1
|
Perry AS, Amancherla K, Huang X, Lance ML, Farber-Eger E, Gajjar P, Amrute J, Stolze L, Zhao S, Sheng Q, Joynes CM, Peng Z, Tanaka T, Drakos SG, Lavine KJ, Selzman C, Visker JR, Shankar TS, Ferrucci L, Das S, Wilcox J, Patel RB, Kalhan R, Shah SJ, Walker KA, Wells Q, Tucker N, Nayor M, Shah RV, Khan SS. Clinical-transcriptional prioritization of the circulating proteome in human heart failure. Cell Rep Med 2024; 5:101704. [PMID: 39226894 PMCID: PMC11524958 DOI: 10.1016/j.xcrm.2024.101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/15/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Given expanding studies in epidemiology and disease-oriented human studies offering hundreds of associations between the human "ome" and disease, prioritizing molecules relevant to disease mechanisms among this growing breadth is important. Here, we link the circulating proteome to human heart failure (HF) propensity (via echocardiographic phenotyping and clinical outcomes) across the lifespan, demonstrating key pathways of fibrosis, inflammation, metabolism, and hypertrophy. We observe a broad array of genes encoding proteins linked to HF phenotypes and outcomes in clinical populations dynamically expressed at a transcriptional level in human myocardium during HF and cardiac recovery (several in a cell-specific fashion). Many identified targets do not have wide precedent in large-scale genomic discovery or human studies, highlighting the complementary roles for proteomic and tissue transcriptomic discovery to focus epidemiological targets to those relevant in human myocardium for further interrogation.
Collapse
Affiliation(s)
- Andrew S Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kaushik Amancherla
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xiaoning Huang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Eric Farber-Eger
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Priya Gajjar
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Junedh Amrute
- Cardiology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsey Stolze
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cassandra M Joynes
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Zhongsheng Peng
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Stavros G Drakos
- Division of Cardiovascular Medicine, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Kory J Lavine
- Cardiology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Craig Selzman
- Department of Cardiac Surgery, University of Utah School of Medicine, Division of Cardiothoracic Surgery, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Joseph R Visker
- Division of Cardiovascular Medicine, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Thirupura S Shankar
- Division of Cardiovascular Medicine, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Saumya Das
- Cardiovascular Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jane Wilcox
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ravi B Patel
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ravi Kalhan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sanjiv J Shah
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Quinn Wells
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sadiya S Khan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
3
|
Ahmed S, Ahmed A, Rådegran G. Data on plasma tumour and metabolism related proteins' potential in differentiation of HFpEF-PH from PAH and in prognosis of left heart failure patients with pulmonary hypertension. Data Brief 2022; 40:107747. [PMID: 35024391 PMCID: PMC8728576 DOI: 10.1016/j.dib.2021.107747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/05/2022] Open
Abstract
The data in the current paper constitutes supplementary material to our article entitled “Plasma tumour and metabolism related biomarkers AMBP, LPL and Glyoxalase I differentiate heart failure with preserved ejection fraction with pulmonary hypertension from pulmonary arterial hypertension” Ahmed et al. (2021). The study investigated 69 plasma tumour- and metabolism related proteins in healthy controls (n = 20) and in 115 patients of whom 48 had pulmonary arterial hypertension (PAH; n = 48) and 67 with left heart failure with pulmonary hypertension (LHF-PH) [heart failure with- preserved ejection fraction-PH (HFpEF-PH; n = 31) and reduced ejection fraction-PH (HFrEF-PH; n = 36)]. The haemodynamic data were obtained with right heart catheterization, and clinical data from medical records. The present article describe the plasma levels of tumour- and metabolism related proteins, analyzed with proximity extension assay, along with their uni- and multivariable diagnostic and prognostic potential. High sRAGE levels univariably emerged as a negative prognostic marker in LHF-PH.
Collapse
Affiliation(s)
- Salaheldin Ahmed
- Department of Clinical Sciences Lund, Cardiology, Lund University, Lund, Sweden.,The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Abdulla Ahmed
- Department of Clinical Sciences Lund, Cardiology, Lund University, Lund, Sweden.,The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, Cardiology, Lund University, Lund, Sweden.,The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
4
|
Ahmed S, Ahmed A, Rådegran G. Plasma tumour and metabolism related biomarkers AMBP, LPL and Glyoxalase I differentiate heart failure with preserved ejection fraction with pulmonary hypertension from pulmonary arterial hypertension. Int J Cardiol 2021; 345:68-76. [PMID: 34710494 DOI: 10.1016/j.ijcard.2021.10.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Discrimination of heart failure with preserved ejection fraction with pulmonary hypertension (HFpEF-PH) from pulmonary arterial hypertension (PAH) is crucial for clinical management but may be challenging due to similarities in clinical and comorbid characteristics. We aimed to investigate tumour and metabolism related proteins in differentiating HFpEF-PH from PAH. METHODS Sixty-nine tumour and metabolism plasma proteins were analysed with proximity extension assay in heathy controls (n = 20), patients with PAH (n = 48) and LHF-PH (n = 67) [HFpEF-PH (n = 31) and HF reduced EF-PH (n = 36)]. Haemodynamics were assessed with right heart catheterization. RESULTS The plasma levels of alpha-1-microglobulin/bikunin precursor (AMBP) and lipoprotein lipase (LPL), were higher in HFpEF-PH compared to healthy controls (p < 0.01), HFrEF-PH (p < 0.05), and PAH (p < 0.001). Glyoxalase I levels were higher in HFpEF-PH and HFrEF-PH compared to controls (p < 0.001) and PAH (p < 0.001). Each of plasma AMBP, LPL, and glyoxalase I, adjusted for age and sex in multivariable logistic regression models, could differentiate HFpEF-PH from PAH, with areas under the receiver operating characteristic curve (AUC) of 0.81, 0.84 and 0.79, respectively. The combination of AMBP, LPL and glyoxalse I yielded the largest AUC of 0.87 [95% confidence interval (0.79-0.95)] in discriminating HFpEF-PH from PAH, with a sensitivity of 87.1% and a specificity of 85.4%. In HFpEF-PH, the plasma levels of AMBP correlated with pulmonary arterial wedge pressure (rs = -0.42, p = 0.018). CONCLUSIONS Plasma AMBP, LPL and glyoxalase I may facilitate the distinction of HFpEF-PH from PAH. Larger clinical studies are encouraged to confirm and validate our findings.
Collapse
Affiliation(s)
- Salaheldin Ahmed
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden; The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden.
| | - Abdulla Ahmed
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden; The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden; The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW To consider the role of endocan as an inflammatory marker in cardiovascular diseases. RECENT FINDINGS Endocan, an endothelial inflammatory marker, is associated with cardiovascular disease. SUMMARY Vascular endothelial inflammation plays a key role in the pathogenesis of inflammatory and cardiovascular diseases by influencing thrombogenesis, tumour invasion and secretion of bioactive mediators. We discuss the role of endocan mainly in the context of cardiology.
Collapse
Affiliation(s)
- Sevket Balta
- Department of Cardiology, Hayat Hospital, Malatya
| | - Ilknur Balta
- Department of Dermatology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School London, University College London (UCL), London, UK
- Mohammed Bin Rashid University (MBRU) of Medicine and Health Sciences, Dubai
| |
Collapse
|