Böpple
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Lyubov Pankevych
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Emilia Rolsing
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andreas S. Thum
- Department of Biology, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
- Department of Genetics, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
20
|
Using optogenetics to assess neuroendocrine modulation of heart rate in Drosophila melanogaster larvae. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:791-806. [PMID: 28612236 DOI: 10.1007/s00359-017-1191-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/26/2017] [Accepted: 05/30/2017] [Indexed: 12/21/2022]
Abstract
The Drosophila melanogaster heart has become a principal model in which to study cardiac physiology and development. While the morphology of the heart in Drosophila and mammals is different, many of the molecular mechanisms that underlie heart development and function are similar and function can be assessed by similar physiological measurements, such as cardiac output, rate, and time in systole or diastole. Here, we have utilized an intact, optogenetic approach to assess the neural influence on heart rate in the third instar larvae. To simulate the release of modulators from the nervous system in response to environmental influences, we have directed expression of channel-rhodopsin variants to targeted neuronal populations to assess the role of these neural ensembles in directing release of modulators that may affect heart rate in vivo. Our observations show that the activation of targeted neurons, including cholinergic, dopaminergic, and serotonergic neurons, stimulate the release of cardioactive substances that increase heart rate after the initial activation at both room temperature and in a cold environment. This parallels previous studies suggesting these modulators play a crucial role in altering heart rate when applied to exposed hearts and adds to our understanding of chemical modulation of heart rate in intact Drosophila larvae.
Collapse
|
21
|
Blenau W, Daniel S, Balfanz S, Thamm M, Baumann A. Dm5-HT 2B: Pharmacological Characterization of the Fifth Serotonin Receptor Subtype of Drosophila melanogaster. Front Syst Neurosci 2017; 11:28. [PMID: 28553207 PMCID: PMC5425475 DOI: 10.3389/fnsys.2017.00028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/25/2017] [Indexed: 11/13/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is an important regulator of physiological and behavioral processes in both protostomes (e.g., insects) and deuterostomes (e.g., mammals). In insects, serotonin has been found to modulate the heart rate and to control secretory processes, development, circadian rhythms, aggressive behavior, as well as to contribute to learning and memory. Serotonin exerts its activity by binding to and activating specific membrane receptors. The clear majority of these receptors belong to the superfamily of G-protein-coupled receptors. In Drosophila melanogaster, a total of five genes have been identified coding for 5-HT receptors. From this family of proteins, four have been pharmacologically examined in greater detail, so far. While Dm5-HT1A, Dm5-HT1B, and Dm5-HT7 couple to cAMP signaling cascades, the Dm5-HT2A receptor leads to Ca2+ signaling in an inositol-1,4,5-trisphosphate-dependent manner. Based on sequence similarity to homologous genes in other insects, a fifth D. melanogaster gene was uncovered coding for a Dm5-HT2B receptor. Knowledge about this receptor’s pharmacological properties is very limited. This is quite surprising because Dm5-HT2B has been attributed to distinct physiological functions based on genetic interference with its gene expression. Mutations were described reducing the response of the larval heart to 5-HT, and specific knockdown of Dm5-HT2B mRNA in hemocytes resulted in a higher susceptibility of the flies to bacterial infection. To gain deeper understanding of Dm5-HT2B’s pharmacology, we evaluated the receptor’s response to a series of established 5-HT receptor agonists and antagonists in a functional cell-based assay. Metoclopramide and mianserin were identified as two potent antagonists that may allow pharmacological interference with Dm5-HT2B signaling in vitro and in vivo.
Collapse
Affiliation(s)
- Wolfgang Blenau
- Cologne Biocenter and Zoological Institute, University of CologneCologne, Germany
| | - Stöppler Daniel
- Department of NMR-Supported Structural Biology, Leibniz-Institut für Molekulare PharmakologieBerlin, Germany
| | - Sabine Balfanz
- Institute of Complex Systems - Cellular Biophysics (ICS-4), Forschungszentrum JülichJülich, Germany
| | - Markus Thamm
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of WürzburgWürzburg, Germany
| | - Arnd Baumann
- Institute of Complex Systems - Cellular Biophysics (ICS-4), Forschungszentrum JülichJülich, Germany
| |
Collapse
|
22
|
Solari P, Rivelli N, De Rose F, Picciau L, Murru L, Stoffolano JG, Liscia A. Opposite effects of 5-HT/AKH and octopamine on the crop contractions in adult Drosophila melanogaster: Evidence of a double brain-gut serotonergic circuitry. PLoS One 2017; 12:e0174172. [PMID: 28334024 PMCID: PMC5363830 DOI: 10.1371/journal.pone.0174172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/03/2017] [Indexed: 01/29/2023] Open
Abstract
This study showed that in adult Drosophila melanogaster, the type of sugar-either present within the crop lumen or in the bathing solution of the crop-had no effect on crop muscle contraction. What is important, however, is the volume within the crop lumen. Electrophysiological recordings demonstrated that exogenous applications of serotonin on crop muscles increases both the amplitude and the frequency of crop contraction rate, while adipokinetic hormone mainly enhances the crop contraction frequency. Conversely, octopamine virtually silenced the overall crop activity. The present study reports for the first time an analysis of serotonin effects along the gut-brain axis in adult D. melanogaster. Injection of serotonin into the brain between the interocellar area shows that brain applications of serotonin decrease the frequency of crop activity. Based on our results, we propose that there are two different, opposite pathways for crop motility control governed by serotonin: excitatory when added in the abdomen (i.e., directly bathing the crop) and inhibitory when supplied within the brain (i.e., by injection). Finally, our results point to a double brain-gut serotonergic circuitry suggesting that not only the brain can affect gut functions, but the gut can also affect the central nervous system. On the basis of our results, and data in the literature, a possible mechanism for these two discrete serotonergic functions is suggested.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Biomedical Sciences, University of Cagliari, University Campus, S.P. 8, Monserrato (CA), Italy
| | - Nicholas Rivelli
- Stockbridge School of Agriculture, College of Natural Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Francescaelena De Rose
- Department of Biomedical Sciences, University of Cagliari, University Campus, S.P. 8, Monserrato (CA), Italy
| | - Lorenzo Picciau
- Department of Biomedical Sciences, University of Cagliari, University Campus, S.P. 8, Monserrato (CA), Italy
| | - Ludovico Murru
- Department of Biomedical Sciences, University of Cagliari, University Campus, S.P. 8, Monserrato (CA), Italy
| | - John G. Stoffolano
- Stockbridge School of Agriculture, College of Natural Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Anna Liscia
- Department of Biomedical Sciences, University of Cagliari, University Campus, S.P. 8, Monserrato (CA), Italy
| |
Collapse
|
23
|
Beasley V, Dowse H. Suppression of Tryptophan 2,3-Dioxygenase Produces a Slow Heartbeat Phenotype in Drosophila melanogaster. ACTA ACUST UNITED AC 2017; 325:651-664. [PMID: 28127944 DOI: 10.1002/jez.2057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 12/27/2022]
Abstract
The primary pathway utilizing tryptophan leads initially to kynurenine before branching. Products include nicotinamide adenine dinucleotide and important pigments in the eye. Products in this pathway have been linked to a number of pathologies. The gene encoding the first step in this pathway, tryptophan 2,3-dioxegenase, is encoded by the gene vermilion, initially discovered in Drosophila. In the fly, v is an important eye color marker, but is found to have multiple pleiotropic effects. We have uncovered significant effects of this mutation on the fly heart. The heart beats more slowly and more rhythmically in both males and females and in strains which we have outcrossed. In addition, the fly heart normally beats irregularly with multiple brief stoppages, and the time structure of these stoppages, as investigated by looking at interbeat intervals, is changed in flies bearing this mutation. Fewer flies bearing the v1 mutation show long hiatuses in beat compared to wild type, however, in some strains of the mutant animals that do, the number of stoppages in much greater and the mean duration is longer.
Collapse
Affiliation(s)
- Vernon Beasley
- School of Biology and Ecology, University of Maine, Orono, Maine
| | - Harold Dowse
- School of Biology and Ecology, University of Maine, Orono, Maine.,Department of Mathematics and Statistics, University of Maine, Orono, Maine
| |
Collapse
|
24
|
Zhu YC, Uradu H, Majeed ZR, Cooper RL. Optogenetic stimulation of Drosophila heart rate at different temperatures and Ca2+ concentrations. Physiol Rep 2016; 4:4/3/e12695. [PMID: 26834237 PMCID: PMC4758921 DOI: 10.14814/phy2.12695] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Optogenetics is a revolutionary technique that enables noninvasive activation of electrically excitable cells. In mammals, heart rate has traditionally been modulated with pharmacological agents or direct stimulation of cardiac tissue with electrodes. However, implanted wires have been known to cause physical damage and damage from electrical currents. Here, we describe a proof of concept to optically drive cardiac function in a model organism, Drosophila melanogaster. We expressed the light sensitive channelrhodopsin protein ChR2.XXL in larval Drosophila hearts and examined light-induced activation of cardiac tissue. After demonstrating optical stimulation of larval heart rate, the approach was tested at low temperature and low calcium levels to simulate mammalian heart transplant conditions. Optical activation of ChR2.XXL substantially increased heart rate in all conditions. We have developed a system that can be instrumental in characterizing the physiology of optogenetically controlled cardiac function with an intact heart.
Collapse
Affiliation(s)
- Yue C Zhu
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Henry Uradu
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Zana R Majeed
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky Department of Biology, College of Science University of Salahaddin, Erbil, Iraq
| | - Robin L Cooper
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
25
|
VanKirk T, Powers E, Dowse HB. Melatonin increases the regularity of cardiac rhythmicity in the Drosophila heart in both wild-type and strains bearing pathogenic mutations. J Comp Physiol B 2016; 187:63-78. [PMID: 27448293 DOI: 10.1007/s00360-016-1019-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/24/2016] [Accepted: 07/09/2016] [Indexed: 01/30/2023]
Abstract
Melatonin is a hormone that is critical for normal circadian and seasonal rhythmicity in a wide range of different animals. It is a powerful antioxidant commonly used to prevent reperfusion injury to the heart after infarction. We show here it has other more far-reaching effects on cardiac function. Using the Drosophila model, we show that injection of melatonin increases the regularity of heartbeat significantly and can rescue rhythmicity in flies bearing mutations that adversely affect cardiac function. Notably, melatonin increases cardiac regularity independent of alteration of heart rate. We provide compelling evidence that melatonin's action as an antioxidant is not the mechanism underlying improved cardiac performance. We have strong evidence that melatonin's action on the heart is mediated via a specific G-Protein-coupled receptor encoded by the CG 4313 gene that our results implicate as a candidate melatonin receptor. These results open a line of questioning about fundamental aspects of cardiac pacemaking.
Collapse
Affiliation(s)
- Tricia VanKirk
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
| | - Evelyn Powers
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
| | - Harold B Dowse
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA.
- Department of Mathematics and Statistics, University of Maine, Orono, ME, 04469, USA.
| |
Collapse
|
26
|
Zhu YC, Yocom E, Sifers J, Uradu H, Cooper RL. Modulatory effects on Drosophila larva hearts: room temperature, acute and chronic cold stress. J Comp Physiol B 2016; 186:829-41. [DOI: 10.1007/s00360-016-0997-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022]
|
27
|
Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart. J Comp Physiol B 2015; 186:45-57. [DOI: 10.1007/s00360-015-0934-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 12/27/2022]
|
28
|
Majeed ZR, Ritter K, Robinson J, Blümich SLE, Brailoiu E, Cooper RL. New insights into the acute actions from a high dosage of fluoxetine on neuronal and cardiac function: Drosophila, crayfish and rodent models. Comp Biochem Physiol C Toxicol Pharmacol 2015; 176-177:52-61. [PMID: 26232582 DOI: 10.1016/j.cbpc.2015.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022]
Abstract
The commonly used mood altering drug fluoxetine (Prozac) in humans has a low occurrence in reports of harmful effects from overdose; however, individuals with altered metabolism of the drug and accidental overdose have led to critical conditions and even death. We addressed direct actions of high concentrations on synaptic transmission at neuromuscular junctions (NMJs), neural properties, and cardiac function unrelated to fluoxetine's action as a selective 5-HT reuptake inhibitor. There appears to be action in blocking action potentials in crayfish axons, enhanced occurrences of spontaneous synaptic vesicle fusion events in the presynaptic terminals at NMJs of both Drosophila and crayfish. In rodent neurons, cytoplasmic Ca(2+) rises by fluoxetine and is thapsigargin dependent. The Drosophila larval heart showed a dose dependent effect in cardiac arrest. Acute paralytic behavior in crayfish occurred at a systemic concentration of 2mM. A high percentage of death as well as slowed development occurred in Drosophila larvae consuming food containing 100μM fluoxetine. The release of Ca(2+) from the endoplasmic reticulum in neurons and the cardiac tissue as well as blockage of voltage-gated Na(+) channels in neurons could explain the effects on the whole animal as well as the isolated tissues. The use of various animal models in demonstrating the potential mechanisms for the toxic effects with high doses of fluoxetine maybe beneficial for acute treatments in humans. Future studies in determining how fluoxetine is internalized in cells and if there are subtle effects of these mentioned mechanisms presented with chronic therapeutic doses are of general interest.
Collapse
Affiliation(s)
- Zana R Majeed
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA; Department of Biology, University of Salahaddin, Erbil, Iraq
| | - Kyle Ritter
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA; Centre College, Danville, KY, USA
| | - Jonathan Robinson
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA; Morehead State University, Morehead, KY, USA
| | - Sandra L E Blümich
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA; V.M.F., University of Leipzig, Leipzig, Germany
| | | | - Robin L Cooper
- Department of Biology, University of Kentucky, USA; Lexington, KY, USA.
| |
Collapse
|
29
|
Paluzzi JPV, Bhatt G, Wang CHJ, Zandawala M, Lange AB, Orchard I. Identification, functional characterization, and pharmacological profile of a serotonin type-2b receptor in the medically important insect, Rhodnius prolixus. Front Neurosci 2015; 9:175. [PMID: 26041983 PMCID: PMC4436800 DOI: 10.3389/fnins.2015.00175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/28/2015] [Indexed: 11/13/2022] Open
Abstract
In the Chagas disease vector, Rhodnius prolixus, two diuretic hormones act synergistically to dramatically increase fluid secretion by the Malpighian tubules (MTs) during the rapid diuresis that is initiated upon engorgement of vertebrate blood. One of these diuretic hormones is the biogenic amine, serotonin (5-hydroxytryptamine, 5-HT), which controls a variety of additional activities including cuticle plasticization, salivary gland secretion, anterior midgut absorption, cardioacceleratory activity, and myotropic activities on a number of visceral tissues. To better understand the regulatory mechanisms linked to these various physiological actions of serotonin, we have isolated and characterized a serotonin type 2b receptor in R. prolixus, Rhopr5HTR2b, which shares sequence similarity to the vertebrate serotonin type 2 receptors. Rhopr5HTR2b transcript is enriched in well-recognized physiological targets of serotonin, including the MTs, salivary glands and dorsal vessel (i.e., insect heart). Notably, Rhopr5HTR2b was not enriched in the anterior midgut where serotonin stimulates absorption and elicits myotropic control. Using a heterologous functional receptor assay, we examined Rhopr5HTR2b activation characteristics and its sensitivity to potential agonists, antagonists, and other biogenic amines. Rhopr5HTR2b is dose-dependently activated by serotonin with an EC50 in the nanomolar range. Rhopr5HTR2b is sensitive to alpha-methyl serotonin and is inhibited by a variety of serotonin receptor antagonists, including propranolol, spiperone, ketanserin, mianserin, and cyproheptadine. In contrast, the cardioacceleratory activity of serotonin revealed a unique pharmacological profile, with no significant response induced by alpha-methyl serotonin and insensitivity to ketanserin and mianserin. This distinct agonist/antagonist profile indicates that a separate serotonin receptor type may mediate cardiomodulatory effects controlled by serotonin in R. prolixus.
Collapse
Affiliation(s)
| | - Garima Bhatt
- Department of Biology, York University Toronto, ON, Canada ; Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Chang-Hui J Wang
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Meet Zandawala
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| |
Collapse
|
30
|
Alekseyenko OV, Kravitz EA. Serotonin and the search for the anatomical substrate of aggression. Fly (Austin) 2015; 8:200-5. [PMID: 25923771 DOI: 10.1080/19336934.2015.1045171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
All species of animals display aggression in order to obtain resources such as territories, mates, or food. Appropriate displays of aggression rely on the correct identification of a potential competitor, an evaluation of the environmental signals, and the physiological state of the animal. With a hard-wired circuitry involving fixed numbers of neurons, neuromodulators like serotonin offer adaptive flexibility in behavioral responses without changing the "hard-wiring". In a recent report, we combined intersectional genetics, quantitative behavioral assays and morphological analyses to identify single serotonergic neurons that modulate the escalation of aggression. We found anatomical target areas within the brain where these neurons appear to form synaptic contacts with 5HT1A receptor-expressing neurons, and then confirmed the likelihood of those connections on a functional level. In this Extra View article, we offer an extended discussion of these recent findings and elaborate on how they can link a cellular and functional mapping of an aggression-regulating circuit at a single-cell resolution level.
Collapse
|
31
|
Yamagishi M, Watanabe T, Hatakeyama D, Ito E. Effects of serotonin on the heartbeat of pond snails in a hunger state. Biophysics (Nagoya-shi) 2015; 11:1-5. [PMID: 27493507 PMCID: PMC4736785 DOI: 10.2142/biophysics.11.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/05/2014] [Indexed: 12/18/2022] Open
Abstract
Serotonin (5-hydroxytryptamine: 5-HT) is a multimodal transmitter that controls both feeding response and heartbeat in snails. However, the effects of 5-HT on the hunger state are still unknown. We therefore examined the relation among the hunger state, the heartbeat rate and the 5-HT action in food-starved snails. We found that the hunger state was significantly distinguished by the heartbeat rate in snails. The heartbeat rate was high in the food-satiated snails, whereas it was low in the food-starved snails. An increase in 5-HT concentration in the body boosted the heartbeat rate in the food-starved snails, but did not affect the rate in the food-satiated snails. These results suggest that 5-HT application may mimic the change from a starvation to a satiation state normally achieved by direct ingestion of food.
Collapse
Affiliation(s)
- Miki Yamagishi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Takayuki Watanabe
- Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Dai Hatakeyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| |
Collapse
|