1
|
Al-Maweri SA, Al-Mashraqi AA, Al-Qadhi G, Al-Hebshi N, Ba-Hattab R. The association between the oral microbiome and hypertension: a systematic review. J Oral Microbiol 2025; 17:2459919. [PMID: 39902217 PMCID: PMC11789219 DOI: 10.1080/20002297.2025.2459919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/12/2024] [Accepted: 01/02/2025] [Indexed: 02/05/2025] Open
Abstract
Background This study systematically reviewed the available evidence regarding the potential association between oral microbiota and hypertension. Methods A comprehensive search of online databases was conducted by two independent investigators for all relevant articles. All observational studies that assessed the association between oral microbiota and hypertension were included. Quality appraisal was conducted using the NOS tool. Results A total of 17 studies comprising 6007 subjects were included. The studies varied with respect to sample type and microbial analysis method. All studies, except one, found significant differences in microbial composition between hypertensive and normotensive subjects. However, there were substantial inconsistencies regarding the specific differences identified. Still, a few taxa were repeatedly found enriched in hypertension including Aggregatibacter, Kingella, Lautropia, and Leptotrachia besides the red complex periodontal pathogens. When considering only studies that controlled for false discovery rates and confounders, Atopobium, Prevotella, and Veillonella were identified as consistently associated with hypertension. Conclusion There are significant differences in the oral microbiome between hypertensive and normotensive subjects. Despite the heterogeneity between the included studies, a subset of microbial taxa seems to be consistently enriched in hypertension. Further studies are highly recommended to explore this association. Registration PROSPERO database (ID: CRD42023495005).
Collapse
Affiliation(s)
| | | | - Gamilah Al-Qadhi
- Department of Basic Dental Sciences, Faculty of Dentistry, University of Science and Technology, Aden, Yemen
| | - Nezar Al-Hebshi
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Raidan Ba-Hattab
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Zhong Y, Kang X, Bai X, Pu B, Smerin D, Zhao L, Xiong X. The Oral-Gut-Brain Axis: The Influence of Microbes as a Link of Periodontitis With Ischemic Stroke. CNS Neurosci Ther 2024; 30:e70152. [PMID: 39675010 DOI: 10.1111/cns.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Periodontitis, a non-communicable chronic inflammation disease resulting from dysbiosis of the oral microbiota, has been demonstrated to have a positive association with the risk of ischemic stroke (IS). The major periodontal pathogens contribute to the progression of stroke-related risk factors such as obesity, diabetes, atherosclerosis, and hypertension. Transcriptional changes in periodontitis pathogens have been detected in oral samples from stroke patients, suggesting a new conceptual framework involving microorganisms. The bidirectional regulation between the gut and the central nervous system (CNS) is mediated by interactions between intestinal microflora and brain cells. The connection between the oral cavity and gut through microbiota indicates that the oral microbial community may play a role in mediating complex communication between the oral cavity and the CNS; however, underlying mechanisms have yet to be fully understood. In this review, we present an overview of key concepts and potential mechanisms of interaction between the oral-gut-brain axis based on previous research, focusing on how the oral microbiome (especially the periodontal pathogens) impacts IS and its risk factors, as well as the mediating role of immune system homeostasis, and providing potential preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianhui Kang
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaofeng Bai
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Bei Pu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daniel Smerin
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Liang Zhao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Li J, Wang S, Yan K, Wang P, Jiao J, Wang Y, Chen M, Dong Y, Zhong J. Intestinal microbiota by angiotensin receptor blocker therapy exerts protective effects against hypertensive damages. IMETA 2024; 3:e222. [PMID: 39135690 PMCID: PMC11316932 DOI: 10.1002/imt2.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 08/15/2024]
Abstract
Dysbiosis of the gut microbiota has been implicated in hypertension, and drug-host-microbiome interactions have drawn considerable attention. However, the influence of angiotensin receptor blocker (ARB)-shaped gut microbiota on the host is not fully understood. In this work, we assessed the alterations of blood pressure (BP), vasculatures, and intestines following ARB-modified gut microbiome treatment and evaluated the changes in the intestinal transcriptome and serum metabolome in hypertensive rats. Hypertensive patients with well-controlled BP under ARB therapy were recruited as human donors, spontaneously hypertensive rats (SHRs) receiving normal saline or valsartan were considered animal donors, and SHRs were regarded as recipients. Histological and immunofluorescence staining was used to assess the aorta and small intestine, and 16S rRNA amplicon sequencing was performed to examine gut bacteria. Transcriptome and metabonomic analyses were conducted to determine the intestinal transcriptome and serum metabolome, respectively. Notably, ARB-modified fecal microbiota transplantation (FMT), results in marked decreases in systolic BP levels, collagen deposition and reactive oxygen species accumulation in the vasculature, and alleviated intestinal structure impairments in SHRs. These changes were linked with the reconstruction of the gut microbiota in SHR recipients post-FMT, especially with a decreased abundance of Lactobacillus, Aggregatibacter, and Desulfovibrio. Moreover, ARB-treated microbes contributed to increased intestinal Ciart, Per1, Per2, Per3, and Cipc gene levels and decreased Nfil3 and Arntl expression were detected in response to ARB-treated microbes. More importantly, circulating metabolites were dramatically reduced in ARB-FMT rats, including 6beta-Hydroxytestosterone and Thromboxane B2. In conclusion, ARB-modified gut microbiota exerts protective roles in vascular remodeling and injury, metabolic abnormality and intestinal dysfunctions, suggesting a pivotal role in mitigating hypertension and providing insights into the cross-talk between antihypertensive medicines and the gut microbiome.
Collapse
Affiliation(s)
- Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Si‐Yuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Kai‐Xin Yan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Pan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jie Jiao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Yi‐Dan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Mu‐Lei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jiu‐Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Abdullah AN, Al-Habib OAM, Mohammed SA. Salivary microbial shifting in hypertensive patients with chronic periodontitis after scaling and root surface debridement. Mol Biol Rep 2024; 51:758. [PMID: 38874801 DOI: 10.1007/s11033-024-09687-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVES This study aimed to evaluate the impact of scaling and root surface debridement (SRP) on salivary bacterial counts and systolic and diastolic blood pressure in hypertensive patients with chronic periodontitis, with a focus on clinical significance. METHODS An observational trial included 24 chronic periodontitis patients, eleven of them were hypertensive patients. Non-surgical periodontal treatment was administered to all patients, with clinical parameters including gingival index (GI), plaque index (PI), and probing pocket depth (PPD) recorded. Saliva samples were collected before and after SRP to quantify total bacterial counts and specific bacterial counts. RESULTS Two months following SRP, PI and PPD in every subject under study demonstrated good responses. In hypertension patients, the salivary bacterial count was significantly higher following SRP (P = 0.0221). The incidence of Porphyromonas gingivalis in hypertension patients significantly decreased after treatment (P = 0.0386). Despite this, there was no discernible decrease in blood pressure following treatment. CONCLUSIONS SRP alone was ineffective in reducing overall bacterial counts, but P. gingivalis levels responded favorably. Regular periodontal assessment is crucial for hypertensive individuals to mitigate cardiovascular risk. CLINICAL SIGNIFICANCE Periodontal therapy in hypertensive patients may improve oral health but might not significantly impact blood pressure. Regular periodontal evaluation is essential for managing cardiovascular risk in hypertension.
Collapse
Affiliation(s)
- Ahed Najimelddin Abdullah
- Department of Dental Basic Sciences, College of Dentistry, University of Duhok, Duhok, Kurdistan Region, Iraq
| | | | - Saeed Ali Mohammed
- Periodontics Department, College of Dentistry, University of Duhok, Duhok, Kurdistan Region, Iraq
| |
Collapse
|
5
|
Čolak D, Cmok Kučič A, Pintar T, Gašpirc B, Gašperšič R. Periodontal and systemic health of morbidly obese patients eligible for bariatric surgery: a cross-sectional study. BMC Oral Health 2022; 22:174. [PMID: 35562737 PMCID: PMC9107195 DOI: 10.1186/s12903-022-02207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background In obese patients, periodontitis might be associated with deprived systemic health. Edmonton obesity staging system (EOSS) is a new tool for classification of obesity that considers the metabolic, physical, and psychological health. The cross-sectional study aimed to evaluate the periodontal status of morbidly obese patients eligible for bariatric surgery and the association between periodontitis, obesity-related comorbidities, and EOSS. Methods Morbidly obese patients eligible for bariatric surgery underwent detailed periodontal examination and were divided into the periodontitis group (PG) and the non-periodontitis group (NPG). The medical and demographic data were obtained from medical files, while behavioural data were obtained by the interview. Descriptive statistics and simple statistical tests were used to summarise the characteristics of the sample and the differences between PG and NPG. The logistic regression models were used to calculate the association (odds ratio (OR)) between periodontitis and obesity-related diseases and EOSS. Results The study included 79 patients, with an average BMI of 44.6 kg/m2 (SD = 7.2). The prevalence of periodontitis was 65% (CI 95% 53%-75%). PG patients (n = 51) were older, more often smokers and were more often hypertensive than NPG patients (n = 28) (p < 0.05). Hypertension was positively associated with periodontitis with adjusted OR 3.98 (95% CI 1.23–12.8; p = 0.021)) and age with adjusted OR 1.06, (95% CI 1.01–1.13; p = 0.038)), while other tested conditions (diabetes, dyslipidaemia, and smoking habits) did not show significant association with periodontitis. Periodontitis did not correlate with EOSS or other obesity-related comorbidities (p > 0.05). Conclusion The morbidly obese patients eligible for bariatric surgery show a high prevalence of periodontitis and, therefore, are advised to be examined by a dentist before undergoing surgery. They have higher odds of hypertension but not of other obesity-related diseases or higher stages of EOSS. The medical personnel should raise awareness among obese patients on the potential association of poor periodontal health with hypertension. Trial registration NCT04653714. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02207-0.
Collapse
Affiliation(s)
- Dejana Čolak
- Department of Oral Diseases and Periodontology, Dental Clinic, University Medical Centre Ljubljana, Hrvatski trg 6, 1000, Ljubljana, Slovenia. .,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Alja Cmok Kučič
- Department of Oral Diseases and Periodontology, Dental Clinic, University Medical Centre Ljubljana, Hrvatski trg 6, 1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadeja Pintar
- Department of Abdominal Surgery, University Medical Centre, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Boris Gašpirc
- Department of Oral Diseases and Periodontology, Dental Clinic, University Medical Centre Ljubljana, Hrvatski trg 6, 1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Gašperšič
- Department of Oral Diseases and Periodontology, Dental Clinic, University Medical Centre Ljubljana, Hrvatski trg 6, 1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Cai Y, Juszczak HM, Cope EK, Goldberg AN. The Microbiome in Obstructive Sleep Apnea. Sleep 2021; 44:6168416. [PMID: 33705556 DOI: 10.1093/sleep/zsab061] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/06/2021] [Indexed: 12/25/2022] Open
Abstract
Recent evidence has highlighted important associations between obstructive sleep apnea and the microbiome. Although the intricacies of the pathophysiologic mechanisms are not well understood, available evidence suggests a bidirectional relationship between OSA and microbiota composition. Sleep fragmentation, intermittent hypoxia, and intermittent hypercapnia all play significant roles in altering the microbiome, and initial evidence has shown that alterations of the microbiota affect sleep patterns. Animal model evidence strongly supports the idea that the microbiome mediates disease states associated with OSA including hypertension, atherosclerosis, and obesity. The majority of evidence focuses on changes in the gut microbiome, which may result from OSA as well as contribute to sleep pattern changes, OSA-related CVD, and obesity. Meanwhile, a developing body of work suggests changes in the upper airway microbiome may be associated with OSA and periodontitis-related oral cavity microbiome changes may have significance in OSA-related CVD. Lastly, while evidence is limited, several studies suggest there may be a role for treatment of OSA and OSA-related comorbidities through alteration of the microbiome with probiotics, prebiotics, and microbiota transplantation. These early animal and human studies begin to characterize the interrelationships of the microbiome and OSA and may lead to new avenues for treatment.
Collapse
Affiliation(s)
- Yi Cai
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Hailey M Juszczak
- School of Medicine, University of California, San Francisco, CA, USA
| | - Emily K Cope
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Andrew N Goldberg
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
7
|
Sohail MU, Hedin L, Al-Asmakh M. Dysbiosis of the Salivary Microbiome is Associated with Hypertension and Correlated with Metabolic Syndrome Biomarkers. Diabetes Metab Syndr Obes 2021; 14:4641-4653. [PMID: 34858042 PMCID: PMC8630402 DOI: 10.2147/dmso.s325073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/04/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hypertension (HT) is an idiopathic disease with severe complications and a high incidence of global mortality. Although the disease shares characteristic features with diabetes and obesity, the complex interplay of endogenous and environmental factors is not well characterized. The oral microbiome has recently been studied to better understand the role of commensal microorganisms in metabolic disorders, including HT, although its role in disease etiology is unclear. METHODS To bridge this gap, we compared the oral microbiome and clinical chemistry of adult subjects enrolled at Qatar Biobank. Clinical chemistry was performed using Roche Cobas-6000 analyzer. Saliva samples were subjected to 16S rRNA sequencing using Illumina MiSeq platform. Cross-gender comparisons were made between control (males/females) (C-M and C-F) and HT (HT-M and HT-F) groups. RESULTS The HT groups had higher (p ≤ 0.05) BMI, plasma glucose, insulin, C-peptide, and alkaline phosphatase (ALP) concentrations. Triglycerides, cholesterol, LDL-cholesterol, and sodium ions were similar among the groups. The microbiome was predominantly occupied by Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Firmicutes were higher (p ≤ 0.05) in the HT groups, whereas Proteobacteria was only higher in the C-F group. Prevotella and Veillonella were significantly higher in the HT groups and exhibited a positive correlation with blood pressure and hyperglycemia. In contrast to other studies, the mathematical summation of priori-select microbes reveals that nitrate-reducing microbes were higher in the HT groups compared with the controls. CONCLUSION In conclusion, these observations suggest a strong association of HT with microbial dysbiosis, where microbial species other than nitrate-reducing microbes contribute to blood pressure regulation. The findings affirm plausible microbial signatures of hypertension and suggest manipulating these microbes as a novel treatment modality. Future experiments are warranted for the mechanistic investigation of hypertension metagenomics and microbial activity.
Collapse
Affiliation(s)
| | - Lars Hedin
- The Royal Norwegian Ministry of Health and Care Services, Molde Kommune, 6413, Norway
| | - Maha Al-Asmakh
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, 2713, Qatar
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Correspondence: Maha Al-Asmakh Tel +974 4403 4789Fax +974-4403-1351 Email
| |
Collapse
|
8
|
How Periodontal Disease and Presence of Nitric Oxide Reducing Oral Bacteria Can Affect Blood Pressure. Int J Mol Sci 2020; 21:ijms21207538. [PMID: 33066082 PMCID: PMC7589924 DOI: 10.3390/ijms21207538] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO), a small gaseous and multifunctional signaling molecule, is involved in the maintenance of metabolic and cardiovascular homeostasis. It is endogenously produced in the vascular endothelium by specific enzymes known as NO synthases (NOSs). Subsequently, NO is readily oxidized to nitrite and nitrate. Nitrite is also derived from exogenous inorganic nitrate (NO3) contained in meat, vegetables, and drinking water, resulting in greater plasma NO2 concentration and major reduction in systemic blood pressure (BP). The recycling process of nitrate and nitrite to NO (nitrate-nitrite-NO pathway), known as the enterosalivary cycle of nitrate, is dependent upon oral commensal nitrate-reducing bacteria of the dorsal tongue. Veillonella, Actinomyces, Haemophilus, and Neisseria are the most copious among the nitrate-reducing bacteria. The use of chlorhexidine mouthwashes and tongue cleaning can mitigate the bacterial nitrate-related BP lowering effects. Imbalances in the oral reducing microbiota have been associated with a decrease of NO, promoting endothelial dysfunction, and increased cardiovascular risk. Although there is a relationship between periodontitis and hypertension (HT), the correlation between nitrate-reducing bacteria and HT has been poorly studied. Restoring the oral flora and NO activity by probiotics may be considered a potential therapeutic strategy to treat HT.
Collapse
|
9
|
Chidambaram V, Gupte A, Wang JY, Golub JE, Karakousis PC. The Impact of Hypertension and Use of Calcium Channel Blockers on Tuberculosis Treatment Outcomes. Clin Infect Dis 2020; 73:e3409-e3418. [PMID: 32971534 DOI: 10.1093/cid/ciaa1446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Hypertension induces systemic inflammation, but its impact on the outcome of infectious diseases like tuberculosis (TB) is unknown. Calcium channel blockers (CCB) improve TB treatment outcomes in pre-clinical models, but their effect in patients with TB remain unclear. METHODS This retrospective cohort study, including all patients > 18 years receiving treatment for culture-confirmed, drug-sensitive TB from 2000 to 2016 at the National Taiwan University Hospital, assessed the association of hypertension and CCB use with all-cause and infection-related mortality during the first 9 months of TB treatment, as well as sputum-smear microscopy and sputum-culture positivity at 2 and 6 months. RESULTS 1052 of the 2894 patients (36.4%) had hypertension. Multivariable analysis revealed that hypertension was associated with increased mortality due to all causes (HR 1.57, 95% confidence interval[CI], 1.23-1.99) and infections (HR 1.87, 95%CI, 1.34-2.6), but there was no statistical difference in microbiological outcomes when stratified based on hypertensive group. Dihydropyridine-CCB (DHP-CCB) use was associated with reduced all-cause mortality (HR 0.67, 95%CI: 0.45-0.98) only by univariate Cox regression. There was no association between DHP-CCB use and infection-related mortality (HR 0.78, 95%CI: 0.46-1.34) or microbiological outcomes in univariate or multivariate regression analyses. CONCLUSIONS Patients with hypertension have increased all-cause mortality and infection-related mortality during the 9 months following TB treatment initiation. DHP-CCB use may lower all-cause mortality in TB patients with hypertension. The presence of hypertension or the use of CCB did not result in a significant change in microbiological outcomes.
Collapse
Affiliation(s)
- Vignesh Chidambaram
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Akshay Gupte
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Clinical Global Health Education, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | - Jonathan E Golub
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Petros C Karakousis
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Zeng YM, Hu AK, Su HZ, Ko CY. A review of the association between oral bacterial flora and obstructive sleep apnea-hypopnea syndrome comorbid with cardiovascular disease. Sleep Breath 2019; 24:1261-1266. [PMID: 31758435 DOI: 10.1007/s11325-019-01962-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 09/29/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Obstructive sleep apnea-hypopnea syndrome (OSAHS), a common sleep disorder, has been shown to be an independent risk factor for cardiovascular disease (CVD). Recent studies have focused on the important roles of microorganisms in human health; for example, microorganisms are reportedly associated with obesity, metabolic disorders, and CVD. The number of oral bacteria in patients with OSAHS is considerably higher than that in healthy individuals, and infection with oral bacterial pathogens is associated with the development of CVD. However, whether changes in the oral microbiota mediate the development of OSAHS and CVD remains unknown. METHODS Therefore, we attempted to review the association between changes in oral microbiota in patients with OSAHS and the development of CVD. RESULTS Oral microbiota possibly acts via multiple pathways including direct invasion, platelet aggregation, immune response, inflammatory response, and oxidative stress response, leading to the development of CVD in patients with OSAHS. In particular, the strains Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Prevotella intermedia have demonstrated profound effects. OSAHS leads to changes in the oral bacterial flora and thus may facilitate the occurrence and development of CVD. CONCLUSION We propose that the underlying mechanism of CVDs resulting from oral microbiota in patients with OSAHS should be elucidated in further studies.
Collapse
Affiliation(s)
- Yi-Ming Zeng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan N Rd, Licheng Qu, Quanzhou Shi, 362000, Fujian Province, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, China.,The Sleep Medicine Key Laboratory of Fujian Medical Universities, Fujian Province University, Quanzhou, 362000, China
| | - An-Ke Hu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan N Rd, Licheng Qu, Quanzhou Shi, 362000, Fujian Province, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, China.,The Sleep Medicine Key Laboratory of Fujian Medical Universities, Fujian Province University, Quanzhou, 362000, China
| | - Huan-Zhang Su
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan N Rd, Licheng Qu, Quanzhou Shi, 362000, Fujian Province, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, China.,The Sleep Medicine Key Laboratory of Fujian Medical Universities, Fujian Province University, Quanzhou, 362000, China
| | - Chih-Yuan Ko
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan N Rd, Licheng Qu, Quanzhou Shi, 362000, Fujian Province, China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, China. .,The Sleep Medicine Key Laboratory of Fujian Medical Universities, Fujian Province University, Quanzhou, 362000, China. .,Department of Clinical Nutrition, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| |
Collapse
|
11
|
Ko CY, Hu AK, Chou D, Huang LM, Su HZ, Yan FR, Zhang XB, Zhang HP, Zeng YM. Analysis of oral microbiota in patients with obstructive sleep apnea-associated hypertension. Hypertens Res 2019; 42:1692-1700. [PMID: 30976074 PMCID: PMC8075895 DOI: 10.1038/s41440-019-0260-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/28/2019] [Accepted: 03/09/2019] [Indexed: 02/08/2023]
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is an independent risk factor for hypertension (HTN). The oral microbiota plays a pathophysiological role in cardiovascular diseases; however, there are few reports directly investigating and identifying the organisms involved in OSAHS-related HTN. Therefore, this study aimed to identify those organisms. We obtained 139 oral samples and determined the microbiome composition using pyrosequencing and bioinformatic analyses of the 16S rRNA. We examined the fasting levels of cytokines and homocysteine in all participants and analyzed the correlations between the oral microbiota and homocysteine levels. We determined the molecular mechanism underlying HTN by investigating the genetic composition of the strains in the blood. We detected higher relative abundances of Porphyromonas and Aggregatibacter and elevated proinflammatory cytokines in patients with OSAHS of varying severity compared with individuals without OSAHS; however, the two organisms were not measured in the blood samples from all participants. High levels of specific Porphyromonas bacteria were detected in patients with OSAHS with and without HTN, whereas the relative abundance of Aggregatibacter was negatively correlated with the homocysteine level. The receiver operating characteristic curve analysis of controls and patients with OSAHS resulted in area under the curve values of 0.759 and 0.641 for patients with OSAHS with or without HTN, respectively. We found that the predictive function of oral microbiota was different in patients with OSAHS with and without HTN. However, there was no direct invasion by the two organisms causing endothelial cell injury, leading to speculation regarding the other mechanisms that may lead to HTN. Elucidating the differences in the oral microbiome will help us understand the pathogenesis of OSAHS-related HTN.
Collapse
Affiliation(s)
- Chih-Yuan Ko
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China.
- Respiratory Medicine Center of Fujian Province, 362000, Quanzhou, China.
- Key Laboratory of Fujian Medical University, Fujian Province University, 362000, Quanzhou, China.
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China.
| | - An-Ke Hu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, 362000, Quanzhou, China
- Key Laboratory of Fujian Medical University, Fujian Province University, 362000, Quanzhou, China
| | - Dylan Chou
- Zhuhai Campus of Zunyi Medical University, Zhuhai, 519090, Guangdong, China
| | - Li-Mei Huang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, 362000, Quanzhou, China
- Key Laboratory of Fujian Medical University, Fujian Province University, 362000, Quanzhou, China
| | - Huan-Zhang Su
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, 362000, Quanzhou, China
- Key Laboratory of Fujian Medical University, Fujian Province University, 362000, Quanzhou, China
| | - Fu-Rong Yan
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, 362000, Quanzhou, China
- Key Laboratory of Fujian Medical University, Fujian Province University, 362000, Quanzhou, China
- Center for Molecular Diagnosis and Therapy, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China
| | - Xiao-Bin Zhang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, 362000, Quanzhou, China
- Key Laboratory of Fujian Medical University, Fujian Province University, 362000, Quanzhou, China
| | - Hua-Ping Zhang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China.
- Respiratory Medicine Center of Fujian Province, 362000, Quanzhou, China.
- Key Laboratory of Fujian Medical University, Fujian Province University, 362000, Quanzhou, China.
| | - Yi-Ming Zeng
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China.
- Respiratory Medicine Center of Fujian Province, 362000, Quanzhou, China.
- Key Laboratory of Fujian Medical University, Fujian Province University, 362000, Quanzhou, China.
| |
Collapse
|
12
|
Kure K, Sato H, Aoyama N, Izumi Y. Accelerated inflammation in peripheral artery disease patients with periodontitis. J Periodontal Implant Sci 2018; 48:337-346. [PMID: 30619635 PMCID: PMC6312877 DOI: 10.5051/jpis.2018.48.6.337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/20/2018] [Indexed: 12/19/2022] Open
Abstract
Purpose Peripheral artery disease (PAD) is a form of arteriosclerosis that occurs in the extremities and involves ischemia. Previous studies have reported that patients with periodontitis are at high risk for PAD. However, the relationship between these 2 diseases has not yet been fully elucidated. In this cross-sectional study, we investigated this relationship by comparing patients with PAD to those with arrhythmia (ARR) as a control group. Methods A large-scale survey was conducted of patients with cardiovascular disease who visited Tokyo Medical and Dental University Hospital. We investigated their oral condition and dental clinical measurements, including probing pocket depth, bleeding on probing, clinical attachment level, and number of missing teeth; we also collected salivary and subgingival plaque samples and peripheral blood samples. All patients with PAD were extracted from the whole population (n=25), and a matching number of patients with ARR were extracted (n=25). Simultaneously, ARR patients were matched to PAD patients in terms of age, gender, prevalence of diabetes, hypertension, dyslipidemia, obesity, and the smoking rate (n=25 in both groups). Real-time polymerase chain reaction was performed to measure the bacterial counts, while the enzyme-linked immunosorbent assay method was used to measure anti-bacterial antibody titers and proinflammatory cytokine levels in serum. Results PAD patients had more missing teeth (18.4±2.0) and higher serum levels of C-reactive protein (1.57±0.85 mg/dL) and tumor necrosis factor-alpha (70.3±5.7 pg/mL) than ARR patients (12.0±1.7, 0.38±0.21 mg/dL, and 39.3±4.5 pg/mL, respectively). Meanwhile, no statistically significant differences were found in other dental clinical measurements, bacterial antibody titers, or bacterial counts between the 2 groups. Conclusions Our findings suggested that PAD patients had poorer oral and periodontal state with enhanced systemic inflammation.
Collapse
Affiliation(s)
- Keitetsu Kure
- Department of Periodontology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Sato
- Department of Periodontology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Norio Aoyama
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan
| | - Yuichi Izumi
- Department of Periodontology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|