1
|
Powers SD, Grayson KL, Martinez E, Agosta SJ. Ontogenetic variation in metabolic rate-temperature relationships during larval development. J Exp Biol 2024; 227:jeb247912. [PMID: 38940758 DOI: 10.1242/jeb.247912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Predictive models of ectotherm responses to environmental change often rely on thermal performance data from the literature. For insects, the majority of these data focus on two traits, development rate and thermal tolerance limits. Data are also often limited to the adult stage. Consequently, predictions based on these data generally ignore other measures of thermal performance and do not account for the role of ontogenetic variation in thermal physiology across the complex insect life cycle. Theoretical syntheses for predicting metabolic rate also make similar assumptions despite the strong influence of body size as well as temperature on metabolic rate. The aim of this study was to understand the influence of ontogenetic variation on ectotherm physiology and its potential impact on predictive modeling. To do this, we examined metabolic rate-temperature (MR-T) relationships across the larval stage in a laboratory strain of the spongy moth (Lymantria dispar dispar). Routine metabolic rates (RMRs) of larvae were assayed at eight temperatures across the first five instars of the larval stage. After accounting for differences in body mass, larval instars showed significant variation in MR-T. Both the temperature sensitivity and allometry of RMR increased and peaked during the third instar, then declined in the fourth and fifth instar. Generally, these results show that insect thermal physiology does not remain static during larval ontogeny and suggest that ontogenetic variation should be an important consideration when modeling thermal performance.
Collapse
Affiliation(s)
- Sean D Powers
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA 2328, USA
| | | | - Eloy Martinez
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Salvatore J Agosta
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
2
|
Amstrup AB, Kovac H, Käfer H, Stabentheiner A, Sørensen JG. The heat shock response in Polistes spp. brood from differing climates following heat stress. JOURNAL OF INSECT PHYSIOLOGY 2024; 156:104667. [PMID: 38914156 DOI: 10.1016/j.jinsphys.2024.104667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/10/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Temperature is a crucial factor in many physiological processes, especially in small ectotherms whose body temperature is highly influenced by ambient temperature. Polistes (paper wasps) is a genus of primitively eusocial wasps found in widely varying thermal environments throughout the world. Paper wasps construct open-faced combs in which the brood is exposed to varying ambient temperatures. The Heat Shock Response is a physiological mechanism that has been shown to help cope with thermal stress. We investigated the expression of heat shock proteins in different life stages of three species of Polistes from different climates with the aim of deducing adaptive patterns. This was done by assaying heat shock protein (hsp70, hsp83, hsc70) expression during control conditions (25 °C) or a heat insult (35 or 45 °C) in individuals collected from natural populations in Alpine, Temperate, or Mediterranean climates. Basal expression of hsc70 and hsp83 was found to be high, while hsp70 and hsp83 expression was found to be highly responsive to severe heat stress. As expression levels varied based on species, geographical origin, and life stage as well as between heat shock proteins, the Heat Shock Response of Polistes was found to be complex. The results suggest that adaptive utilization of the heat shock response contributes to the ability of Polistes spp. to inhabit widely different thermal environments.
Collapse
Affiliation(s)
- A B Amstrup
- Institute of Biology, University of Graz, Graz, Austria; Department of Biology, Aarhus University, Aarhus, Denmark.
| | - H Kovac
- Institute of Biology, University of Graz, Graz, Austria.
| | - H Käfer
- Institute of Biology, University of Graz, Graz, Austria
| | | | - J G Sørensen
- Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Stabentheiner A, Mauerhofer T, Willfurth R, Kovac H, Stabentheiner E, Käfer H, Petrocelli I. The costs of overwintering in paper wasps (Polistes dominula and Polistes gallicus): the use of energy stores. J Comp Physiol B 2024; 194:131-144. [PMID: 38441658 PMCID: PMC11070328 DOI: 10.1007/s00360-024-01540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 05/07/2024]
Abstract
Overwintering insects are facing energetic challenges because of food shortage, low temperature, and desiccation stress. Paper wasps of the genus Polistes overwinter as mated adults (gynes) in hibernacula protecting them from predation, snow, and rain but barely from low environmental temperature. In different climates, they face differing overwintering temperature regimes, and therefore they may differ in their energy use. We investigated how much of energy resources built up until autumn is used during diapause dormancy in natural hibernacula by measuring lipid, glycogen, and free carbohydrate content in autumn and early spring in Polistes dominula from temperate European (Austrian) and warm Mediterranean (Italian) climate and Polistes gallicus from Mediterranean climate. Winter energy consumption amounted to ~ 339 and ~ 310 J per wasp in the Austrian and Italian Polistes dominula populations. The smaller Italian Polistes gallicus consumed ~ 247 J. This amounts to 2.62, 2.35, and 1.79 J per day. Of this, the energy demand was mainly fuelled by lipids (84%, 93%, and 90%, respectively), but glycogen stores contributed also considerably (16%, 6%, and 9%). Free carbohydrates decreased only by 0.7%, 1%, and 0.8%. While fat stores seem still sufficient in spring, the wasps depleted most of their carbohydrates. The energy reserves of 396, 400, and 147 J per wasp remaining in spring in the three populations seem sufficient to fuel rest or simple brood care activities for a whole summer but restrict foraging flights to a few hours (~ 3.5-6 h). Results suggest that energy supply might become challenging in expected future climate scenarios.
Collapse
Affiliation(s)
- Anton Stabentheiner
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria.
| | - Teresa Mauerhofer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Regina Willfurth
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Helmut Kovac
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria.
| | - Edith Stabentheiner
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Helmut Käfer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Iacopo Petrocelli
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano, 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Vega-Castro A, Castro L, Carballada F, Alfaya T, Marquès L, Ruíz-León B. Hymenoptera Allergy Diagnosis through Their Presence on Human Food. Toxins (Basel) 2023; 15:680. [PMID: 38133184 PMCID: PMC10748280 DOI: 10.3390/toxins15120680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Venom immunotherapy (VIT) protects up to 98% of treated Hymenoptera allergy patients from reactions with new stings. A correct diagnosis with the identification of the venom causing the allergic reaction is essential to implementing it. The knowledge of the Hymenoptera foraging habits when the sting takes place in a food environment would allow the culprit insect to be known. Images of Hymenoptera occurring in environments where there was human food were recorded in Spain, including the date of the image, the place description and its geolocation. The insects' genus and species were identified by an entomologist. Results: One hundred and fifty-five images depicting 71 insects were analyzed. The identified insects were Vespula (56), Vespa (7), Polistes (4), Cerceris (2), Bombus (1) and Apis (1). Most (97.1%) of the images were obtained in summer and early autumn, outdoors in terraces (64%). Meat was the food associated with 47.9% of the images. In protein-rich foods, Vespula was found in 89%. Conclusions: Vespula was the main Hymenoptera associated with food environments in our country (78.87%), and in most of the cases (71%), the food involved is a source of protein, such as meat or seafood. In that environment, the probability that the insect is a Vespula would be 89%.
Collapse
Affiliation(s)
- Arantza Vega-Castro
- Allergy Service, University Hospital of Guadalajara, 19002 Guadalajara, Spain
- IDISCAM (Instituto de Investigación de Castilla la Mancha), 45071 Toledo, Spain
| | | | - Francisco Carballada
- Allergy Service, HULA (Hospital Universitario Lucus Augusti), 27003 Lugo, Spain;
| | - Teresa Alfaya
- Allergy Service, Hospital Universitario Fundación Alcorcón, 28922 Madrid, Spain;
| | - Lluís Marquès
- Allergy Service, Hospital Universitari Arnau de Vilanova, 25198 Lleida, Spain;
- Instituto de Investigación Biomédica de Lleida, 25198 Lleida, Spain
| | - Berta Ruíz-León
- Allergy Service, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain;
- Instituto Maimónides de Investigación Biomédica, 14004 Córdoba, Spain
| |
Collapse
|
5
|
Kovac H, Nagy JM, Käfer H, Stabentheiner A. Relationship between Nest and Body Temperature and Microclimate in the Paper Wasp Polistes dominula. INSECTS 2023; 14:886. [PMID: 37999085 PMCID: PMC10672314 DOI: 10.3390/insects14110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
The paper wasp Polistes dominula is a thermophilic species originating from the Mediterranean climate, but is now widely spread in Europe. They live in quite differing habitats; and as synanthropic species, they have been established in human settlement areas. They build a single small comb at protected places with a favorable microclimate. We measured the temperature of the wasps, the nests and their environment at typical nesting sides in Austria (Europe) in the temperate climate, in order to reveal relationships between nest and body temperature and the habitats' microclimate. The temperatures of the comb and of the wasps' body were in a wide range (~20-37 °C) above the ambient air temperature at the nest. This is an advantage as higher temperatures accelerate the development speed of the brood. However, the mean comb temperature did not exceed approximately 38.6 °C. This was managed by cooling efforts of the adult wasps. The ambient air temperature near the nest (~1-2 cm) was always clearly elevated above the ambient air temperature at a local standard weather station in the habitat. A comparison with climate-model-generated macroclimate data revealed the necessity of measuring microclimate data for a reliable description of the insects' thermal environment.
Collapse
Affiliation(s)
- Helmut Kovac
- Institute of Biology, University of Graz, 8010 Graz, Austria
| | | | | | | |
Collapse
|
6
|
Kovac H, Käfer H, Petrocelli I, Amstrup AB, Stabentheiner A. The Impact of Climate on the Energetics of Overwintering Paper Wasp Gynes ( Polistes dominula and Polistes gallicus). INSECTS 2023; 14:849. [PMID: 37999050 PMCID: PMC10672273 DOI: 10.3390/insects14110849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Gynes of paper wasps (Polistes sp.) spend the cold season in sheltered hibernacles. These hibernacles protect against predators and adverse weather conditions but offer only limited protection against low temperatures. During overwintering diapause, wasps live on the energy they store. We investigated the hibernacles' microclimate conditions of species from the Mediterranean (Italy, P. dominula, P. gallicus) and temperate (Austria, P. dominula) climates in order to describe the environmental conditions and calculate the energetic demand of overwintering according to standard metabolic rate functions. The temperatures at the hibernacles differed significantly between the Mediterranean and temperate habitats (average in Austria: 3.2 ± 5.71 °C, in Italy: 8.5 ± 5.29 °C). In both habitats, the hibernacle temperatures showed variance, but the mean hibernacle temperature corresponded closely to the meteorological climate data. Cumulative mass-specific energetic costs over the studied period were the lowest for the temperate P. dominula population compared with both Mediterranean species. The lower costs of the temperate species were a result of the lower hibernacle temperature and acclimation to lower environmental temperatures. Model calculations with an increased mean temperature of up to 3 °C due to climate change indicate a dramatic increase of up to 40% in additional costs.
Collapse
Affiliation(s)
- Helmut Kovac
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Helmut Käfer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Iacopo Petrocelli
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Astrid B. Amstrup
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Department of Biology—Genetics, Ecology and Evolution, 8000 Aarhus, Denmark
| | - Anton Stabentheiner
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
7
|
Bouchebti S, Domer A, Bodner L, Levin E. Passive heat diffusion in nests with downward-facing cells: Implications for early colony development in social wasps. J Therm Biol 2023; 116:103657. [PMID: 37473462 DOI: 10.1016/j.jtherbio.2023.103657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
Social insects employ a variety of active and passive mechanisms for nest thermoregulation. Many social wasp species exhibit a particular nest-architecture by building their nests with cells facing downward. By using thermal imaging to characterize the heat diffusion throughout Oriental hornet nests from different angular positions, we show that the heat diffusion along the vertical gradient of nests is more efficient when the cell openings face downward than when facing sideways or upward, demonstrating the efficiency of this specific architecture in increasing the nest temperature. This passive thermoregulation mechanism could be especially important during the initial stage of the colony, when the queen is alone to rear her first brood. Among the social insects that build cells to raise their brood, we suggest that wasps can take advantage of the thermal benefits of this particular architecture of their cells as, unlike bees, they do not usually store food in them.
Collapse
Affiliation(s)
- Sofia Bouchebti
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Adi Domer
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Levona Bodner
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Eran Levin
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
8
|
Kovac H, Käfer H, Petrocelli I, Amstrup AB, Stabentheiner A. Energetics of Paper Wasps ( Polistes sp.) from Differing Climates during the Breeding Season. INSECTS 2022; 13:800. [PMID: 36135501 PMCID: PMC9501522 DOI: 10.3390/insects13090800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Paper wasps are widely distributed in Europe. They live in the warm Mediterranean, and in the harsh Alpine climate. Some species are very careful in their choice of nesting sites to ensure a proper development of the brood. We investigated microclimate conditions at the nests of three species (P. dominula, P. gallicus, P. biglumis) from differing climates, in order to characterize environmental conditions and conduct energetic calculations for an entire breeding season. The mean ambient nest temperature differed significantly in the Mediterranean, temperate, and Alpine habitats, but in all habitats it was about 2 to 3 °C above the standard meteorological data. The energetic calculations of adult wasps' standard and active metabolic rate, based on respiratory measurements, differed significantly, depending on the measured ambient temperatures or the wasps' body temperatures. P. gallicus from the warm Mediterranean climate exhibited the highest energetic costs, whereas P. biglumis from the harsh Alpine climate had the lowest costs. Energetic costs of P. dominula from the temperate climate were somewhat lower than those in the Mediterranean species, but clearly higher than those in the Alpine species. Temperature increase due to climate change may have a severe impact on the wasps' survival as energetic costs increase.
Collapse
Affiliation(s)
- Helmut Kovac
- Institute of Biology, University of Graz, 8010 Graz, Austria
| | - Helmut Käfer
- Institute of Biology, University of Graz, 8010 Graz, Austria
| | - Iacopo Petrocelli
- Dipartimento di Biologia, Università di Firenze, 50019 Sesto Fiorentino, Italy
| | - Astrid B. Amstrup
- Institute of Biology, University of Graz, 8010 Graz, Austria
- Department of Biology-Genetics, Ecology and Evolution, 8000 Aarhus, Denmark
| | | |
Collapse
|
9
|
Stabentheiner A, Nagy JM, Kovac H, Käfer H, Petrocelli I, Turillazzi S. Effect of climate on strategies of nest and body temperature regulation in paper wasps, Polistes biglumis and Polistes gallicus. Sci Rep 2022; 12:3372. [PMID: 35233017 PMCID: PMC8888551 DOI: 10.1038/s41598-022-07279-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/14/2022] [Indexed: 11/10/2022] Open
Abstract
Polistes paper wasps are a widespread taxon inhabiting various climates. They build nests in the open without a protective outer layer, which makes them vulnerable to changing temperatures. To better understand the options they have to react to environmental variation and climate change, we here compare the thermoregulatory behavior of Polistes biglumis from cool Alpine climate with Polistes gallicus from warm Mediterranean climate. Behavioral plasticity helps both of them to withstand environmental variation. P. biglumis builds the nests oriented toward east-south-east to gain solar heat of the morning sun. This increases the brood temperature considerably above the ambience, which speeds up brood development. P. gallicus, by contrast, mostly avoids nesting sites with direct insolation, which protects their brood from heat stress on hot days. To keep the brood temperature below 40-42 °C on warm days, the adults of the two species show differential use of their common cooling behaviors. While P. biglumis prefers fanning of cool ambient air onto the nest heated by the sun and additionally cools with water drops, P. gallicus prefers cooling with water drops because fanning of warm ambient air onto a warm nest would not cool it, and restricts fanning to nests heated by the sun.
Collapse
Affiliation(s)
- Anton Stabentheiner
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria.
| | - Julia Magdalena Nagy
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
- Department of Neuroscience and Developmental Biology, University of Vienna, Djerassiplatz 1, 1030, Wien, Austria
| | - Helmut Kovac
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria.
| | - Helmut Käfer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Iacopo Petrocelli
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy
| | - Stefano Turillazzi
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Perez R, Aron S. Adaptations to thermal stress in social insects: recent advances and future directions. Biol Rev Camb Philos Soc 2020; 95:1535-1553. [PMID: 33021060 DOI: 10.1111/brv.12628] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/20/2023]
Abstract
Thermal stress is a major driver of population declines and extinctions. Shifts in thermal regimes create new environmental conditions, leading to trait adaptation, population migration, and/or species extinction. Extensive research has examined thermal adaptations in terrestrial arthropods. However, little is known about social insects, despite their major role in ecosystems. It is only within the last few years that the adaptations of social insects to thermal stress have received attention. Herein, we discuss what is currently known about thermal tolerance and thermal adaptation in social insects - namely ants, termites, social bees, and social wasps. We describe the behavioural, morphological, physiological, and molecular adaptations that social insects have evolved to cope with thermal stress. We examine individual and collective responses to both temporary and persistent changes in thermal conditions and explore the extent to which individuals can exploit genetic variability to acclimatise. Finally, we consider the costs and benefits of sociality in the face of thermal stress, and we propose some future research directions that should advance our knowledge of individual and collective thermal adaptations in social insects.
Collapse
Affiliation(s)
- Rémy Perez
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
11
|
Kovac H, Kundegraber B, Käfer H, Petrocelli I, Stabentheiner A. Relation between activity, endothermic performance and respiratory metabolism in two paper wasps: Polistes dominula and Polistes gallicus. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110804. [PMID: 32920209 DOI: 10.1016/j.cbpa.2020.110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Climate change is expected to produce shifts in species distributions as well as behavioural and physiological adaptations to find suitable conditions or to cope with the altered environment. The paper wasps Polistes dominula and Polistes gallicus are closely related species, native in the European Mediterranean region and North Africa. P. dominula has expanded its range to the relatively cooler climates of Northern and Eastern Europe, but P. gallicus remained in its original distribution area. In order to reveal their metabolic adaptation to the current climate conditions, and the impact on energy demand at future climate conditions, we investigated the respiratory metabolic rate (CO2 production) of P. dominula from Austria and P. gallicus from Italy. In contrast to the metabolic cold adaptation hypothesis their standard metabolic rate was nearly the same and increased in a typical exponential course with increasing ambient temperature. The metabolic rate of active wasps was higher than the standard metabolic rate and increased with the wasps' activity. There was no obvious difference in the active metabolism between the two species, with the exception that some P. gallicus individuals showed some extraordinary high values. A simultaneous measurement of metabolic rate and body temperature revealed that increased CO2 production was accompanied by endothermic activity. The two investigated populations of paper wasps are quite similar in their metabolic response to temperature, although they live in different climate regions. The spread of P. dominula into cooler regions did not have significant influence on their active and standard metabolic rate.
Collapse
Affiliation(s)
- Helmut Kovac
- Institute of Biology, University of Graz, Austria.
| | | | - Helmut Käfer
- Institute of Biology, University of Graz, Austria
| | - Iacopo Petrocelli
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy
| | | |
Collapse
|
12
|
The Respiratory Metabolism of Polistes biglumis, a Paper Wasp from Mountainous Regions. INSECTS 2020; 11:insects11030165. [PMID: 32143398 PMCID: PMC7142496 DOI: 10.3390/insects11030165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/03/2022]
Abstract
European Polistine wasps inhabit mainly temperate and warm climate regions. However, the paper wasp Polistes biglumis represents an exception; it resides in mountainous areas, e.g., in the Alps and in the Apennines. In these habitats, the wasps are exposed to a broad temperature range during their lifetime. We investigated whether they developed adaptations in their metabolism to their special climate conditions by measuring their CO2 production. The standard or resting metabolic rate and the metabolism of active wasps was measured in the temperature range which they are exposed to in their habitat in summer. The standard metabolic rate increased in a typical exponential progression with ambient temperature, like in other wasps. The active metabolism also increased with temperature, but not in a simple exponential course. Some exceptionally high values were presumed to originate from endothermy. The simultaneous measurement of body temperature and metabolic rate revealed a strong correlation between these two parameters. The comparison of the standard metabolic rate of Polistes biglumis with that of Polistes dominula revealed a significantly lower metabolism of the alpine wasps. This energy saving metabolic strategy could be an adaptation to the harsh climate conditions, which restricts foraging flights and energy recruitment.
Collapse
|
13
|
|
14
|
Effect of temperature on the chemical profiles of nest materials of social wasps. J Therm Biol 2019; 84:214-220. [PMID: 31466756 DOI: 10.1016/j.jtherbio.2019.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 11/20/2022]
Abstract
Social insects depend on their nests for protection against predation and abiotic threats. Accordingly, the chemical compounds present in the material wasps use to build their nests can both facilitate communication and repel predators. It is herein hypothesized that different wasp species build their nests with different structure and substrate materials and that such materials consist of chemical compounds related to unique wasp behavior and outside temperature variation. To test this hypothesis, nests were collected from three species of social wasps, the samples of which were subjected to temperature variation under laboratory conditions. The compounds present in the substrate were analyzed by gas chromatography coupled to mass spectrometry. Chemical compounds identified in the nest material of the three species responded differently to temperature variation. Chemical compounds from Polybia nests were altered significantly when subjected to temperature variation, whereas the nests of Polistes versicolor did not significantly change in relation to the control. The differences found between Polistes and Polybia nests may be related to genetic factors, but also to the type of nest they construct. It is possible that divergent evolutionary strategies for maintaining colony temperature, as a function of the chemical composition of the nests, may have appeared between wasps that have open and closed nests. In relatively small colonies, nest substrate is more resistant to temperature variation because it is composed of a greater diversity of elements and thus capable of holding heavier, longer carbon chains. Our results suggest that chemical compounds in the nest material of the three wasp species analysed responded differently to fluctuating ambient temperatures and that such variation could result from the biochemical differences of unique wasp species or from thermoregulation strategies of colonies.
Collapse
|
15
|
The Thermoregulatory Behavior of Nectar Foraging Polistine Wasps ( Polistes dominula and Polistes gallicus) in Different Climate Conditions. INSECTS 2019; 10:insects10070187. [PMID: 31252677 PMCID: PMC6681210 DOI: 10.3390/insects10070187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/14/2019] [Accepted: 06/22/2019] [Indexed: 11/26/2022]
Abstract
Polistine wasps collect nectar for their energetic demand and for the provision of the brood. They are mainly ectothermic during different behavioral tasks. We investigated the body temperature of two species living in differing habitats and climate regions, in order to reveal the environmental influence on their thermoregulatory behavior. The species were Polistes dominula in the temperate climate of Central Europe, and Polistes gallicus in the warm Mediterranean climate of Southern Europe. The wasp’s body temperature was measured during foraging on lovage (Levisticum officinale) and fennel (Foeniculum vulgare) by infrared thermography in the entire ambient temperature range they are usually exposed to (Ta ~ 20–40 °C). The temperature of all body parts increased nearly linearly with ambient temperature, with the thorax as the warmest part. To achieve optimal foraging temperatures, they preferably use solar radiation. An “operative temperature model” enabled the evaluation of the endothermic effort. Polistes dominula foraging on lovage exhibited no endothermic activity. However, while foraging on fennel they had a weak and almost constant endothermic performance of about 1 °C. Polistes gallicus, by contrast, exhibited mostly no or only minor endothermy during foraging. Both wasps avoid a high energetic effort and this way reduce their foraging costs.
Collapse
|
16
|
Climate changes and Hymenoptera venom allergy: are there some connections? Curr Opin Allergy Clin Immunol 2017; 17:344-349. [DOI: 10.1097/aci.0000000000000388] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|