1
|
Grond K, Zur Tulod J, Kurtz CC, Duddleston KN. Effects of the anti-inflammatory drug budesonide on the gut microbiota and cytokine production of 13-lined ground squirrels during prehibernation fattening. Physiol Genomics 2024; 56:711-720. [PMID: 39250427 PMCID: PMC11573255 DOI: 10.1152/physiolgenomics.00034.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/11/2024] Open
Abstract
The gut microbiome is essential for maintaining organismal health. Gut microbiota may be disrupted through external factors like dietary change, which can lead to gut inflammation, resulting in obesity. Hibernating mammals develop low-grade gut inflammation when they accumulate fat deposits in preparation for hibernation, making them useful models for studying the relationship between the microbiome, inflammation, and weight gain. Nonsteroidal anti-inflammatory drugs and steroids are commonly used in humans to target gut inflammation, but how these drugs affect the gut microbiome and its stability is unclear. We investigated the effect of the glucocorticoid drug budesonide on the gut microbiome and cytokine levels of an obligate hibernator, the 13-lined ground squirrel, during the fattening season. We used 16S rRNA gene sequencing to characterize bacterial communities in the lumen and mucosa of the cecum and colon and measured proinflammatory [tumor necrosis factor-α (TNF-α)/interleukin 6 (IL-6)] and anti-inflammatory (IL-10) cytokine levels. Budesonide affected the microbiome only in the cecum lumen, where bacterial diversity was higher in the control group, and communities significantly differed between treatments. Across gut sections, Marvinbryantia and Enterococcus were significantly higher in the budesonide group, whereas Sarcina was higher in the control group. TNF-α and IL-6 levels were higher in control squirrels compared with the budesonide group, but there was no difference in IL-10 levels. Overall, budesonide treatment affected the microbial community and diversity of 13-lined ground squirrels in the cecum lumen. Our study presents another step toward developing ground squirrels as a model for studying the interaction between the microbiota and host inflammation.NEW & NOTEWORTHY Disruptions of gut microbiota can lead to inflammation, resulting in weight gain. Inflammation can be treated with budesonide, but how budesonide affects gut microbiota is unclear. Thirteen-lined ground squirrels experience low-grade gut inflammation during prehibernation fattening, which compares with human inflammation-weight gain mechanisms. We showed that budesonide treatment decreased microbiome diversity and lead to a shift in community in the cecum lumen. Our study supports developing ground squirrels as a model for studying microbiome-inflammation interactions.
Collapse
Affiliation(s)
- Kirsten Grond
- Department of Biological Sciences, College of Arts and Sciences, University of Alaska Anchorage, Anchorage, Alaska, United States
| | - Jewel Zur Tulod
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States
| | - Courtney C Kurtz
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States
| | - Khrystyne N Duddleston
- Department of Biological Sciences, College of Arts and Sciences, University of Alaska Anchorage, Anchorage, Alaska, United States
| |
Collapse
|
2
|
Zur Tulod J, Witman ND, Grond K, Duddleston KN, Kurtz CC. Treatment with gut-specific nonsteroidal anti-inflammatory drug attenuates metabolic inflammation but not body mass in fattening ground squirrels. Am J Physiol Regul Integr Comp Physiol 2023; 325:R456-R464. [PMID: 37602382 PMCID: PMC11178295 DOI: 10.1152/ajpregu.00078.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
The active season of hibernators corresponds to rapid adiposity in preparation for the next hibernation season. We have previously shown that this dramatic increase in adipose mass is associated with metabolic inflammation similar to what is seen in obesity and metabolic disease. We next sought to determine whether curbing this inflammation at its source (i.e., the gut) would attenuate weight gain in fattening 13-lined ground squirrels (Ictidomys tridecemlineatus). We fed active yearling ground squirrels a diet containing the gut-specific nonsteroidal anti-inflammatory drug mesalazine (5-aminosalicylic acid) for 10 wk. Mesalazine treatment had slight effects on microbial community diversity in the cecum and colon. Not surprisingly, mesalazine treatment decreased inflammatory cytokine levels in the ileum and colon. Mesalazine also decreased proinflammatory and increased anti-inflammatory cytokines in omental white adipose tissue (oWAT). Despite this, body mass was unaffected, and caloric intake increased in mesalazine-treated squirrels, mainly in males. Mass of the primary WAT depot, intra-abdominal WAT (iaWAT), or the highly metabolic oWAT were unaltered by treatment, as was adiposity index. Together, these results suggest that mesalazine treatment has some effects on adiposity in fattening ground squirrels, but this treatment needs to be modified to overcome the strong drive to fatten in this species.NEW & NOTEWORTHY Adiposity and obesity are caused, at least in part, by inflammation of metabolic tissues. Hibernators, like ground squirrels, undergo this same metabolic inflammation during their summer fattening period. We attempted to curb this inflammation, and thus fattening, using mesalazine. We found that mesalazine did curb the inflammation but did not affect fattening, likely due to the strong drive to fatten in hibernators.
Collapse
Affiliation(s)
- Jewel Zur Tulod
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States
| | - Nathan D Witman
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States
| | - Kirsten Grond
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, United States
| | - Khrystyne N Duddleston
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, United States
| | - Courtney C Kurtz
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States
| |
Collapse
|
3
|
Ingelson-Filpula WA, Storey KB. Hibernation-Induced microRNA Expression Promotes Signaling Pathways and Cell Cycle Dysregulation in Ictidomys tridecemlineatus Cardiac Tissue. Metabolites 2023; 13:1096. [PMID: 37887421 PMCID: PMC10608741 DOI: 10.3390/metabo13101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
The thirteen-lined ground squirrel Ictidomys tridecemlineatus is a rodent that lives throughout the United States and Canada and uses metabolic rate depression to facilitate circannual hibernation which helps it survive the winter. Metabolic rate depression is the reorganization of cellular physiology and molecular biology to facilitate a global downregulation of nonessential genes and processes, which conserves endogenous fuel resources and prevents the buildup of waste byproducts. Facilitating metabolic rate depression requires a complex interplay of regulatory approaches, including post-transcriptional modes such as microRNA. MicroRNA are short, single-stranded RNA species that bind to mRNA transcripts and target them for degradation or translational suppression. Using next-generation sequencing, we analyzed euthermic vs. hibernating cardiac tissue in I. tridecemlineatus to predict seven miRNAs (let-7e-5p, miR-122-5p, miR-2355-3p, miR-6715b-3p, miR-378i, miR-9851-3p, and miR-454-3p) that may be differentially regulated during hibernation. Gene ontology and KEGG pathway analysis suggested that these miRNAs cause a strong activation of ErbB2 signaling which causes downstream effects, including the activation of MAPK and PI3K/Akt signaling and concurrent decreases in p53 signaling and cell cycle-related processes. Taken together, these results predict critical miRNAs that may change during hibernation in the hearts of I. tridecemlineatus and identify key signaling pathways that warrant further study in this species.
Collapse
Affiliation(s)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada;
| |
Collapse
|
4
|
Jennings T, Janquart M, Washak C, Duddleston K, Kurtz C. What's gut got to do with it? The role of the microbiota and inflammation in the development of adiposity and obesity. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00029. [PMID: 37492183 PMCID: PMC10364962 DOI: 10.1097/in9.0000000000000029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Obesity is a complex and heterogeneous disease characterized by increased adiposity, ie, the accumulation of lipids and the growth of adipose tissue. In this mini-review, we explore the important role of the gut microbiota and immune system in the development of adiposity. Dysbiosis of the microbiota leads to increased permeability of the gut barrier and bacterial products in the bloodstream, which triggers metabolic inflammation of adipose tissue, muscle, and liver. Inflammation in these highly metabolic organs exacerbates adiposity and contributes to the development of comorbidities associated with obesity. Studies in animal models that manipulate the microbiota and/or inflammation have shown promise in the treatment of obesity.
Collapse
Affiliation(s)
- Travis Jennings
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
| | - Mallory Janquart
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - Catherine Washak
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - Khrystyne Duddleston
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
| | - Courtney Kurtz
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| |
Collapse
|
5
|
Grond K, Kurtz CC, Hatton J, Sonsalla MM, Duddleston KN. Gut microbiome is affected by gut region but robust to host physiological changes in captive active-season ground squirrels. Anim Microbiome 2021; 3:56. [PMID: 34389044 PMCID: PMC8361659 DOI: 10.1186/s42523-021-00117-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023] Open
Abstract
Background Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) are obligate hibernators and are only active 4–5 months annually. During this period, squirrels rapidly acquire fat for use during hibernation. We investigated how the gut microbiome changed over the active season in the mucosa and lumen of two gut sections: the cecum and ileum. We sequenced the 16S rRNA gene to assess diversity and composition of the squirrel gut microbiome and used differential abundance and network analyses to identify relationships among gut sections. Results Microbial composition significantly differed between the cecum and ileum, and within the ileum between the mucosa and lumen. Cecum mucosa and lumen samples did not differ in alpha diversity and composition, and clustered by individual squirrel. Ileum mucosa and lumen samples differed in community composition, which can likely be attributed to the transient nature of food-associated bacteria in the lumen. We did not detect a shift in microbiome diversity and overall composition over the duration of the active season, indicating that the squirrel microbiome may be relatively robust to changes in physiology. Conclusions Overall, we found that the 13-lined ground squirrel microbiome is shaped by microenvironment during the active season. Our results provide baseline data for new avenues of research, such as investigating potential differences in microbial function among these physiologically unique gut environments. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00117-0.
Collapse
Affiliation(s)
- Kirsten Grond
- Department of Biological Sciences, College of Arts and Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK, 99508, USA.
| | - Courtney C Kurtz
- Department of Biology, College of Letters and Science, University of Wisconsin-Oshkosh, 800 Algoma Blvd., Oshkosh, WI, 54901, USA
| | - Jasmine Hatton
- Department of Biological Sciences, College of Arts and Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK, 99508, USA
| | - Michelle M Sonsalla
- Department of Biology, College of Letters and Science, University of Wisconsin-Oshkosh, 800 Algoma Blvd., Oshkosh, WI, 54901, USA
| | - Khrystyne N Duddleston
- Department of Biological Sciences, College of Arts and Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK, 99508, USA
| |
Collapse
|