1
|
Padilla P, Herrel A, Denoël M. Invading new climates at what cost? Ontogenetic differences in the thermal dependence of metabolic rate in an invasive amphibian. J Therm Biol 2024; 121:103836. [PMID: 38604116 DOI: 10.1016/j.jtherbio.2024.103836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Global warming can either promote or constrain the invasive potential of alien species. In ectotherm invaders that exhibit a complex life cycle, success is inherently dependent on the capacity of each developmental stage to cope with environmental change. This is particularly relevant for invasive anurans, which disperse on land while requiring water for reproduction. However, it remains unknown how the different life stages respond in terms of energy expenditure under different climate change scenarios. We here quantified the oxygen uptake of frogs at rest (a proxy of the standard metabolic rate) in the aquatic phase (at the tadpole and climax, i.e. during metamorphosis, stages) and in the terrestrial phase (metamorphosed stage) at three environmental temperatures. To do so, we used marsh frogs (Pelophylax ridibundus), an amphibian with the largest invasive range within the palearctic realm and for which their adaptation to global warming might be key to their invasion success. Beyond an increase of metabolic rate with temperature, our data show variation in thermal adaptation across life stages and a higher metabolic cost during metamorphosis. These results suggest that the cost to shift habitat and face changes in temperature may be a constraint on the invasive potential of species with a complex life cycle which may be particularly vulnerable during metamorphosis.
Collapse
Affiliation(s)
- Pablo Padilla
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic Science Unit of Research (FOCUS), University of Liège, Liège, Belgium; UMR 7179, C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Paris, France.
| | - Anthony Herrel
- UMR 7179, C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Paris, France; Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium; Department of Biology, University of Antwerp, Wilrijk, Belgium; Naturhistorisches Museum Bern, Bern, Switzerland
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic Science Unit of Research (FOCUS), University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Renoirt M, Angelier F, Cheron M, Brischoux F. What are the contributions of maternal and paternal traits to fecundity and offspring development? A case study in an amphibian species, the spined toad Bufo spinosus. Curr Zool 2023; 69:527-534. [PMID: 37637310 PMCID: PMC10449425 DOI: 10.1093/cz/zoac072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/25/2022] [Indexed: 08/29/2023] Open
Abstract
Assessing the determinants of reproductive success is critical but often complicated because of complex interactions between parental traits and environmental conditions occurring during several stages of a reproductive event. Here, we used a simplified ecological situation-an amphibian species lacking post-oviposition parental care-and a laboratory approach to investigate the relationships between parental (both maternal and paternal) phenotypes (body size and condition) and reproductive success (fecundity, egg size, embryonic and larval duration, larval and metamorphic morphology). We found significant effects of maternal phenotype on fecundity, hatching success, and tadpole size, as well as on the duration of larval development. Interestingly, and more surprisingly, we also found a potential contribution of the paternal phenotype occurring during early (embryonic development duration) offspring development. Although our study focused on life-history traits such as body size and development duration, additional mechanisms involving physiological costs of development may well mediate the relationships between parental phenotypes and offspring development. Future studies are required to decipher the mechanisms underlying our findings in order to clarify the mechanistic basis of the links between parental phenotypes and offspring development.
Collapse
Affiliation(s)
- Matthias Renoirt
- Centre d’Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| | - Frédéric Angelier
- Centre d’Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| | - Marion Cheron
- Centre d’Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| | - François Brischoux
- Centre d’Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| |
Collapse
|
3
|
Ruthsatz K, Schwarz A, Gomez-Mestre I, Meyer R, Domscheit M, Bartels F, Schaeffer SM, Engelkes K. Life in plastic, it's not fantastic: Sublethal effects of polyethylene microplastics ingestion throughout amphibian metamorphosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163779. [PMID: 37146798 DOI: 10.1016/j.scitotenv.2023.163779] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Microplastics (MP) are an abundant, long-lasting, and widespread type of environmental pollution that is of increasing concern as it might pose a serious threat to ecosystems and species. However, these threats are still largely unknown for amphibians. Here, we used the African clawed frog (Xenopus laevis) as a model species to investigate whether polyethylene MP ingestion affects amphibian growth and development and leads to metabolic changes across two consecutive life stages (larvae and juveniles). Furthermore, we examined whether MP effects were more pronounced at higher rearing temperatures. Larval growth, development, and body condition were recorded, and standard metabolic rate (SMR) and levels of stress hormone (corticosterone, CORT) were measured. We determined variation in size, morphology, and hepatosomatic index in juveniles to identify any potential consequences of MP ingestion across metamorphosis. In both life stages, MP accumulation in the body was assessed. MP ingestion was found to result in sublethal effects on larval growth, development, and metabolism, to lead to allometric carry-over effects on juvenile morphology, and to accumulate in the specimens at both life stages. In larvae, SMR and developmental rate increased in response to MP ingestion; there additionally was a significant interaction of MP ingestion and temperature on development. CORT levels were higher in larvae that ingested MP, except at higher temperature. In juveniles, body was wider, and extremities were longer in animals exposed to MP during the larval stage; a high rearing temperature in combination with MP ingestion counteracted this effect. Our results provide first insights into the effects of MP on amphibians throughout metamorphosis and demonstrate that juvenile amphibians may act as a pathway for MP from freshwater to terrestrial environments. To allow for generalizations across amphibian species, future experiments need to consider the field prevalence and abundance of different MP in amphibians at various life stages.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany.
| | - Anja Schwarz
- Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| | - Ivan Gomez-Mestre
- Ecology, Evolution, and Development Group, Department Ecology and Evolution, Doñana Biological Station, CSIC, 41092 Seville, Spain
| | - Ruth Meyer
- Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| | - Marie Domscheit
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Fabian Bartels
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Sarah-Maria Schaeffer
- Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| | - Karolin Engelkes
- Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany; Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| |
Collapse
|
4
|
Petrović TG, Vučić T, Burraco P, Gavrilović BR, Despotović SG, Gavrić JP, Radovanović TB, Šajkunić S, Ivanović A, Prokić MD. Higher temperature induces oxidative stress in hybrids but not in parental species: A case study of crested newts. J Therm Biol 2023; 112:103474. [PMID: 36796919 DOI: 10.1016/j.jtherbio.2023.103474] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/11/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023]
Abstract
Ectotherms are particularly sensitive to global warming due to their limited capacity to thermoregulate, which can impact their performance and fitness. From a physiological standpoint, higher temperatures often enhance biological processes that can induce the production of reactive oxygen species and result in a state of cellular oxidative stress. Temperature alters interspecific interactions, including species hybridization. Hybridization under different thermal conditions could amplify parental (genetic) incompatibilities, thus affecting a hybrid's development and distribution. Understanding the impact of global warming on the physiology of hybrids and particularly their oxidative status could help in predicting future scenarios in ecosystems and in hybrids. In the present study, we investigated the effect of water temperature on the development, growth and oxidative stress of two crested newt species and their reciprocal hybrids. Larvae of Triturus macedonicus and T. ivanbureschi, and their T. macedonicus-mothered and T. ivanbureschi-mothered hybrids were exposed for 30 days to temperatures of 19°C and 24°C. Under the higher temperature, the hybrids experienced increases in both growth and developmental rates, while parental species exhibited accelerated growth (T. macedonicus) or development (T. ivanbureschi). Warm conditions also had different effects on the oxidative status of hybrid and parental species. Parental species had enhanced antioxidant responses (catalase, glutathione peroxidase, glutathione S-transferase and SH groups), which allowed them to alleviate temperature-induced stress (revealed by the absence of oxidative damage). However, warming induced an antioxidant response in the hybrids, including oxidative damage in the form of lipid peroxidation. These findings point to a greater disruption of redox regulation and metabolic machinery in hybrid newts, which can be interpreted as the cost of hybridization that is likely linked to parental incompatibilities expressed under a higher temperature. Our study aims to improve mechanistic understanding of the resilience and distribution of hybrid species that cope with climate-driven changes.
Collapse
Affiliation(s)
- Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Tijana Vučić
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia; Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, the Netherlands.
| | - Pablo Burraco
- Doñana Biological Station (CSIC), C/ Americo Vespucci 26, 41092, Seville, Spain.
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Sanja Šajkunić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Ana Ivanović
- Faculty of Biology, Institute of Zoology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia.
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| |
Collapse
|
5
|
Ruthsatz K, Eterovick PC, Bartels F, Mausbach J. Contributions of water-borne corticosterone as one non-invasive biomarker in assessing nitrate pollution stress in tadpoles of Rana temporaria. Gen Comp Endocrinol 2023; 331:114164. [PMID: 36400158 DOI: 10.1016/j.ygcen.2022.114164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022]
Abstract
Among a multitude of stressors to which wildlife is exposed, environmental pollution is a pervasive one that poses a serious threat. The permeable skin of amphibians is likely to increase direct contact of the body with pollutants, making them a group worth studying to access environmental quality. Consequently, finding reliable and complementary biomarkers that will present detectable and predictable changes in response to pollutants is essential to identify pollution sublethal effects on amphibians and to investigate whether these are in part responsible for population declines. The glucocorticoid hormone corticosterone (CORT), involved in many metabolic functions, is often used to measure the physiological stress response to environmental stressors in amphibians. In this study, we evaluated whether water-borne CORT can serve as a non-invasive biomarker for nitrate pollution stress in the European common frog (Rana temporaria) by comparing the effect of nitrate exposure on hormone release rates and on other physiological downstream biomarkers, i.e., ultimate physiological effects of the stressor. Specifically, we investigated the effect of different nitrate concentrations (0, 10, 50, and 100 mg/L) on water-borne CORT release rates, age, size, and body condition. Exposure to nitrate pollution significantly increased age at metamorphosis and water-borne CORT release rates, and led to reduced mass and body condition, but only at higher nitrate concentrations (i.e., 50 and 100 mg/L). Considering this similar sensitivity to other acknowledged biomarkers, water-borne CORT was a reliable biomarker of physiological stress in R. temporaria exposed to nitrate pollution stress in a controlled single-stressor laboratory approach. Thus, water-borne CORT is a promising method to be included in more holistic approaches. We recommend that such approaches keep testing multiple biomarker combinations, as species are exposed to several stressors likely to interact and produce varied outcomes in different biomarkers in their natural habitats.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany.
| | - Paula C Eterovick
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Fabian Bartels
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Jelena Mausbach
- Eawag & ETH Zurich,Überlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
6
|
Abstract
Rising temperatures represent a significant threat to the survival of ectothermic animals. As such, upper thermal limits represent an important trait to assess the vulnerability of ectotherms to changing temperatures. For instance, one may use upper thermal limits to estimate current and future thermal safety margins (i.e., the proximity of upper thermal limits to experienced temperatures), use this trait together with other physiological traits in species distribution models, or investigate the plasticity and evolvability of these limits for buffering the impacts of changing temperatures. While datasets on thermal tolerance limits have been previously compiled, they sometimes report single estimates for a given species, do not present measures of data dispersion, and are biased towards certain parts of the globe. To overcome these limitations, we systematically searched the literature in seven languages to produce the most comprehensive dataset to date on amphibian upper thermal limits, spanning 3,095 estimates across 616 species. This resource will represent a useful tool to evaluate the vulnerability of amphibians, and ectotherms more generally, to changing temperatures.
Collapse
|
7
|
Pottier P, Burke S, Zhang RY, Noble DWA, Schwanz LE, Drobniak SM, Nakagawa S. Developmental plasticity in thermal tolerance: Ontogenetic variation, persistence, and future directions. Ecol Lett 2022; 25:2245-2268. [PMID: 36006770 DOI: 10.1111/ele.14083] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023]
Abstract
Understanding the factors affecting thermal tolerance is crucial for predicting the impact climate change will have on ectotherms. However, the role developmental plasticity plays in allowing populations to cope with thermal extremes is poorly understood. Here, we meta-analyse how thermal tolerance is initially and persistently impacted by early (embryonic and juvenile) thermal environments by using data from 150 experimental studies on 138 ectothermic species. Thermal tolerance only increased by 0.13°C per 1°C change in developmental temperature and substantial variation in plasticity (~36%) was the result of shared evolutionary history and species ecology. Aquatic ectotherms were more than three times as plastic as terrestrial ectotherms. Notably, embryos expressed weaker but more heterogenous plasticity than older life stages, with numerous responses appearing as non-adaptive. While developmental temperatures did not have persistent effects on thermal tolerance overall, persistent effects were vastly under-studied, and their direction and magnitude varied with ontogeny. Embryonic stages may represent a critical window of vulnerability to changing environments and we urge researchers to consider early life stages when assessing the climate vulnerability of ectotherms. Overall, our synthesis suggests that developmental changes in thermal tolerance rarely reach levels of perfect compensation and may provide limited benefit in changing environments.
Collapse
Affiliation(s)
- Patrice Pottier
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha Burke
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Rose Y Zhang
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lisa E Schwanz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Szymon M Drobniak
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Ruthsatz K, Bartels F, Stützer D, Eterovick PC. Timing of parental breeding shapes sensitivity to nitrate pollution in the common frog Rana temporaria. J Therm Biol 2022; 108:103296. [DOI: 10.1016/j.jtherbio.2022.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
|
9
|
Ruthsatz K, Dausmann KH, Peck MA, Glos J. Thermal tolerance and acclimation capacity in the European common frog (Rana temporaria) change throughout ontogeny. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:477-490. [PMID: 35226414 DOI: 10.1002/jez.2582] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/04/2022] [Accepted: 01/28/2022] [Indexed: 12/23/2022]
Abstract
Phenotypic plasticity may allow ectotherms with complex life histories such as amphibians to cope with climate-driven changes in their environment. Plasticity in thermal tolerance (i.e., shifts of thermal limits via acclimation to higher temperatures) has been proposed as a mechanism to cope with warming and extreme thermal events. However, thermal tolerance and, hence, acclimation capacity, is known to vary with life stage. Using the common frog (Rana temporaria) as a model species, we measured the capacity to adjust lower (CTmin ) and upper (CTmax ) critical thermal limits at different acclimation temperatures. We calculated the acclimation response ratio as a metric to assess the stage-specific acclimation capacity at each of seven consecutive ontogenetic stages and tested whether acclimation capacity was influenced by body mass and/or age. We further examined how acclimation temperature, body mass, age, and ontogenetic stage influenced CTmin and CTmax . In the temperate population of R. temporaria that we studied, thermal tolerance and acclimation capacity were affected by the ontogenetic stage. However, acclimation capacity at both thermal limits was well below 100% at all life stages tested. The lowest and highest acclimation capacity in thermal limits was observed in young and late larvae, respectively. The relatively low acclimation capacity of young larvae highlights a clear risk of amphibian populations to ongoing climate change. Ignoring stage-specific differences in thermal physiology may drastically underestimate the climate vulnerability of species, which will hamper successful conservation actions.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Zoology, Universität Hamburg, Hamburg, Germany
| | | | - Myron A Peck
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Den Burg (Texel), The Netherlands
| | - Julian Glos
- Institute of Zoology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
10
|
Radovanović TB, Gavrilović BR, Petrović TG, Despotović SG, Gavrić JP, Kijanović A, Mirč M, Tomašević Kolarov N, Faggio C, Prokić MD. Impact of desiccation pre-exposure on deltamethrin-induced oxidative stress in Bombina variegata juveniles. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109191. [PMID: 34536572 DOI: 10.1016/j.cbpc.2021.109191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/25/2021] [Accepted: 09/11/2021] [Indexed: 12/27/2022]
Abstract
Global warming represents a severe threat to existing ecosystems, especially for anuran tadpoles who encounter significant fluctuations in their habitats. Decreasing water levels in permanent and temporary water bodies is a significant risk for larval survival or fitness. On the other hand, the natural environment of amphibians is extremely polluted by various xenobiotics. This study evaluated how pre-exposure of Bombina variegata tadpoles to chronic environmental stress (desiccation) modulates the biochemical response of juvenile individuals to following acute chemical stressor (pesticide deltamethrin). Our results demonstrated that individually applied pesticide changed the thiol and lipid status of the treated juveniles but animals subjected solely to desiccation pressure were more tolerant to free radicals and showed no induction of lipid peroxidation. Comparison of juveniles exposed to deltamethrin revealed that desiccation pretreatment during the larval stage of development modified cellular protection in the juveniles. Higher activities of CAT, GSH-Px and GR were recorded in the pre-exposed group, as well as a lower degree of lipid peroxidation relative to the group that was not pre-exposed to low water stress. Pre-desiccated groups displayed the greatest range of coordination of investigated antioxidant parameters, supported by Pearson's correlations. Activation of the GSH-redox system is a significant marker in juveniles against stress caused by desiccation and a chemical stressor. The stressful environment experienced during tadpole development produced an adaptive reaction to subsequent exposure to another stressor in juveniles. To develop relevant management and conservation strategies, more studies of the interactive effects of environmental and chemical stressors are necessary.
Collapse
Affiliation(s)
- Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Ana Kijanović
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Marko Mirč
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Nataša Tomašević Kolarov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
11
|
Romano RM, de Oliveira JM, de Oliveira VM, de Oliveira IM, Torres YR, Bargi-Souza P, Martino Andrade AJ, Romano MA. Could Glyphosate and Glyphosate-Based Herbicides Be Associated With Increased Thyroid Diseases Worldwide? Front Endocrinol (Lausanne) 2021; 12:627167. [PMID: 33815286 PMCID: PMC8018287 DOI: 10.3389/fendo.2021.627167] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The increased incidence of thyroid diseases raises a series of questions about what the main predisposing factors are nowadays. If dietary restriction of iodine was once a major global health concern, today, the processes of industrialization of food and high exposure to a wide variety of environmental chemicals may be affecting, directly or indirectly, thyroid function. The homeostasis of hypothalamus-pituitary-thyroid (HPT) axis is finely regulated through the negative feedback mechanism exerted by thyroid hormones. Allostatic mechanisms are triggered to adjust the physiology of HPT axis in chronic conditions. Glyphosate and glyphosate-based herbicides are pesticides with controversial endocrine disrupting activities and only few studies have approached their effects on HPT axis and thyroid function. However, glyphosate has an electrophilic and nucleophilic zwitterion chemical structure that may affect the mechanisms involved in iodide oxidation and organification, as well as the oxidative phosphorylation in the ATP synthesis. Thus, in this review, we aimed to: (1) discuss the critical points in the regulation of HPT axis and thyroid hormones levels balance, which may be susceptible to the toxic action of glyphosate and glyphosate-based herbicides, correlating the molecular mechanisms involved in glyphosate toxicity described in the literature that may, directly or indirectly, be associated to the higher incidence of thyroid diseases; and (2) present the literature regarding glyphosate toxicity in HPT axis.
Collapse
Affiliation(s)
| | | | | | | | | | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | |
Collapse
|
12
|
Bodensteiner BL, Agudelo‐Cantero GA, Arietta AZA, Gunderson AR, Muñoz MM, Refsnider JM, Gangloff EJ. Thermal adaptation revisited: How conserved are thermal traits of reptiles and amphibians? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:173-194. [DOI: 10.1002/jez.2414] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Brooke L. Bodensteiner
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA
| | - Gustavo A. Agudelo‐Cantero
- Department of Physiology, Institute of Biosciences University of São Paulo São Paulo Brazil
- Department of Biology ‐ Genetics, Ecology, and Evolution Aarhus University Aarhus Denmark
| | | | - Alex R. Gunderson
- Department of Ecology and Evolutionary Biology Tulane University New Orleans Louisiana USA
| | - Martha M. Muñoz
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA
| | | | - Eric J. Gangloff
- Department of Zoology Ohio Wesleyan University Delaware Ohio USA
| |
Collapse
|