1
|
Kumar V, Narisawa M, Cheng XW. Overview of multifunctional Tregs in cardiovascular disease: From insights into cellular functions to clinical implications. FASEB J 2024; 38:e23786. [PMID: 38979903 DOI: 10.1096/fj.202400839r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Regulatory T cells (Tregs) are crucial in regulating T-cell-mediated immune responses. Numerous studies have shown that dysfunction or decreased numbers of Tregs may be involved in inflammatory cardiovascular diseases (CVDs) such as atherosclerosis, hypertension, myocardial infarction, myocarditis, cardiomyopathy, valvular heart diseases, heart failure, and abdominal aortic aneurysm. Tregs can help to ameliorate CVDs by suppressing excessive inflammation through various mechanisms, including inhibition of T cells and B cells, inhibition of macrophage-induced inflammation, inhibition of dendritic cells and foam cell formation, and induction of anti-inflammatory macrophages. Enhancing or restoring the immunosuppressive activity of Tregs may thus serve as a fundamental immunotherapy to treat hypertension and CVDs. However, the precise molecular mechanisms underlying the Tregs-induced protection against hypertension and CVDs remain to be investigated. This review focuses on recent advances in our understanding of Tregs subsets and function in CVDs. In addition, we discuss promising strategies for using Tregs through various pharmacological approaches to treat hypertension and CVDs.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
2
|
Ricciotti E, Haines PG, Chai W, FitzGerald GA. Prostanoids in Cardiac and Vascular Remodeling. Arterioscler Thromb Vasc Biol 2024; 44:558-583. [PMID: 38269585 PMCID: PMC10922399 DOI: 10.1161/atvbaha.123.320045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Prostanoids are biologically active lipids generated from arachidonic acid by the action of the COX (cyclooxygenase) isozymes. NSAIDs, which reduce the biosynthesis of prostanoids by inhibiting COX activity, are effective anti-inflammatory, antipyretic, and analgesic drugs. However, their use is limited by cardiovascular adverse effects, including myocardial infarction, stroke, hypertension, and heart failure. While it is well established that NSAIDs increase the risk of atherothrombotic events and hypertension by suppressing vasoprotective prostanoids, less is known about the link between NSAIDs and heart failure risk. Current evidence indicates that NSAIDs may increase the risk for heart failure by promoting adverse myocardial and vascular remodeling. Indeed, prostanoids play an important role in modulating structural and functional changes occurring in the myocardium and in the vasculature in response to physiological and pathological stimuli. This review will summarize current knowledge of the role of the different prostanoids in myocardial and vascular remodeling and explore how maladaptive remodeling can be counteracted by targeting specific prostanoids.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Institute for Translational Medicine and Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Philip G Haines
- Rhode Island Hospital, Department of Medicine, Warren Alpert Medical School of Brown University, Providence (P.G.H.)
| | - William Chai
- Health and Human Biology, Division of Biology and Medicine, Brown University, Providence, RI (W.C.)
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Institute for Translational Medicine and Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Department of Medicine (G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
3
|
Kanno T, Nakagawa N, Aonuma T, Kawabe JI, Yuhki KI, Takehara N, Hasebe N, Ushikubi F. Prostaglandin E 2 mediates the late phase of ischemic preconditioning in the heart via its receptor subtype EP 4. Heart Vessels 2023; 38:606-613. [PMID: 36522555 PMCID: PMC9986202 DOI: 10.1007/s00380-022-02219-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Ischemic preconditioning (IPC) describes a phenomenon wherein brief ischemia of the heart induces a potent cardioprotective mechanism against succeeding ischemic insult. Cyclooxygenase-2 (COX-2), a rate-limiting enzyme in prostanoid biosynthesis, is upregulated in the ischemic heart and contributes to IPC. Prostaglandin E2 (PGE2) protects the heart from ischemia-reperfusion (I/R) injury via its receptor subtype EP4. We sought to clarify the role of the PGE2/EP4 system in the late phase of IPC. Mice were subjected to four IPC treatment cycles, consisting of 5 min of occlusion of the left anterior descending coronary artery (LAD). We found that COX-2 mRNA was significantly upregulated in wild-type hearts at 6 h after IPC treatment. Cardiac PGE2 levels at 24 h after IPC treatment were significantly increased in both wild-type mice and mice lacking EP4 (EP4-/-). At 24 h after IPC treatment, I/R injury was induced by 30 min of LAD occlusion followed by 2 h of reperfusion and the cardiac infarct size was determined. The infarct size was significantly reduced by IPC treatment in wild-type mice; a reduction was not observed in EP4-/- mice. AE1-329, an EP4 agonist, significantly reduced infarct size and significantly ameliorated deterioration of cardiac function in wild-type mice subjected to I/R without IPC treatment. Furthermore, AE1-329 significantly enhanced the I/R-induced activation of Akt, a pro-survival kinase. We demonstrated that the PGE2/EP4 system in the heart plays a critical role in the late phase of IPC, partly by augmenting Akt-mediated signaling. These findings clarify the mechanism of IPC and may contribute to the development of therapeutic strategies for ischemic heart disease.
Collapse
Affiliation(s)
- Takayasu Kanno
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan.,Division of Cardiology, Nephrology, Pulmonology and Neurology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Japan
| | - Naoki Nakagawa
- Division of Cardiology, Nephrology, Pulmonology and Neurology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Japan.
| | - Tatsuya Aonuma
- Division of Cardiology, Nephrology, Pulmonology and Neurology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Japan
| | - Jun-Ichi Kawabe
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan.,Division of Integrated Life Science, Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Koh-Ichi Yuhki
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan
| | - Naofumi Takehara
- Division of Cardiology, Nephrology, Pulmonology and Neurology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Japan
| | - Naoyuki Hasebe
- Division of Cardiology, Nephrology, Pulmonology and Neurology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Japan.,Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan
| | - Fumitaka Ushikubi
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
4
|
Sheng C, Guo Y, Ma J, Hong EK, Zhang B, Yang Y, Zhang X, Zhang D. Metabolomic Profiling Reveals Protective Effects and Mechanisms of Sea Buckthorn Sterol against Carbon Tetrachloride-Induced Acute Liver Injury in Rats. Molecules 2022; 27:molecules27072224. [PMID: 35408620 PMCID: PMC9000363 DOI: 10.3390/molecules27072224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 12/26/2022] Open
Abstract
The present study was designed to examine the efficacy and protection mechanisms of sea buckthorn sterol (SBS) against acute liver injury induced by carbon tetrachloride (CCl4) in rats. Five-week-old male Sprague-Dawley (SD) rats were divided into six groups and fed with saline (Group BG), 50% CCl4 (Group MG), or bifendate 200 mg/kg (Group DDB), or treated with low-dose (Group LD), medium-dose (Group MD), or high-dose (Group HD) SBS. This study, for the first time, observed the protection of SBS against CCl4-induced liver injury in rats and its underlying mechanisms. Investigation of enzyme activities showed that SBS-fed rats exhibited a significant alleviation of inflammatory lesions, as evidenced by the decrease in cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and gamma-glutamyl transpeptidase (γ-GT). In addition, compared to the MG group, the increased indices (superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), total antioxidant capacity (T-AOC), and total protein (TP)) of lipid peroxidation and decreased malondialdehyde (MDA) in liver tissues of SBS-treated groups showed the anti-lipid peroxidation effects of SBS. Using the wide range of targeted technologies and a combination of means (UPLC-MS/MS detection platform, self-built database, and multivariate statistical analysis), the addition of SBS was found to restore the expression of metabolic pathways (e.g., L-malic acid, N-acetyl-aspartic acid, N-acetyl-l-alanine, etc.) in rats, which means that the metabolic damage induced by CCl4 was alleviated. Furthermore, transcriptomics was employed to analyze and compare gene expression levels of different groups. It showed that the expressions of genes (Cyp1a1, Noct, and TUBB6) related to liver injury were regulated by SBS. In conclusion, SBS exhibited protective effects against CCl4-induced liver injury in rats. The liver protection mechanism of SBS is probably related to the regulation of metabolic disorders, anti-lipid peroxidation, and inhibition of the inflammatory response.
Collapse
Affiliation(s)
- Changting Sheng
- College of Medicine, Qinghai University, Xining 810016, China; (C.S.); (Y.G.)
| | - Yang Guo
- College of Medicine, Qinghai University, Xining 810016, China; (C.S.); (Y.G.)
| | - Jing Ma
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (J.M.); (B.Z.); (Y.Y.); (X.Z.)
| | - Eun-Kyung Hong
- Medvill Co., Ltd., Medvill Research Institute, Seoul 100744, Korea;
| | - Benyin Zhang
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (J.M.); (B.Z.); (Y.Y.); (X.Z.)
| | - Yongjing Yang
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (J.M.); (B.Z.); (Y.Y.); (X.Z.)
| | - Xiaofeng Zhang
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (J.M.); (B.Z.); (Y.Y.); (X.Z.)
| | - Dejun Zhang
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (J.M.); (B.Z.); (Y.Y.); (X.Z.)
- Correspondence:
| |
Collapse
|
5
|
Bi Y, Han X, Lai Y, Fu Y, Li K, Zhang W, Wang Q, Jiang X, Zhou Y, Liang H, Fan H. Systems pharmacological study based on UHPLC-Q-Orbitrap-HRMS, network pharmacology and experimental validation to explore the potential mechanisms of Danggui-Shaoyao-San against atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114278. [PMID: 34087397 DOI: 10.1016/j.jep.2021.114278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) plays an important role in the pathogenesis of cardiovascular and cerebrovascular diseases. Danggui-Shaoyao-San (DSS) is not only a representative Chinese formula to treat gynecological disorder, but also found its use in AS-related diseases. However, the active ingredients and the anti-AS effects are vague yet. AIM OF THE STUDY An integrated strategy combined ultrahigh-performance liquid chromatography quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap-HRMS), network pharmacology and experiments was carried out to investigate the potential materials and pharmacological mechanisms of DSS for AS. MATERIALS AND METHODS First, UHPLC-Q-Orbitrap-HRMS was applied to identify the active compositions of DSS. Then, the putative targets of DSS relevant to AS were predicted from TCMSP and BATMAN, which were further determined through bioinformatic analyses, including protein-protein interactions (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, Western blot, qPCR and ELISA were carried out for target validation in human umbilical vein endothelial cells (HUVECs). RESULTS A total of 37 active ingredients of DSS, connecting 47 key targets were identified. The functional enrichment showed that DSS may treat AS through regulating a series of signaling pathways which involving inflammatory responses, immune systems and metabolism. The in vitro experiment revealed that DSS ameliorated AS mainly through anti-inflammatory effects, by reducing the levels of vascular cell adhesion molecule-1 (VCAM1), intercellular adhesion molecule-1 (ICAM1), IL-6, TNF-α, cyclooxygenase-2 (Cox-2) and IL-1β. DSS also inhibited the phosphorylation of IκB-α, NF-κB (p65), p38 and JNK in lipopolysaccharide (LPS)-induced HUVEC injury model. Moreover, as the main bioactive compounds of DSS, paeoniflorin (PF), ferulic acid (FA) and pachymic acid (PA) inhibited IL-6 and TNF-α secretion as well as IκB-α, NF-κB (p65), p38 and JNK activation. All these findings were consistent with the predicted targets and pathways. CONCLUSION Collectively, the basic pharmacological effects and relevant mechanisms of DSS in the treatment of AS were revealed. The results suggest that DSS is a potential drug for AS treatment, and PF, FA, PA may be the core compositions contributing to the pharmacological function of this formula.
Collapse
Affiliation(s)
- Yiming Bi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xin Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yigui Lai
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, China
| | - Yingchang Fu
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, China
| | - Kongzheng Li
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, China
| | - Wei Zhang
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, China
| | - Qiang Wang
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, China
| | - Xuefeng Jiang
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yingchun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Hongfeng Liang
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, China.
| | - Huijie Fan
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China.
| |
Collapse
|
6
|
Tootee A, Nikbin B, Ghahary A, Esfahani EN, Arjmand B, Aghayan H, Qorbani M, Larijani B. Immunopathology of Type 1 Diabetes and Immunomodulatory Effects of Stem Cells: A Narrative Review of the Literature. Endocr Metab Immune Disord Drug Targets 2021; 22:169-197. [PMID: 33538679 DOI: 10.2174/1871530321666210203212809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/11/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022]
Abstract
Type 1 Diabetes (T1D) is a complex autoimmune disorder which occurs as a result of an intricate series of pathologic interactions between pancreatic β-cells and a wide range of components of both the innate and the adaptive immune systems. Stem-cell therapy, a recently-emerged potentially therapeutic option for curative treatment of diabetes, is demonstrated to cause significant alternations to both different immune cells such as macrophages, natural killer (NK) cells, dendritic cells, T cells, and B cells and non-cellular elements including serum cytokines and different components of the complement system. Although there exists overwhelming evidence indicating that the documented therapeutic effects of stem cells on patients with T1D is primarily due to their potential for immune regulation rather than pancreatic tissue regeneration, to date, the precise underlying mechanisms remain obscure. On the other hand, immune-mediated rejection of stem cells remains one of the main obstacles to regenerative medicine. Moreover, the consequences of efferocytosis of stem-cells by the recipients' lung-resident macrophages have recently emerged as a responsible mechanism for some immune-mediated therapeutic effects of stem-cells. This review focuses on the nature of the interactions amongst different compartments of the immune systems which are involved in the pathogenesis of T1D and provides explanation as to how stem cell-based interventions can influence immune system and maintain the physiologic equilibrium.
Collapse
Affiliation(s)
- Ali Tootee
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Behrouz Nikbin
- Research Center of Molecular Immunology, Tehran University of Medical Sciences, Tehran, . Iran
| | - Aziz Ghahary
- British Columbia Professional Firefighters' Burn and Wound Healing Research Laboratory, Department of Surgery, Plastic Surgery, University of British Columbia, Vancouver, . Canada
| | - Ensieh Nasli Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Babak Arjmand
- Cell therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Hamidreza Aghayan
- Cell therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, . Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| |
Collapse
|